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ABSTRACT
This paper introduces an approach to supporting high-dimensional
data cubes at interactive query speeds and moderate storage cost.
The approach is based on binary(-domain) data cubes that are ju-
diciously partially materialized; the missing information can be
quickly reconstructed using statistical or linear programming tech-
niques. This enables new applications such as exploratory data
analysis for feature engineering and other fields of data science.
Moreover, it removes the need to compromise when building a
data cube – all columns that we might ever wish to use can be
included as dimensions. Our approach also speeds up certain dice,
roll-up, and drill-down operations on data cubes with hierarchical
dimensions compared to traditional data cubes.
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1 INTRODUCTION
Data cubes [14] are a principled and successful way of employing
pre-computation and viewmaterialization [1] to support interactive-
speed query processing [17, 24] and exploratory data analysis [19]
on multidimensional data. Via their limited and often visual query
languages (using operations such as roll-up, drill-down, and slice),
they are accessible to users not trained to write complex code.

The number of dimensions supported by a data cube is often lim-
ited in practice due to the aggressive materialization of its cuboids
[29]. However, if the dimensionality were not practically limited,
we could have high-dimensional data cubes that would be beneficial
in the following scenarios.
• Natively high-dimensional data: Data scientists routinely
work with high-dimensional data. For tasks such as feature
engineering, interactive tools for exploratory data analysis
built on top of data cubes would be extremely useful [23].
• Inlining dimension tables: Unlike star/snowflake schemas
[14] with additional dimension tables that need to be joined
with the central fact table, one can use high-dimensional data
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cubes to perform aggregations over hierarchical dimensions
without resorting to joins. Instead of what is traditionally
represented by a single dimension, we can have every dimen-
sion attribute as separate dimensions at different granularity;
for instance, one can add month, quarter, and year as dimen-
sions instead of a single time dimension.
• Aggregations on partial keys: Breaking up what is tra-
ditionally a single dimension key into several dimensions
allows aggregations on partial keys to be implemented as
roll-up operations on a high-dimensional data cube.

This paper explores how such high-dimensional data cubes can
be made a reality. We address the infeasibility of materializing the
entire cuboid lattice of a high-dimensional data cube by working
with principled schemes thatmaterialize only a subset of the cuboids
[3, 16, 17, 41] that traditionally form a data cube. While this goes
against the original vision of data cubes (which aggressively do as
much pre-computation as possible), the disadvantages of missing
some cuboids are addressed by our technical contributions.

We show two algorithmic approaches by which available cuboids
can be used to efficiently approximate or reconstruct missing ones
that we chose not to materialize. In the first technique, we convert
available cuboids into linear equation systems that constrain the
query cuboid and which we solve by linear programming [13]. In
general, the problem remains underconstrained, and this yields tight
upper and lower bounds on the possible values in the query cuboid.
In the second technique, we extract moments [36] that characterize
the underlying data distribution from the available cuboids. The
moments extracted from the projections of a query cuboid capture
its lower-order statistics. We extrapolate the remaining moments
from the available ones, allowing us to approximate the values in
the query cuboid in expectation. This approximation works well
when many lower-order moments are available and higher-order
deviations are rare in the data. Both techniques, particularly the
second one, can be done much faster than reading the smallest
available cuboid that subsumes the query and projecting it down
to the dimensions requested in the query.

We propose binary data cubes as an internal representation for
our system. In these data cubes, the domain of each dimension
consists of only two values. Real data does not comprise only such
dimensions, but our model does not restrict generality. We support
unrestricted classical dimensions with domains of𝑚 values using
cosmetic dimensions obtained by grouping ⌈log2𝑚⌉ binary dimen-
sions. Dimension hierarchies are encoded within the binary dimen-
sions of a cosmetic dimension by assigning a hierarchy among
them, thereby eliminating the need for star and snowflake schemas.

Based on these principles, we built a data cube engine, Sudokube.
Depending on the solving algorithm, it uses either linear program-
ming ormoment extrapolation to quickly answer queries over binary
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data cubes that may have hundreds or even thousands of dimen-
sions. Furthermore, the system can approximate the query using an
online [18] algorithm, starting with the smallest available cuboids,
incrementally reading in larger and larger cuboids (in the worst
case up to the smallest cuboid that subsumes the query), turning
them into linear equations or moments, and continuously maintain-
ing approximate query results that improve until an exact answer
is achieved. This practical approach allows for interactive data
analysis and exploration of very high-dimensional datasets.

We validate our claims using two datasets: (1) New York City
Parking Violations Issued [34], a natively moderately high-dimen-
sional dataset (43 columns / 429 binary dimensions) that cannot be
currently explored and analyzed using existing full-materialization
data cube technology, and (2) Star Schema Benchmark [35], a stan-
dard benchmark for decision support queries on a star schema. Our
experiments show that Sudokube yields results with less than 1%
average error in under a second for queries on both datasets. We
also show how our approach fares with inlining dimension tables
by turning columns into hierarchies of binary dimensions.

Example 1.1. On the New York City dataset, the query1

SELECT floor(issue_date_year/2), registration_state, SUM(1)
FROM NYC_Cube
GROUP BY floor(issue_date_year/2), registration_state
asks for the number of parking violations grouped by pairs of
consecutive years and vehicle registration states. In Sudokube,
this does not require a join with a dimension table or complex
re-computation; the issue_date_year column is already internally
represented by a sequence of binary dimensions, and this query
can be expressed by grouping by all but the least significant of the
column’s binary dimensions. Generally speaking, by aligning them
with binary prefix representations, we can represent wide ranges
of dimension hierarchies, including non-numerical ones.

The paper is structured as follows. Section 2 discusses some
challenges of high-dimensional data cubes. Section 3 introduces
and formalizes our framework of binary data cubes and discusses
how to work with them. Section 4 explores taking a set of cuboids
of the data cube as a linear equation system that describes another
cuboid (such as a query), and presents several properties that make
this viewpoint useful; in particular, we show how easy it is to find
a maximal linearly independent set of equations. Section 5 explores
an alternative strategy where we introduce the concept of moments
and explain how we extract moments from projections, extrapolate
unknown moments and finally obtain an approximation of a cuboid
from these extrapolated moments. Section 6 describes our system,
Sudokube. Section 7 discusses related work. We experimentally
evaluate the performance and the feasibility of our approach in
Section 8. We conclude and discuss future work in Section 9.

2 THE INFEASIBILITY OF
HIGH-DIMENSIONAL DATA CUBES

The number of dimensions 𝑑 that can be supported in practice in
state-of-the-art data cube technology is limited as the storage costs
quickly become astronomical as 𝑑 increases. In this section, we
explain why this is the case. Consider some relational data stored
1This is the first of the concrete queries experimented with in Figure 12.
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Figure 1: Simulation results for the density of a random
𝑑0-dimensional projection of a 𝑑-dimensional cuboid. One
curve for each 𝑑0 value between 6 and 23.

in a fact table consisting of 𝑑 dimension columns and one or more
numerical fact columns whose values are to be aggregated, grouped
by the dimension columns. For simplicity of notation, we will as-
sume there to be just one fact column throughout the remainder
of the paper, and we will focus on aggregation by summation. The
dimension columns hold values, subsequently called keys, that are
keys in so-called dimension tables. The dimension tables describe
a further coarsening hierarchy for the dimensions. For instance,
the fact table may register keys in a time dimension representing
timestamps at the granularity of seconds, and the corresponding
dimension table(s) map(s) these timestamps to hours, days, months,
and years. Depending on the complexity of these additional tables
and their join paths, one speaks of star or snowflake schemas [14].

Example 2.1. We now begin a running example that we will use
throughout this paper. The fact table storing a company’s sales
data for four Swiss cities (Geneva G, Lausanne L, Zurich Z, and
Bern B) and the four quarters of 2021 is shown in Figure 2a. Ad-
ditional dimension tables for city and quarter could classify cities
into French or German-speaking and map quarters to half-years,
but are omitted for brevity.

Data cubes are built by defining views that aggregate the fact
column of the fact table grouped by the dimension columns and
all their subsets and materializing these views. We refer to these
views as cuboids, following the intuitions of multidimensional array
representations [1] where all the views are hypercubes. The base
cuboid contains all the dimensions, and all other cuboids are its
projections. All these cuboids form a lattice based on their pro-
jection hierarchy. When we speak of data cubes, we refer to the
lattices of all their cuboids. Given a 𝑑-dimensional data cube, for
each 0 ≤ 𝑘 ≤ 𝑑 , there are

(︁𝑑
𝑘

)︁
many 𝑘-dimensional projections. For

instance, for 𝑑 = 3, the base cuboid is three-dimensional, and its
projections are three two-dimensional, three one-dimensional, and
one zero-dimensional cuboid.

