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ABSTRACT
We live in a world dominated by data, where users from different
fields routinely collect, study, and make decisions supported by
data. To aid these users, the current trend in data analysis is to de-
sign tools that allow large-scale analytics, sophisticated predictive
models, and beautiful visualizations. At this exciting time when
both data and analytics tools are widely accessible to users, treat-
ing analyses as magical black boxes can painfully mislead users
and make troubleshooting frustratingly time-consuming. For in-
stance, although the perils of interpreting correlations inferred by
predictive models as causation are well-documented, making such
a distinction can be tricky for many users who do not have formal
training in computer science or statistics. In this paper, we give
an overview of our research toward bridging this gap along two
main thrusts of explanations and causality. Explanations support
a primary goal of data analysis – empowering users to be able to
interpret the results in data analysis and troubleshoot the process.
Causality complements explanations by supporting prescriptive or
actionable analytics with counterfactuals and interventions, thereby
helping sound decision making. In these thrusts, we explore the
symbiotic relationship between core database techniques and com-
plementary techniques from machine learning and statistics via
interdisciplinary collaborations, and employ them to applications
in domains like computer science education, law, and health.
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1 INTRODUCTION
In today’s world awash with data, users from different fields and
with different backgrounds routinely collect, study, and make de-
cisions supported by data. To aid these users, the current trend
in data analysis is to design tools that allow large-scale analytics,
sophisticated predictive models, and beautiful visualizations. How-
ever, as data and analytics tools become widely accessible to a broad
range of users, the limitations of treating data analysis as magical
black boxes can painfully mislead users and make troubleshooting
frustratingly time-consuming. As an obvious example, the perils
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of interpreting correlations inferred by predictive models as causa-
tion are widely documented. However, making such a distinction
can be tricky for many data analysts and domain experts who do
not have formal training in computer science (CS) or statistics. On
the other hand, in all stages of a data analysis pipeline from data
preparation, data processing, to the final analysis of results, users
may seek some insights and explanations in the form of ‘why’ and
‘how’ questions - ‘why is my program wrong?’, ‘how do I fix it?’,
‘why is a value in the result higher/lower than another value or a
value that I was expecting?’, ‘how do I get a desired result?’ and so
on. While dealing with real data we need further care in answering
such questions, e.g., the data may be large and may have a complex
structure with dependencies, the answers we provide should be
interpretable and the process should be interactive, and in some
scenarios, the data may have private information that must not
be violated while answering such ‘why’/‘how’ questions. In this
paper, we give an overview of research we have been conducting
to address these issues along two main thrusts of explanations and
causality. Explanations support a primary goal of data analysis –
empowering users to be able to interpret trends and anomalies in
their analysis, debug their code, and get better insights about the
process in general. Causality complements explanations by sup-
porting prescriptive or actionable analytics with counterfactuals
and interventions, thereby helping credible decision making.

Our research in explanations and causality aims to provide users
sound, interpretable, and easy-to-use tools via a three-pronged ap-
proach: (a) develop theoretical and methodological foundations,
(b) design algorithms and build efficient easy-to-use systems, and
(c) explore the symbiotic relationship between data management
techniques and complementary tools such as machine learning and
statistics via interdisciplinary collaborations. The combination of
these three approaches produces tools and techniques that have
impact on real-world problems in two different ways: First, deeper
insights into data, query results, and applications by explanations
and causality help analysts make informed decisions and program-
mers debug/refine data-driven processes in industry, academia, and
other domains. As an example, our tool RATest for explaining wrong
relational queries [48, 49] that we discuss later is built on a formal
foundation using provenance semirings [28], and has so far been
used by more than 1000 students in undergraduate and graduate
database courses at Duke since 2018 with enthusiastic feedback
from the students. It provides automated and interactive help to
both students and teaching assistants, which is more important
than ever given the recent surge in enrollment in CS courses ev-
erywhere. Second, this research has an academic impact on other
areas outside data management within and beyond CS by interdis-
ciplinary collaborations. Our Almost Matching Exactly (AME) lab
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[2] for causal inference research brings together researchers in CS
(data management and machine learning), statistics, economics, po-
litical science, and law, where we develop new efficient algorithms
for causal inference, and study their utility on practical problems
from various application domains. For instance, our causal analysis
research on various real datasets has led to new insights regarding
the effect of a pre-trial community supervision program on new
criminal charges, hospital stays and health insurance, and the effect
of prenatal smoking on the health of newborns [60, 61, 68].

Related Work. There is a vast related work in database re-
search on various notions of explanations for different contexts and
applications, whereas causal inference (estimating the effect of a
treatment on an outcome) has been studied mostly in the statistics
and artificial intelligence (AI) communities (e.g., [55, 56, 59]) along
with applications in clinical trials, public health, social studies, etc.,
with a recent interest in database research. For the sake of brevity,
we omit a review of related work in this paper. We (with Boris
Glavic and Alexandra Meliou) recently wrote a Foundations and
Trends in Databases article on explanations for data-driven systems
[26], and refer the reader to this article for a detailed discussion on
different concepts of explanations from the literature.

2 EXPLANATIONS FOR DATABASE QUERIES
Understanding data, query answers, and plots is a key step in data
analysis to enforce accountability in decision making or refine a pro-
cess. Given one or more facts as observation made by a user in data
analysis, an explanation can be considered as a set of statements that
aims to clarify the causes, context, and/or consequences of those
facts [71, 72]. Our research in explanations in data analysis can be
divided into two main parts. (1) The FIREFly (Formal Interactive Rich
Explanations on-the-Fly) project focuses on the final step in data
analysis when some aggregate answers have been obtained and/or
plots have been generated, and the users want to understand the
trends and anomalies in these answers (e.g., ‘why one value is high-
er/lower than expected’ or ‘why a value is an outlier’). We have been
developing a toolkit for explanations for aggregate query answers
that generates different types of high-level semantic explanations
from the data in response to questions from the users. (2) The HNRQ
(Helping Novices learn Relational Queries) project focuses on the
query writing phase, and aims to help new programmers or stu-
dents understand why their query is wrong and how it can be fixed.
Below, we will discuss our work in these two directions followed
by other work related to explanations. One common theme in all
our approaches to explanations has been modeling what a human
expert who is familiar with the application might think as a natural
explanation, and then computing such explanations automatically
in our explanation frameworks.