For the simplicity of analysis, assume the same number 𝑚 of
distinct keys in each dimension. A multidimensional array or dense
representation of the base cuboid with 𝑚𝑑 entries is out of the
question even for moderate values of𝑚. It would require excessive
space, yet most of its entries would likely be zero. On the other
hand, a sparse representation of the cuboid stores tuples for each
non-zero array entry in relational format. While they efficiently
handle the sparsity that comes with high-dimensional data, the stor-
age requirements of the sparse (representations of the) projection
cuboids depend significantly on data distributions.

Let 𝑛 be the number of tuples in the sparse representation of the
base cuboid and let 𝑑0 = log𝑚 𝑛. Consider a scenario where 𝑛 =𝑚𝑑0
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Q City Sales
Q1 L 1
Q1 Z 1
Q1 B 1
Q2 Z 2
Q3 G 3
Q3 Z 2
Q4 G 4
Q4 L 2
Q4 Z 1

(a) Fact table

3 2 1 0 Sales
1 0 0 0 1 1
2 0 0 1 0 1
3 0 0 1 1 1
4 0 1 1 0 2
5 1 0 0 0 3
6 1 0 1 0 2
7 1 1 0 0 4
8 1 1 0 1 2
9 1 1 1 0 1

(b) Sparse representation of the base
cuboid of the binary data cube

Figure 2: Example sales data cube

entries are assigned to (uniformly) random distinct places in a 𝑑-
dimensional base cuboid. We ask how big the sparse representation
of a random 𝑑0-dimensional projection of such a base cuboid would
be. We performed an extensive simulation with𝑚 = 2 and approxi-
mated the expected value for 𝑝/𝑛, where 𝑝 is the size of the sparse
representation of the projection. Clearly for 𝑑0 = 𝑑 , this ratio is 1. It
turns out that as 𝑑 − 𝑑0 increases, this value extremely quickly con-
verges to a value in the vicinity of 0.63 (see Figure 1). That is, in the
lattice of projections of the base cuboid, all the cuboids of at least 𝑑0
dimensions have a size of at least ≈ 0.63∗𝑛. If, for instance, 𝑑 > 2𝑑0,
then there are more than 2𝑑−1 such cuboids, and the overall data
cube takes (far) more space than 2𝑑−2𝑛. Of course, such a random
data cube does not model all practical scenarios well, but one has to
assume an extraordinary scenario (such as the pervasive presence
of functional dependencies between dimension columns) for it to
fare much better than the random case. So fully materialized data
cubes, whether sparse or dense, with large 𝑑 really cannot be built.

3 PARTIALLY MATERIALIZED HIGH-
DIMENSIONAL BINARY DATA CUBES

Our system uses binary data cubes where the key in every dimen-
sion is either 0 or 1. This does not lead to any loss in functionality or
expressive power — any dimension with𝑚 values can be encoded
as a cosmetic dimension using ⌈log2𝑚⌉ binary dimensions. For-
mally, a 𝑑-dimensional binary cuboid 𝐶 is a map (𝐼 → {0, 1}) → 𝐾

where 𝐼 is a 𝑑-element set of binary dimensions and 𝐾 is a field
(such as R), representing facts. In other words, 𝐶 maps 2𝑑 cells (in
a 𝑑-dimensional array) to elements of 𝐾 .

Example 3.1. We encode the fact table in Figure 2a into a 4-D
base cuboid shown in Figure 2b as follows. The two least significant
bits 1,0 (we use big-endian order) encode the cities with 𝐺 ↦→
00, 𝐿 ↦→ 01, 𝑍 ↦→ 10, 𝐵 ↦→ 11 and bits 3,2 encode the quarter with
Q𝑖 ↦→ 𝑖−1. The two pairs of binary dimensions are also hierarchical:
dimension 1 selects among French (Geneva and Lausanne) and
German-speaking cities (Zurich and Bern); dimension 3 selects
between the first and second half-year of 2021.

3.1 Projection and Partial Materialization
Given a cuboid 𝐶 with dimensions 𝐼 , a projection Π 𝐽 (𝐶) of 𝐶 is a
cuboid with dimensions 𝐽 ⊆ 𝐼 such that value of cell 𝑝 is the sum

C{3,2,1,0}

C{2,1,0}Q : C{3,1,0}C{3,2,0}C{3,2,1}

C{1,0}C{2,0}C{3,0}C{2,1}C{3,1}C{3,2}

C{0}C{1}C{2}C{3}

C∅

Figure 3: The lattice of cuboids of the 4-D sales data cube
with materialized ones underlined

of the values for all cells 𝑞 where 𝑝 is consistent with 𝑞 on 𝐽 , i.e.,

Π 𝐽 (𝐶) (𝑝) =
∑︂{︃

𝐶 (𝑞)
|︁|︁|︁|︁|︁ 𝑞 : 𝐼 → {0, 1},
𝑝 ( 𝑗) = 𝑞( 𝑗) for all 𝑗 ∈ 𝐽

}︃
(1)

Given 𝐶 , Π 𝐽 (𝐶) is uniquely determined by 𝐽 (“the dimensions to
project to”), so we will also denote Π 𝐽 (𝐶) by 𝐶 𝐽 . So far, we have
insisted on materializing all possible projections corresponding
to the subset lattice of the dimensions of the data cube. We could
instead choose to materialize only a subset of them; but to make
the approach feasible, it would have to be a very small fraction [17].

Example 3.2. The 4-D sales data cube has 16 cuboids, of which we
choose to materialize three, 𝐶 {3,1} , 𝐶 {1,0} , and 𝐶 {3,2,0} , in addition
to the base cuboid𝐶 {3,2,1,0} at data cube creation time. The lattice of
cuboids is shown in Figure 3, with materialized cuboids underlined.

The number of possible cuboids in a high-dimensional data cube
– the number of elements in the lattice – is astronomical. Given that
only a very small fraction of these can be materialized, how could
such data cubes support interactive querying? We assume that the
number of dimensions requested in a query is small – producing a
table to be displayed to a human user [29]. Let 𝑄 ⊊ 𝐼 be one such
query. The query result is then given by the cuboid𝐶𝑄 , which may
or may not be materialized. To answer the query 𝑄 , we can use
the smallest subsuming cuboid 𝐶𝑆 with 𝑄 ⊆ 𝑆 ⊆ 𝐼 that has been
materialized [3]. We call this the naïve algorithm. We will consider
better and more interesting alternatives to this later in the paper.
Assuming that the base cuboid is always among those materialized,
there exists a materialized subsumer for every query, and every
query can be answered. The challenge then becomes to decide,
given a storage budget, which cuboids should be materialized so
that a query workload can be answered quickly [16].

Example 3.3. Consider the query asking for sales grouped by city
and half-year of 2021, whose result is cuboid 𝐶 {3,1,0} . This cuboid
has not been materialized. The smallest materialized cuboid that
subsumes it is𝐶 {3,2,1,0} , the base cuboid. Under the naïve algorithm,
we project it to dimensions {3, 1, 0} to answer the query.

3.2 Advantages of Binary Data Cubes
Binary data cubes have the following strong points, especially when
high-dimensional. Firstly, the mathematics, algorithms, and imple-
mentation are much cleaner. Some of the technical contributions
in Sections 4 and 5 would necessarily suffer from rather awkward
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and bloated notation if we were to stick with unrestricted dimen-
sion domains, while the move to binary domains seems to expose
numerous connections to relevant fields and solution approaches.
Secondly, the finer granularity of dimensions in a binary data cube
allows us to encode structure and hierarchy within the relationship
among dimensions itself, eliminating the need for star or snowflake
schemas plus joins. For example, compare a data cube with a sin-
gle time dimension (of timestamps) with a binary cube in which
time consists of separate groups of bit-sized dimensions for years,
quarters (two bits), months (e.g., two bits for months per quarter),
etc. If the query asks to break down sales by quarter, in the first
case, we have no other choice than to fetch a cuboid with the time
dimension at its full granularity, join with the dimension hierarchy,
and aggregate to obtain quarterly data; in the latter case, this cuboid
may be available directly (see Example 3.1, where we introduced –
very simple – hierarchical time and location dimensions).

4 SOLVING QUERIES USING LINEAR
PROGRAMMING

The naïve algorithm described in the previous section can always
answer any query𝑄 ⊆ 𝐼 , though not necessarily in interactive time.
In the worst case, the query is answered by aggregating the base
cuboid, which can take a long time depending on the size. This
section explores an alternative approach to assembling the query
cuboid 𝐶𝑄 from the cuboids it subsumes.

𝐶 {1,0} 0 ↦→
0 1

1
↦→ 0 7 3

1 6 1

𝐶 {3,1} 1 ↦→
0 1

3
↦→ 0 1 4

1 9 3

𝐶 {3,2,0} 0 ↦→
3 ↦→ 0 0 1

2
↦→ 0 1 2

1 2 0

𝐶 {3,2,0} 0 ↦→
3 ↦→ 1 0 1

2
↦→ 0 5 0

1 5 2

𝐶 {3,0} 0 ↦→
0 1

3
↦→ 0 3 2

1 10 2

Figure 4: Dense representations of the pre-materialized
cuboids 𝐶 {1,0},𝐶 {3,1} , and 𝐶 {3,2,0} of the sales data cube as
well as of 𝐶 {3,0} obtained by projecting 𝐶 {3,2,0} at runtime.

Example 4.1. The materialized projections 𝐶 {1,0} , 𝐶 {3,1} , and
𝐶 {3,2,0} of the sales data cube are shown in Figure 4. The cell
𝑝 = {3 ↦→ 1, 1 ↦→ 0} in 𝐶 {3,1} , for example, contains value 9
because the 5th, 7th, and 8th row of the base cuboid have mappings
whose restrictions to dimensions {3, 1} is {3 ↦→ 1, 1 ↦→ 0}, and
the sum of the sales in these rows is 9. For the query 𝑄 = {3, 1, 0},
the query result 𝐶𝑄 subsumes the materialized cuboids 𝐶 {1,0} and
𝐶 {3,1} . Furthermore,𝐶𝑄 also subsumes the projection𝐶 {3,0} which
can be obtained by projecting 𝐶 {3,2,0} at runtime.

The result 𝐶𝑄 of a query 𝑄 contains 2 |𝑄 | cells identified by a
mapping 𝑞 : 𝑄 → {0, 1}. For simplicity, let the variable 𝑥𝑞 denote
the value 𝐶𝑄 (𝑞). Then, for some cuboid 𝐶 𝐽 such that 𝐽 ⊆ 𝑄 , Equa-
tion 1 yields a system of 2 | 𝐽 | linear equations which constrain the
𝑥𝑞 values that make up 𝐶𝑄 . The equation 𝑒𝑝 for cell 𝑝 is given by

𝑒𝑝 :
∑︂{︃

𝑥𝑞

|︁|︁|︁|︁|︁ 𝑞 : 𝑄 → {0, 1},
𝑝 ( 𝑗) = 𝑞( 𝑗) for all 𝑗 ∈ 𝐽

}︃
= 𝐶 𝐽 (𝑝)

𝑥000 𝑥001 𝑥010 𝑥011 𝑥100 𝑥101 𝑥110 𝑥111
𝐶{1,0} 𝑒∗00 1⃝ 1 7

𝑒∗01 1⃝ 1 3
𝑒∗10 1⃝ 1 6
𝑒∗11 1⃝ 1 1

𝐶{3,1} 𝑒00∗ 1 1 1
𝑒01∗ 1 1 4
𝑒10∗ 1⃝ 1 9
𝑒11∗ 1⃝ 1 3

𝐶{3,0} 𝑒0∗0 1 1 3
𝑒0∗1 1 1 2
𝑒1∗0 1 1 10
𝑒1∗1 1⃝ 1 2

Figure 5: The 12 equations obtained from the three relevant
materialized cuboids of the sales data cube for the query𝑄 =

{3, 1, 0}. Among these, atmost 7 are linearly independent.We
pick the equations with circled ones to form a basis.

These equations define a vector space [20], a subspace of the 2 |𝑄 |-
dimensional space spanned by the cells of𝐶𝑄 . We will be interested
in the dimensionality of its solution space (kernel); obviously, a
zero-dimensional solution space means we can reconstruct 𝐶𝑄
precisely. When several cuboids are available to constrain 𝐶𝑄 , we
can combine the linear equations of the individual cuboids. This
system of equations is, in general, not linearly independent. To
reduce solving time, we want to have a maximal set of linearly
independent equations so as to capture all the constraints from
the fetched cuboids using as few equations as possible. Before
we explain how to obtain a maximal set of linearly independent
equations, we introduce some notation. For some variable order ≺,
let �̂�𝑒 denote the minimal variable that occurs in some equation
𝑒 . Furthermore, Let 𝑒1 ≡ 𝑒2 be true for two equations 𝑒1 and 𝑒2 if
�̂�𝑒1 = �̂�𝑒2 . Of course, ≡ forms an equivalence relation.

Example 4.2. Consider the query Q = {3, 1, 0} and three of its
projections𝐶 {1,0} ,𝐶 {3,1} , and𝐶 {3,0} . The system of linear equations
defined by these projections is shown in Figure 5. For some bits
𝑏3, 𝑏1, 𝑏0 ∈ {0, 1}, in order to concisely show cells like 𝑝 = { 3 ↦→ 𝑏3,
1 ↦→ 𝑏1, 0 ↦→ 𝑏0 }, we write them as ordered sequences 𝑏3𝑏1𝑏0,
making 𝑄 implicit. The 8 variables used are written as 𝑥000, 𝑥001,
. . . , 𝑥111. Out of the 12 equations, at most 7 are linearly independent.
Under the variable order 𝑥000 ≺ 𝑥001 ≺ · · · ≺ 𝑥110 ≺ 𝑥111, the
equivalence classes of equations w.r.t. ≡ are 𝑆000 = {𝑒∗00, 𝑒00∗, 𝑒0∗0},
𝑆001 = {𝑒∗01, 𝑒0∗1}, 𝑆010 = {𝑒∗10, 𝑒01∗}, 𝑆011 = {𝑒∗11}, 𝑆100 = {𝑒10∗,
𝑒1∗0}, 𝑆101 = {𝑒1∗1}, 𝑆110 = {𝑒11∗} and 𝑆111 = ∅.

There is an easy way of finding a maximal subset of linearly
independent equations – a basis [20]. We now state a theorem we
use to construct a basis. Due to space constraints, we omit its proof
here, but we include it in the extended version [6] of this paper.

Theorem 4.3. Given the system of linear equations yielded by a
set of projections of a cuboid, any subset that contains exactly one
equation from each equivalence class of ≡ is a basis of the vector space
spanned by the equations.

Picking a set of linear equations in this way immediately yields
a coefficient matrix in row echelon form – for each column, there
is exactly one row that has a 1 in this column and only zeroes to
its left. The degree of freedom of the system of equations is the
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number of variables for which there was no equation having it as
its minimal variable. If at least one such variable exists, we cannot
answer the query without further constraints. These constraints
could be obtained from additional cuboids or some other restriction
such as that the facts must be non-negative.

Example 4.4. In Figure 5, we have marked the chosen witness
of every equivalence class with a circle. According to Theorem 4.3,
{𝑒∗00, 𝑒∗01, 𝑒∗10, 𝑒∗11, 𝑒10∗, 𝑒11∗, 𝑒1∗1} is a basis for the vector space
spanned by the equations of the cuboids 𝐶 {1,0} , 𝐶 {3,1} and 𝐶 {3,0} .
Since there are eight variables and only seven independent equa-
tions, we have a single degree of freedom, and the query cannot be
fully answered without further constraints. After Gaussian elimina-
tion on the coefficient matrix, we get the equation 𝑒∗00+𝑒1∗1−𝑒10∗ =
𝑥000 + 𝑥111 = 0. If we impose a non-negativity constraint on all the
𝑥 values, this equation gives us 𝑥000 = 𝑥111 = 0, and so we obtain
the query result (𝑥000, 𝑥001, . . . , 𝑥111) = (0, 1, 3, 1, 7, 2, 3, 0).

Even with the non-negativity restriction, queries may still have
several degrees of freedom, and we cannot compute exact results.
In such cases, we find upper and lower bounds of every variable
𝑥𝑞 using linear programming [13]. Our experiments show that this
approach quickly yields tight bounds on query results for low-
dimensional queries but does not scale well with query dimen-
sionality. For this reason, we do not go into further details of this
approach and present a better one in the next section.

5 SOLVING QUERIES USING MOMENTS
The linear programming approach discussed in the previous sec-
tion gives tight bounds for values of the query cuboid from its
projections. However, when the number of degrees of freedom of
the solution is high, the intervals are usually large and may not
provide helpful insights for the given query. We now discuss an
alternative approach that returns the most likely values for the
cuboid even when we have numerous degrees of freedom. This
approach assumes that the extreme values allowed by the many
degrees of freedom are possible but highly unlikely.

In this approach, we characterize a cuboid 𝐶 by its moments.
We define a moment for every projection of the cuboid, and the
complete set of moments uniquely determines the cuboid. In partic-
ular, for some query 𝑄 , when only some projections of the query
result 𝐶𝑄 are known, we can only compute the moments for those
projections, and the cuboid 𝐶𝑄 cannot be precisely reconstructed.
We approximate the cuboid instead by extrapolating unknown mo-
ments from the known ones.

5.1 Moments of the Cuboid
We now describe the characterization of a 𝑑-dimensional cuboid
with dimension set 𝐼 in terms of its moments. Given a cuboid, we
define the moment𝑚 𝐽 for every subset 𝐽 ⊆ 𝐼 as follows

𝑚 𝐽 :=
∑︁ {︁

𝑥𝑞 | 𝑞 : 𝐼 → {0, 1}, 𝑞( 𝑗) = 1 for all 𝑗 ∈ 𝐽
}︁

= 𝐶 𝐽 (𝑝), where 𝑝 ( 𝑗) = 1 for all 𝑗 ∈ 𝐽

In other words, for some 𝐽 ⊆ 𝐼 , the moment𝑚 𝐽 of a cuboid 𝐶
is the value of cell 𝑝 in 𝐶 𝐽 that maps all dimensions in 𝐽 to 1. A
𝑑-dimensional cuboid has 2𝑑 moments, one for every subset of its

dimension set. Also, note that for any set 𝐾 such that 𝐽 ⊆ 𝐾 ⊆ 𝐼 ,
𝑚 𝐽 is one of the 2 |𝐾 | moments of 𝐶𝐾 as well.

If the values of a cuboid are non-negative, which we will now
assume throughout the rest of this paper, we can also have a proba-
bilistic interpretation for these values. For every dimension 𝑖 ∈ 𝑄 of
the cuboid, we have a corresponding Bernoulli random variable 𝑋𝑖 .
We interpret the values of a cuboid as unnormalized probabilities
in the joint distribution of these random variables. The probabil-
ities are obtained by rescaling the values using their total. Under
this model, the projections of a cuboid are marginal distributions
on subsets of random variables. Furthermore, we can express any
moment𝑚 𝐽 of the cuboid 𝐶𝑄 in terms of mixed moments [36] of
random variables 𝑋 𝑗 for any 𝑗 ∈ 𝐽 as

𝑚 𝐽

𝑚∅
= 𝐸

[︄ ∏︁
𝑗 ∈𝐽

𝑋 𝑗

]︄
(2)

Example 5.1. The joint probability distribution as well as the
mixed moment of binary random variables 𝑋3 and 𝑋0 associated
with the projection 𝐶 {3,0} for 𝑏3, 𝑏0 ∈ {0, 1} are given by

𝑃 (𝑋3 = 𝑏3, 𝑋0 = 𝑏0) =
𝐶{3,0} (3 ↦→𝑏3,0 ↦→𝑏0)∑︁

𝑝
𝐶{3,0} (𝑝) , and

𝐸 [𝑋3 · 𝑋0] =
∑︁
𝑏3,𝑏0
(𝑃 (𝑏3, 𝑏0) · 𝑏3 · 𝑏0) =

𝑚{3,0}
𝑚∅

= 2
17 .

Under this probabilistic interpretation, our characterization of
binary cuboids using their moments is essentially how multivariate
Bernoulli distributions are characterized in [45] and [12]. Given
some ordering of the dimensions, we order the subsets of dimen-
sions and, thereby, the moments lexicographically. We define the
moment vectorm of a cuboid to have all of its moments arranged in
this order. Recall that we also define a similar order for the values
of the cuboid. We similarly define the vectorization x of the cuboid
to contain all its values in that order. The following proposition
[12, 45] describes the relationship between m and x.

Proposition 5.2. Given the moment vector m of a 𝑑-dimensional
cuboid with values x and two matricesM andW as specified below,
the following two statements are true where ⊗ denotes the Kronecker
product (applied 𝑑 times in the equations):

(1) m = M⊗𝑑x and (2) x = W⊗𝑑m,

whereM =
[︁ 1 1
0 1

]︁
and W = M−1 =

[︁ 1 −1
0 1

]︁
.

Example 5.3. The moments of the query cuboid𝐶𝑄 for the query
𝑄 = {3, 1, 0} with x = (𝑥000 . . . 𝑥111) on the sales data cube are⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑚∅
𝑚 {0}
𝑚 {1}
𝑚 {1,0}
𝑚 {3}
𝑚 {3,0}
𝑚 {3,1}
𝑚 {3,1,0}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 1 0 0 0 1
0 0 0 0 1 1 1 1
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
3
1
7
2
3
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

17
4
7
1
12
2
3
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
5.2 Cuboid Approximation from Projections
Given a query 𝑄 , Sudokube approximates its result 𝐶𝑄 from the
moments of the available projections. We make statistical assump-
tions about the underlying data distribution and extrapolate the
missing moments of𝐶𝑄 from the known ones. For example, we can
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assume that the values are uncorrelated beyond what is already
known. This is not an unreasonable assumption, and while one
can always find data that deviates significantly from this model, it
becomes increasingly harder as more data is known.

Before we describe the formula for computing the missing mo-
ments, we define two additional terms and explain their relation-
ships with the moments. The mixed central moment ` 𝐽 and the
mixed moment product 𝑝 𝐽 for a set of dimensions 𝐽 are defined as

` 𝐽
𝑚∅

:= 𝐸
[︄ ∏︁
𝑗 ∈𝐽

(︁
𝑋 𝑗 − 𝐸

[︁
𝑋 𝑗

]︁ )︁]︄
and 𝑝 𝐽 :=

∏︁
𝑗 ∈𝐽

𝐸
[︁
𝑋 𝑗

]︁
=

∏︁
𝑗 ∈𝐽

𝑚{ 𝑗 }
𝑚∅

.

We now describe the moment 𝑚 𝐽 in terms of mixed central
moments and moment products associated with all subsets of 𝐽 . In
the derivation of the formula shown below, we first split each 𝑋 𝑗 in
the definition of the moment𝑚 𝐽 into (𝑋 𝑗 − 𝐸 [𝑋 𝑗 ]) and 𝐸 [𝑋 𝑗 ] and
then apply the multi-binomial expansion on the products. The next
step is obtained from the linearity of expectation since every 𝐸 [𝑋ℓ ]
is constant with respect to the expectation. Finally, we rewrite the
expression in terms of `𝐾 and 𝑝 𝐽 \𝐾 using their definitions. We can
also derive a similar formula to compute ` 𝐽 as an alternating sum
of products of𝑚𝐾 and 𝑝 𝐽 \𝐾 for all sets 𝐾 ⊆ 𝐽 .

𝑚 𝐽 =𝑚∅ · 𝐸
[︄ ∏︁
𝑗 ∈𝐽

(︁ (︁
𝑋 𝑗 − 𝐸

[︁
𝑋 𝑗

]︁ )︁
+ 𝐸

[︁
𝑋 𝑗

]︁ )︁]︄
=𝑚∅ · 𝐸

[︄ ∑︁
𝐾⊆𝐽

∏︁
𝑘∈𝐾
(𝑋𝑘 − 𝐸 [𝑋𝑘 ]) ·

∏︁
ℓ∈𝐽 \𝐾

𝐸 [𝑋ℓ ]
]︄

=
∑︁
𝐾⊆𝐽

𝑚∅ · 𝐸
[︃ ∏︁
𝑘∈𝐾
(𝑋𝑘 − 𝐸 [𝑋𝑘 ])

]︃
· ∏︁
ℓ∈𝐽 \𝐾

𝐸 [𝑋ℓ ]

=
∑︁
𝐾⊆𝐽

`𝐾 · 𝑝 𝐽 \𝐾

(3)

Given some query 𝑄 and any set 𝐽 ⊆ 𝑄 , let Known(𝐽 ) denote
the set of all subsets 𝐾 ⊆ 𝐽 for which the projection 𝐶𝐾 is known.
Clearly, Known(𝐽 ) ⊆ 2𝐽 and since 𝐽 ⊆ 𝑄 , Known(𝐽 ) ⊆ Known(𝑄)
as well. Furthermore, since all projections can be computed from a
cuboid, if 𝐾 ∈ Known(𝑄), then we also have 2𝐾 ⊆ Known(𝑄).

We assume that all subsets of 𝑄 up to size 1 are in Known(𝑄).
The one-dimensional projections are few in number and small in
size and they can all be cached in memory. With this assumption,
𝑝 𝐽 can always be computed for every 𝐽 ⊆ 𝑄 . Additionally, for every
𝐾 ∈ Known(𝑄), we can compute𝑚𝐾 and `𝐾 from the cuboid 𝐶𝐾 .

Next, we explain how we extrapolate the known moments to
predict the missing moments of the query result 𝐶𝑄 . As described
earlier in this section, we assume that the data is uncorrelated
beyond what is known. We model this by setting all unknown
mixed central moments `𝑈 to zero. The zero value of some mixed
central moment indicates that the corresponding dimensions do not
result in extreme deviations in valueswhen changed together.While
it is certainly possible for the data to have extreme higher-order
deviations (e.g., when the most significant values are concentrated
along the diagonals of the cuboid), this seems unlikely to happen
in real-world data. Under this model, we extrapolate𝑚 𝐽 as𝑚′𝐽 for
any 𝐽 ⊆ 𝑄 as

𝑚′
𝐽
:=

∑︁
𝐾 ∈Known( 𝐽 )

`𝐾 · 𝑝 𝐽 \𝐾 . (4)

Algorithm 1: Online algorithm to extrapolate unknown
moments from known moments
initial input :Moments𝑚𝐾 for all 𝐾 ⊆ 𝑄 with |𝐾 | ≤ 1
output :Extrapolated moments𝑚′

𝐽
for all 𝐽 ⊆ 𝑄

[1] init:
[2] foreach 𝐽 ⊆ 𝑄 do
[3] 𝑝 𝐽 ←

∏︁
𝑗 ∈𝐽

𝑚{ 𝑗 }
𝑚∅

[4] 𝑚′
𝐽
←𝑚∅ · 𝑝 𝐽

[5] upon receiving𝑚𝑆 : //Add 𝑆 to Known(𝑄)
[6] `𝑆 ←𝑚𝑆 −𝑚′𝑆
[7] foreach 𝐽 ⊆ 𝑄 such that 𝐽 ⊇ 𝑆 do
[8] 𝑚′

𝐽
←𝑚′

𝐽
+ `𝑆 · 𝑝 𝐽 \𝑆

The following proposition states the correctness of the extrapo-
lation formula, which can be derived easily by setting all unknown
mixed moments `𝑈 to zero in Equation 3.

Proposition 5.4. Equation 4 describes the extrapolated moment
𝑚′
𝐽
for some set 𝐽 ⊆ 𝑄 satisfying the following conditions: (1) If

𝐽 ∈ Known(𝑄), then𝑚′
𝐽
=𝑚 𝐽 . (2) Otherwise,𝑚′𝐽 denotes the extrap-

olated moment under the uncorrelatedness assumption.

Algorithm 1 shows an incremental algorithm for extrapolating
the moments according to Equation 4. The initial state of the algo-
rithm is when Known(𝑄) contains all subsets up to size 1. Then the
algorithm incrementally updates the unknown moments as the sub-
sets of 𝑄 with sizes greater than one are added to Known(𝑄) one
after the other. We assume that before a set 𝑆 is added to Known(𝑄),
all of its subsets were added in previous steps. The correctness of
this algorithm is given by the following theorem, whose proof can
be found in the extended version [6] of this paper.

Theorem 5.5. Algorithm 1 computes the extrapolated moments
𝑚′
𝐽
of cuboid 𝐶𝑄 representing query 𝑄 according to Equation 4 as

subsets 𝑆 are added to Known(𝑄) one after the other.

The most expensive step of the extrapolation algorithm is up-
dating the extrapolated moments of all supersets. However, this
algorithm can be further optimized by using techniques similar to
those in [7], but a full discussion is beyond the scope of this paper.

Example 5.6. Consider the query 𝑄 = {3, 1, 0} on the sales data
cube. Initially, Known(𝑄) = {∅,{0},{1},{3}}. The initial values of
the extrapolated moments𝑚′{1,0} and𝑚

′
{3,1,0} are given by

𝑚′{1,0} =
𝑚{1}𝑚{0}
𝑚∅

= 28
17 , and𝑚

′
{3,1,0} =

𝑚{3}𝑚{1}𝑚{0}
𝑚∅2

= 336
289 .

Once the cuboid 𝐶 {1,0} is fetched,𝑚 {1,0} is computed and the set
{1, 0} is added to Known(𝑄). The updated moments are

𝑚′{1,0} = 1, and𝑚′{3,1,0} =
336
289 +

(︂
1 − 28

17

)︂
· 1217 = 12

17 .

After processing all three projections 𝐶 {1,0} , 𝐶 {3,1} and 𝐶 {3,0} ,

𝑚′{3,1,0} =
336
289 +

(︂
1 − 28

17

)︂
· 1217 +

(︂
3 − 84

17

)︂
· 417 +

(︂
2 − 48

17

)︂
· 717 = −26289 .

From this point, we ignore the distinction between the real and
extrapolated moments of a cuboid and simply refer to them as
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Algorithm 2: In-place Fast Inverse Transform

input :Array 𝐴 representing m of size 𝑁 = 2𝑑
output :Same array 𝐴 whose contents now represent x
[1] 𝑠 ← 1
[2] while 𝑠 < 𝑁 do
[3] for 𝑖 ← 0 until 𝑁 step by 2 ∗ 𝑠 do
[4] for 𝑗 ← 𝑖 until 𝑖 + 𝑠 do
[5] 𝐴[ 𝑗 + 𝑠] ← min(𝐴[ 𝑗],max(0, 𝐴[ 𝑗 + 𝑠]))
[6] 𝐴[ 𝑗] ← 𝐴[ 𝑗] −𝐴[ 𝑗 + 𝑠]
[7] 𝑠 ← 𝑠 ∗ 2

moments. Once the moment vector is computed through extrapola-
tion, the values of the cuboid can be obtained using the equation
x = W⊗𝑑m from Proposition 5.2. However, computing the values
of the cuboid naïvely using this equation is expensive. We describe
a O(|m| log |m|) complexity algorithm for the computation of the
cuboid values from the moments in Algorithm 2. Like the FFT algo-
rithm [11], it uses the recursive property of the repeated Kronecker
product to break a problem of size 𝑁 into two 𝑁 /2 sized problems.
We perform some local perturbations during the inverse transform
to improve the error. We need to do these because our assumption
of zero value for the unknownmixed central moments is not always
feasible. The values of the vectormmust satisfy several constraints
so that all values of the vector x are non-negative. These condi-
tions enforce lower and upper bounds for the unknown moments
based on lower-order ones, and our extrapolation technique does
not always respect these bounds. By imposing local bounds on the
extrapolated moments in Line 5, we minimize such occurrences
and, thereby, the error.

Example 5.7. The following figure shows the computations in the
fast inverse transform for the result 𝐶𝑄 of the query 𝑄 = {3, 1, 0}.
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6 SYSTEM ARCHITECTURE
The previous sections described different approaches to making in-
teractive querying of high-dimensional data cubes feasible. We now
describe the details of the Sudokube system where we implemented
these approaches. As shown in Figure 6, Sudokube comprises three
main components. First, the backend manages the materialized
cuboids and performs projections of cuboids to fewer dimensions.
Second, the core query execution engine decides which (possibly
projected) cuboids to instruct the backend to provide. These are
turned into equation systems or moments and then passed to one
of the solvers to be processed in batch or online aggregation mode.
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Figure 6: Sudokube architecture

Finally, the frontend provides schema support and gives the illusion
of unrestricted dimension domains, making the internally used
binary dimensions transparent to the user. It also offers basic data
exploration support and a user interface and API. We now describe
different aspects of the system in more detail.

6.1 Data Loading
The system design takes a fundamentalist stance regarding binary
dimensions; the storage backend, the core query engine, and the
solver only know binary-dimensional cuboids. Non-binary dimen-
sions and dimension-table style information are considered a con-
cern of the frontend. The system’s frontend supports an abstraction
called a cosmetic dimension. Such a dimension may have an arbi-
trary finite (but unbounded) domain 𝐷 , thus an arbitrary number
of alternative values; internally, such a dimension is represented
by (at least) 𝑘 = ⌈log2 |𝐷 |⌉ binary dimensions. A key in such a
cosmetic dimension is a 𝑘-bit number. Where needed, an explicit
NULL value is made part of 𝐷 .

The system poses no upper bound on the allowable number
of (cosmetic or binary) dimensions. A schema, storing names and
key-value maps for dimensions, is supported. For instance, one
can group two bits and label them “quarter”. The number of bits
for a cosmetic dimension does not have to be determined before-
hand; when loading data into a cosmetic dimension and the system
runs out of keys, it adds a new binary dimension to the cosmetic
dimension. Thus, the binary dimensions representing a cosmetic
dimension are generally not adjacent in a cuboid’s storage rep-
resentation. As an optimization, when Sudokube loads data with
fixed schema and domain from CSV or other formatted files, it
pre-allocates all the binary dimensions adjacent to one another for
faster data loading.

6.2 Cube Construction and Storage
After data loading, the frontend generates a 𝑑-dimensional base
(sparse) binary cuboid as a sequence of pairs of a 𝑑-bit key and a
fact value. It is then passed to the core engine, and a materialization
strategy is applied. The materialization strategy determines which
projections of the base cuboid are materialized and stored given
a storage budget. The storage budget is provided as a fraction of
the size of the base cuboid. For example, if we have a budget of
1.1, then 10 percent of the size of the base cuboid is available for
materializing its projections. The user can select one of the many
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materialization strategies supported by Sudokube, such as picking
a random subset of binary dimensions. Each strategy has its own
space of all cuboids from which it picks a few cuboids of different
dimensionalities to materialize. The core engine then instructs the
backend to materialize and store the specified cuboids.

The Sudokube backend supports both sparse and dense repre-
sentations of cuboids. A sparse representation of a 𝑘-dimensional
cuboid is a sequence of pairs of 𝑘-bit keys and fact values, as is the
case for the base cuboid. In contrast, a dense representation of the
same comprises 2𝑘 -sized arrays of the fact values with the keys
implicitly encoded as array indexes.

6.3 Query Processing
The core query engine receives a query as a subset of dimensions
by which the facts are grouped and aggregated, and the result is
returned as an array. We support further query operations through
post-processing. Sudokube supports several solvers in the query
engine that, when given a query, decide which materialized cuboids
are to be fetched and what to do with the fetched cuboids. In this
paper, we focus on the naïve solver (which computes queries by
projecting from the smallest subsuming cuboid), the LP solver, and
the moment solver following approaches described in Sections 3,
4, and 5, respectively. The latter two solvers can be run either in
batch or online modes. The solver is invoked once after fetching all
subsumed cuboids in the batch mode, and the base cuboid is never
projected. Whereas in the online mode, the cuboids (including those
projected from the base cuboid) are fetched in the increasing order
of dimensionality. The solver is invoked at regular intervals, and
intermediate results are provided via a callback function.

The core query engine processes a query in several phases. Dur-
ing the Prepare phase, depending on the solver, the engine creates
a plan that specifies which cuboids to project and fetch and in
what order. Given a query Q, we consider all materialized cuboids
𝐶1, . . . ,𝐶𝑛 with dimensions 𝐽1, . . . , 𝐽𝑛 , respectively. Let Π𝑄∩𝐽𝑖𝐶𝑖 de-
note the projection of stored cuboid 𝐶𝑖 down to the dimensions
relevant to answering the query. Throughout the remainder of this
paper, when we talk about fetching some materialized cuboid to
answer some query, we always mean fetching its projection rel-
evant to that query. The cost of projecting and fetching such a
projection is proportional to the stored cuboid’s size, but the data
communicated from the backend to the solver is only as large as the
projection. So we fetch relevant cuboids in the order of increasing
cost, skipping cuboids that are subsumed by other cuboids whose
cost is below a definable threshold. We use data structures such as
set-tries [39] and optimizations such as encoding sets using integers
for fast set operations. Thus at the end of Prepare phase, the engine
has a sequence of cuboids to be fetched.

After the Prepare phase, the cuboids are fetched by the backend
in the Fetch phase. This is the final phase for the naïve solver,
and the fetched cuboid is returned as the query result. There is a
further Solve phase for the other two solvers. If the query is run in
batch mode, the Solve phase follows the Fetch phase, whereas, in
online mode, they are interleaved. During the Solve phase, equations
or moments from the cuboid are fed into the solver, which then
produces an approximate result returned directly or through the
callback function, depending on the query mode.

6.4 Current Prototype
In the current prototype of Sudokube, the backend is implemented
on a single node. While all other system components are imple-
mented in Scala, the backend is implemented in C++ and accessed
via the Java Native Interface. This design keeps the bulk of the data
storage and processing out of the JVM while retaining the ease of
prototyping offered by Scala.

Multithreading is employed to fetch and project multiple cuboids
in parallel in the backend, but cuboids are not sharded, and a cuboid
is always just worked on by a single thread. In our experiments,
since the naïve solver fetches a single cuboid on a single thread, in
the interest of fairness, the other two solvers do not fetch cuboids in
parallel even though they could. However, data cube construction
does employ parallelism. The frontend and the core engine run in
separate threads, facilitating online query mode. In principle, the
query engine can execute different queries in parallel, even though
this is not done in the experiments. The backend can load and save
a data cube from and to the file system. However, the system held
all the materialized cuboids in RAM in our experiments.

7 RELATEDWORK
Several approaches [28, 44] were proposed to rewrite SQL queries
so as to be answered using materialized views. However, for the
narrow class of queries on a single relation without joins that we
focus on in this paper, finding the views that answer queries is
straightforward. Furthermore, Sudokube uses data from views that
cannot answer the query exactly to extrapolate the result.

Much research has gone into optimizing data cubes due to their
importance in analytical processing and business intelligence. An
overview of the research can be found in [9] and [33]. Several
algorithms [1, 10, 37, 48] have been proposed to speed up the con-
struction of the complete cube lattice, but they cannot be applied
to high-dimensional data cubes. There has also been prior research
on materializing only a subset of the cuboid lattice [3, 16, 17, 41]
using different heuristics. All of this work can be incorporated as
different materialization strategies in Sudokube.

Research on reducing the storage overhead of the data cube has
led to Quotient [25], Dwarf [43], Condensed [47], and Cure [32]
data cubes. While these frameworks successfully compute and store
the full cube lattice at a fraction of its total unoptimized size, they
still may require a storage space several orders of magnitude larger
than the base cuboid, particularly in the case of high-dimensional
data. This makes them impractical for large datasets.

The issue of high-dimensional data cubes was addressed in
[27, 29, 31, 42], which propose partitioning the dimensions into
small sets called fragments and fully materializing all cuboids of
every fragment. A query with dimensions from multiple fragments
is evaluated using joins on either inverted or bitmap indices built
on the cuboids of each fragment. Thus, these approaches join and
aggregate tuples on the fly for any group-by dimension and cannot
support interactive-time query results for large datasets. Commer-
cial data warehouse solutions such as Vertica [26] and Amazon
Redshift [15] that rely on indexes also have the same drawback.

Prior work has also been done on performing online aggregation
[2, 18, 21], which provides approximate answers that improve over
time through sampling. Other approaches that use sampling to
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approximate queries include [8, 22, 30]. However, these sampling
techniques are susceptible to outliers and skew, especially in sparse,
high-dimensional data. In contrast, we do not sample data but
summarize the data distribution during cube construction time.

There is also other work on summarizing data using different
models. [4] converts values of 2-D cuboids into probability matrices
and computes linear regression models that compute any entry
of these matrices. This idea is further refined in [5], where they
model dense regions of the base cuboid using log-linear models. A
similar approach is suggested in [40], where a Gaussian kernel that
explains the data distribution is obtained. Alternatively, [46] pro-
poses approximating cuboids by applying a wavelet transformation
on the logarithm of partial sums of values. These approaches are
similar to those used by our moment solver, but adapting them to
extremely sparse high-dimensional data cubes requires work.

8 EXPERIMENTS
We now evaluate the performance of Sudokube as a system. We
mainly focus on four characteristics – storage overhead, interac-
tivity, execution time, and error. Throughout this section, we use
the word error to describe how the result of a query returned by
the Sudokube system differs from the true result. The naïve solver
always has zero error, and the error for the moment solver is cal-
culated as

∑︁
𝑖 |𝑥𝑖 −𝑢𝑖 |∑︁

𝑖 𝑢𝑖
, where 𝑥𝑖 and 𝑢𝑖 refer to the predicted and

true values of cell 𝑖 of the query cuboid, respectively. The interac-
tivity is measured by plotting error against time for queries run
in the online mode. The execution times and errors are studied
by running queries in the batch mode. We repeat our experiments
with 100 randomly generated queries and average the results. The
queries are generated by taking (possibly empty) prefixes of binary
dimensions belonging to every cosmetic dimension. We choose bi-
nary prefixes as they correspond to roll-up queries on hierarchical
cosmetic dimensions. All experiments are conducted on a server
with 2 × 12-core Intel® Xeon® E5-2680 v3 (Haswell) CPUs, 30 MB
cache, 256 GB DDR4-2133 RAM, and 200 GB SATA3 SSD.

8.1 Dataset Description and Pre-processing
We use two datasets in our experiments — one real and one syn-
thetic. The first dataset, which we shall refer to as NYC [34], con-
tains real information regarding parking violations issued in New
York between 2014 and 2021. This dataset comprises 43 columns
describing different details of the vehicles, the issuer of the viola-
tion, its type, and location. There are nearly 93 million rows spread
roughly evenly between the eight years in this dataset.

The second dataset we use is the Star Schema Benchmark (SSB)
dataset [35, 38], which contains business-oriented synthetic data
modeled using a star schema. The fact table lineorder describes
several details regarding items in an order such as its quantity and
price and additional information is stored in the customer, part,
supplier and date dimension tables. We use the dataset with a scale
factor of 100, resulting in 600 million rows of lineorder data.

We perform some minor pre-processing on both datasets before
loading them into Sudokube. We first flatten the SSB dataset by
joining the lineorder table with all the dimension tables using the
respective keys. We then discard any dimension that cannot be
used in a meaningful aggregation. For example, we do not load
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Figure 7: Distribution of materialized cuboids of different
dimensionalities for the NYC dataset under different mate-
rialization parameters.

name, address, or customer_id dimensions. We describe the exact
schemas in the extended version [6] of this paper. Most dimensions
in both datasets are categorical, and we use dictionary encoding to
replace them with integers. Numerical dimensions such as tax or
revenue are encoded directly as fixed-width integers. We encode
date or time columns by decomposing them into constituents such
as year or hour, which are separately encoded as integers. This
encoding strategy results in a total of 193 binary dimensions for the
SSB dataset and 429 binary dimensions for the NYC dataset. Finally,
we use the contribution of each line item towards the total order
price as the fact for the SSB dataset and the number of rows for a
given key as the fact for the NYC dataset. We allocate 8 bytes for
storing each of these fact values. Thus, we have a base cuboid of
size (

⌈︁ 193
8
⌉︁
+ 8) · 600 · 106 ≈ 19.8 GB for the SSB dataset and a base

cuboid of size (
⌈︁ 429

8
⌉︁
+ 8) · 93 · 106 ≈ 5.76 GB for the NYC dataset.

8.2 Materialization Strategy
We run the experiments for two different materialization strategies,
both of which are tuned by two parameters, the total number of
materialized cuboids 𝑛 and the minimum dimensionality of cuboids
𝑑min. The Randomized Materialization Strategy (RMS) picks binary
dimensions randomly, and the Schema-based Materialization Strat-
egy (SMS) picks prefixes of binary dimensions from every cosmetic
dimension in the same way queries are generated. Using the query
information results in a much smaller space of cuboids to mate-
rialize [3] in SMS as shown in Figure 7. In both materialization
strategies, the maximum number of cuboids of some dimension-
ality 𝑖 decreases exponentially as 𝑖 increases, starting with 𝑛

2 for
𝑖 = 𝑑min. Thus, the minimum dimensionality 𝑑min is also the most
common dimensionality of the materialized cuboids.

8.3 Storage
In this set of experiments, we explore the storage overhead for
Sudokube. Table 1 shows the additional storage overhead as a frac-
tion of the base cuboid size for different materialization strategies
and parameters for different datasets. We observe that the over-
head for SMS is smaller than that for RMS. This is because SMS
picks prefixes of binary dimensions of every cosmetic dimension,
resulting in very sparse cuboids. One possible explanation for the
sparsity is that the data is more likely to be concentrated towards
0-cells than 1-cells for these prefixes for any cosmetic dimension as
a result of our encoding. This phenomenon is amplified for cuboids
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Table 1: Additional Storage Overhead

Dataset Base
Size 𝑛 𝑑min

RMS
Overhead.

SMS
Overhead.

NYC 5.76 GB

213 10 0.0445 0.0196
215 6 0.016 0.0081
215 10 0.1757 0.0831
215 14 1.6368 0.5847
217 10 0.7264 0.2932

SSB 19.8 GB 215 14 1.622 0.7002
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Figure 8: Execution time breakdown for the LP solver in
batch mode for different query dimensionalities.

containing the most significant binary dimensions from multiple
cosmetic dimensions.

We observe that storage overhead increases linearly with the
number of cuboids for both materialization strategies. While in-
creasing 𝑑min initially increases storage overhead exponentially,
this growth slows down for higher dimensional cuboids due to
increased sparsity. Generally, a given materialization strategy has
a lower overhead for the same parameters when the base cuboid is
larger. This is evident while comparing the overheads of NYC and
SSB data cubes for RMS with 𝑑min = 14 and 𝑛 = 215. However, the
overhead for SMS shows the opposite trend, likely arising from the
much greater sparsity due to 429 dimensions in the NYC dataset
compared to 193 in the SSB dataset outweighing effects due to
smaller base cuboid size.

8.4 LP Solver: Query Dimensionality
We ran several experiments evaluating the performance of the
LP solver. However, due to shortage of space, we only present
the breakdown of execution time for running queries of different
dimensionalities on the same data cube (SSB, 𝑑min = 14, 𝑛 = 215)
shown in Figure 8. The time taken for the Prepare phase is nearly
constant in all cases. The solvers take more time to fetch cuboids
as the query dimensionality increases as the cuboids being fetched
become larger in dimensionality and size. We also see larger dimen-
sionality cuboids being fetched in RMS compared to SMS. This is
further exacerbated in the case of the naïve solver, which fetches
the base cuboid nearly always in the case of RMS. In comparison,
the naïve solver fetches cuboids of dimensionality slightly more
than that of the query in the case of SMS. Finally, the time taken

for computing the bounds for each value in the query result during
the Solve phase increases significantly with query dimensionality.
This experiment shows that using linear programming does not
scale as much as necessary to beat the naïve solver beyond query
dimensionality 12. One of the main reasons this approach is slow
is because it needs numeric representations with a very high pre-
cision far greater than what the standard double-precision binary
floating-point format supports. Without this high precision, the LP
solver would often wrongly conclude that the linear programming
problem is unsolvable even when it is not.

8.5 Moment Solver: Query Dimensionality
In this experiment, we evaluate queries of different dimensionali-
ties using the moment solver on the data cube of the SSB dataset
with 𝑑min = 14 and 𝑛 = 215. Figure 9a shows the interactivity
of the moment solver for various query dimensionalities. There
is an increased delay for both materialization strategies until the
first result appears as the query dimensionality increases due to
increased Fetch and Solve time. In the case of RMS, the error drops
down quickly and then flatlines while the base cuboid is projected.
Whereas in the case of SMS, the solving time is higher, but the error
drops to zero without projecting the base cuboid for most queries.

Figure 9b shows the breakdown of execution time (in batchmode)
for both naïve and moment solvers. The duration of the Prepare
phase is only slightly affected by query dimensionality for both
solvers in either materialization strategy. In the case of RMS, the
naïve solver almost always projects the base cuboid, and we observe
a big Fetch time that is independent of the query dimensionality.
On the other hand, in the case of SMS, there is some material-
ized cuboid with a slightly larger dimensionality than the query
dimensionality that can fully answer the query, and we observe
a shorter Fetch time for the naïve solver that increases with the
query dimensionality. For the moment solver, both Fetch time and
Solve time increase with query dimensionality. Furthermore, the
moment solver fetches higher dimensional cuboids and produces
fewer moments in the case of RMS compared to SMS. Therefore,
we observe a higher Fetch time and shorter Solve time for RMS
than SMS. In both materialization strategies, the moment solver
returns approximate results faster than the naïve solver up to query
dimensionality of 15, after which its Solve time exceeds the naïve
solver Fetch time.

For bothmaterialization strategies, the execution time for queries
in the online mode can be much worse than the same for batch
mode for two reasons. Firstly, the base cuboid is allowed to be
projected in the online mode but not in the batch mode causing
an increased Fetch time. Secondly, the extrapolation algorithm is
invoked repeatedly in the online mode, causing the Solve time
to increase by a factor. This is particularly pronounced for high-
dimensional queries where the Solve time is the dominant cost.

Figure 9c shows the relative cumulative frequency (RCF) of errors
for the moment solver for different query dimensionalities. As the
query dimensionality increases, we observe higher values for the
error as the number of unknown moments increases. Around 90%
of queries have an error less than 0.1 for query dimensionality 9
in the case of RMS, whereas in the case of SMS, 90% of queries
have an error less than 0.02 for query dimensionality as high as 15.
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Figure 9: Moment solver experiments for different query dimensionalities
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Figure 10: Moment solver experiments for different materialization parameters (𝑑min, 𝑛).

Overall, SMS results in more cuboids relevant to the query being
materialized, leading to lower error.

8.6 Moment Solver: Materialization Parameters
We now study the impact of materialization parameters on the per-
formance of the Sudokube system. We fix the query dimensionality
to 10 and run queries on data cubes with the same base cuboid but
different values for 𝑑min and 𝑛. Figure 10a shows the interactivity
of the moment solver for different materialization parameters of
the NYC data cube. The number of cuboids has a more significant
impact on the time until the first result than the minimum cuboid
dimensionality due to increased time for the Prepare phase. For
both materialization strategies, the error drops quickly in the first
few hundred milliseconds, and then it flatlines for the next 3 to 4
seconds while the base cuboid is projected. The lowest error before
that happens is given by the data cubes with the maximum value
of 𝑑min and 𝑛, which can also be seen in Figure 10c. Increasing 𝑛
results in a better error, increasing 𝑑min improves it even more.

Figure 10b shows the impact of these parameters on different
phases of the query execution. The Prepare time increases linearly
in all cases with the number of cuboids 𝑛 since it computes the in-
tersection of dimensions between the materialized cuboids and the
query. However, it is not affected by 𝑑min as our fast set operations
are not significantly impacted by the size of the sets. The naïve
solver nearly always projects the base cuboid, and its Fetch time is
nearly unaffected by materialization parameters in this scenario.

On the other hand, the moment solver fetches smaller cuboids, and
its Fetch time increases exponentially with 𝑑min. Increasing either
parameter increases Solve time indirectly as more moments are
available to be processed. While comparing the two materialization
strategies, we again observe that RMS has a higher Fetch time but
a lower Solve time than SMS for our moment solver as the former
results in fetching larger cuboids to produce fewer moments.

While comparing the distributions of errors for queries run in
the batch mode shown in Figure 10c, it is evident that the distri-
butions differ only slightly for RMS as opposed to SMS. This is
because the space of all possible cuboids is so large (see Figure 7)
that the parameters used in this experiment do not make much
of a difference. Nevertheless, in both cases, 𝑑min has a much more
significant impact on error than 𝑛. It does not come as a surprise
since increasing 𝑑min increases the number of available moments
exponentially, whereas increasing 𝑛 increases it only linearly.

8.7 Moment Solver: Natural Query Accuracy
In this experiment, we demonstrate the performance of our moment
solver for five hand-chosen queries that are natural in the context
of the two datasets. We only consider queries (without slicing) with
dimensionality less than 15 in this experiment. We identify queries
by the group-by dimensions and sometimes coarsen the granular-
ity by taking only prefixes of cosmetic dimensions. For example,
grouping by issue_date_year/2 indicates that we aggregate over
periods of two consecutive years. We extend this notion also to
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Figure 11: Impact of various data distribution parameters of themicrobenchmark on themoment solver error in online mode.
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Figure 12: Performance of the moment solver in online
mode on natural queries. Each line denotes an aggregation
query grouped by the labeled dimensions. 𝑘 consecutive val-
ues of dimension 𝑋 are grouped together when labeled 𝑋/𝑘 .

cover non-numeric columns with similar behavior; grouping by
plate_type/4 aggregates the fact values of four consecutive plate
types into one entry. Figure 12 shows how the error improves with
time in the online mode for the indicated queries on SSB and NYC
data cubes. For most of these queries, Sudokube yields a result with
less than 5% error within a second.

8.8 Microbenchmarks
We also run microbenchmarks to study how the error decreases
as more cuboids are fetched under various conditions. For these
experiments, we generate synthetic data for some 𝑑-dimensional
cuboid with dimensions 𝐼 = {0, . . . , 𝑑 − 1} as described next, ma-
terialize the entire lattice comprising 2𝑑 cuboids and then query
the base cuboid. The fact associated with every cell in the cuboid is
sampled from a log-normal distribution whose parameters depend
on the position of the cell. For some external parameters 𝑧 and 𝑠 ,
the mean value ` and the standard deviation 𝜎 of the distribution
for the cell with mapping 𝑝 : 𝐼 → {0, 1} is given by

` = 𝑧ones(𝑝) · (1 − 𝑧)zeroes(𝑝) , 𝜎 = 𝑠 · `.

where the functions ones(𝑝) and zeroes(𝑝), respectively, count the
number of dimensions mapped to one and zero in 𝑝 . We multiply
the value sampled from this log-normal distribution by 105 and
then truncate the fraction.

First, we vary the dimensionality 𝑑 , fixing 𝑧 = 0.25 and 𝑠 = 0.5
and the results are shown in Figure 11a. As the query dimension-
ality increases, the moment solver requires exponentially more
cuboids to answer the query, and the error drops nearly linearly as
more of these cuboids are fetched. Next, we study the impact of the

parameter 𝑠 . This parameter determines the variance of the distri-
bution from which we sample the facts. The higher this parameter,
the noisier the data is. Figure 11b shows the results for different
𝑠 fixing 𝑑 = 10 and 𝑧 = 0.25. As expected, our estimate becomes
worse as the data becomes noisier. Finally, we study the impact
of skew in the data. We introduce skew in the data by lowering
the value of 𝑧, which causes the fact values to concentrate in the
0-cells compared to the 1-cells in any dimension. Figure 11c shows
the result for different values of 𝑧 keeping 𝑑 = 10 and 𝑠 = 0.5. We
observe that a lower value of 𝑧 results in an increase in the number
of zero values and moments. A zero moment, in particular, is very
beneficial to the solver as it can immediately infer several higher-
order moments also to be zero, thus lowering the error significantly
when discovered. As a result, the solver only needs fewer cuboids
to reach the same error level compared to the case when 𝑧 is higher.

9 CONCLUSION AND FUTUREWORK
This paper introduces Sudokube, an OLAP system that supports
interactive-time query results on high-dimensional data cubes. The
high dimensionality of a data cube makes it impractical to material-
ize all but a small fraction of its cuboids. Sudokube employs several
techniques that approximate the query cuboid from its projections
to support interactive-time querying. Our experiments show that
our moment solver produces good approximations with less than
1% average error in under a second for queries of dimensionali-
ties as high as 12 when the naïve solver takes nearly two orders
of magnitude longer time despite having all cuboids fetched from
RAM. Should the cuboids be fetched from disk instead, the relative
speed-up of the moment solver over the naïve one would be higher.

The Sudokube system, as discussed in this paper, is far from
complete. The current prototype supports slicing and dicing opera-
tions only through post-processing on the complete query result,
and we are working on making the core engine support them effi-
ciently. Investigations on alternative materialization strategies are
also ongoing. Currently, the moment solver extrapolates unknown
moments by setting the corresponding mixed central moments to
zero. As future work, we plan to explore other extrapolation tech-
niques involving cumulants, copulae, and graphical models such
as Markov Random Fields. We also plan to scale our backend to
supporting cuboids that would not fit in RAM, first by utilizing
secondary storage on a single node and then moving on to a scale-
out architecture. Additional optimizations on backend operations
involving sharding of cuboids and multithreaded and distributed
aggregation of these cuboid shards are being considered.
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