2.1 Explanations for Aggregate Query Answers
In the context of explaining query answers in database research,
several frameworks for explanations both for non-aggregate and
aggregate query answers have been proposed [26]. The most obvi-
ous notion of explanations use data provenance [8–10, 28], which
explains why and how a query answer has been generated. In par-
ticular, the mathematical notion of provenance semirings has been
developed for both non-aggregate and aggregate queries [3, 28].

However, for aggregate queries, when users want to understand
why an output value is higher/lower than their expectation, or
why a value is higher/lower than another value, simply showing
how they have been generated does not provide much insights to
them. Moreover, typically several input tuples contribute to a sin-
gle aggregate output value. Hence fine-grained provenance might
be overwhelming to the user, motivating the need for high-level
explanations. The explanations we consider for explaining or com-
paring aggregate values are in the form of explanation predicates on
attributes in the data summarizing a set of input tuples (also used
in other work in the literature on explanations such as [20, 73]),
however, in our different explanation frameworks these predicates
assume different meaning.

2.1.1 Explanations motivated by causality, counterfactuals, and in-
tervention. Different notions of scientific explanations have received
considerable attention in philosophical discourse from pre-Socratic
times through the modern period. Among them, a pioneering con-
cept is that of causal explanations (we will discuss causality in
Section 3), which primarily uses the concept of counterfactuals (if
𝐴 had not occurred then 𝐵 would not have occurred, therefore 𝐴
explains 𝐵) and interventions (if we change 𝐴, 𝐵 would change too).
Our first work in this area [58] proposed a formal framework of
explanations for one or more query answers adapting the notion
of causality and interventions. It finds synopses of properties on
input tuples by predicates on attributes as explanations, such that
by restricting the database to tuples that entail a different value
of these synopses, the query answers and the observation of the
user (captured by a function on multiple query answers) change,
thereby explaining the observation. Here is an example, the exact
set up can be found in [58].

Example 2.1. From the DBLP data [12], we observed that SIG-
MOD publications from industrial research labs had a peak around
year 2000 and a decreasing trend later. Some of the top explana-
tions we found pointed at prominent industrial research labs (and
their senior researchers) that were highly active around those years
in database research, and later they either shut down or possibly
shifted their focus. If publications by those labs are removed from
the database or if these labs hypothetically did not exist, then the
peak will be flattened to some extent.

This notion of explanations also allowed adding ‘causal depen-
dencies’ among tuples that can lead to recursive tuple deletion (e.g.,
if an author is removed from a database, their publications should
be removed as well but not necessarily vice versa). We showed that
a non-trivial recursive query can find the intervention of a given
explanation predicate in polynomial time in data complexity [65],
and gave an efficient solution for practical purposes using the OLAP
data cube operator [27] to evaluate the scores of all explanation
predicates simultaneously.

An interesting observation from our above work [58] is that
the intervention of a given candidate explanation predicate in a
dataset, i.e., the set of tuples that depend on this explanation, is
independent of the queries or user questions, and only depends
on this dataset. This idea led to our next work called explanation-
ready databases [57], where interventions by complex explanation
predicates involving aggregates and other tables in the dataset are
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stored by pre-processing. When a user runs a query and asks a
question, it simultaneously evaluates and ranks the explanations
by an incremental view maintenance approach without sequentially
iterating over all the explanations.

Example 2.2. In [57], one of the datasets we explored was the
NSF grants dataset [15], where we observed a difference in funding
obtained by two top graduate schools in CS in the USA. The top
explanations computed by our approach included the investigators
with more than USD 100 million awards in total (there were none
in one of the schools), investigators with large number of awards,
two particular investigators from one of the schools who got huge
funding, and awards with multiple investigators, suggesting that
a few investigators in one of the schools got a few big awards
which contributed the most toward the difference between the
funding in these two schools. If these factors were not present
in the dataset, then the difference between total funding between
these two schools will reduce by USD 400 million to 850 million.
These interesting explanations needed information from tables that
were unused in the original query that simply retrieved the total
funding from different schools, hence could not be found by our
previous work [58].

2.1.2 Explanations beyond provenance by counterbalance. Expla-
nations motivated by causality and interventions described above
[57, 58] give useful insights from the provenance of the query an-
swers involved in the user question, by summarizing the properties
of the input tuples that contribute significantly to the query an-
swers. Therefore, a large fraction of the input database remains
unused in those explanations, leading to our next idea for expla-
nations: whether there can be interesting explanations from the
‘rest of the database’ that has not been used at all in producing the
query answers of interest. Our next approach called ‘explanations by
counterbalance’ [50] finds explanations going beyond provenance,
and explains a high (low) outlier with another low (high) outlier
in the opposite direction with respect to some regression patterns
learned from the query answers. These regression patterns include
a partition attribute 𝑋 , a group-by attribute 𝑌 , and an aggregated
attribute 𝑍 = 𝑎𝑔𝑔(𝑊 ), and describe how 𝑍 varies with 𝑌 for suf-
ficiently many values of 𝑋 , e.g., for more than p% of authors (𝑋 ),
the number of papers (𝑍 ) is about constant over the years (𝑌 ). We
measured the score of these explanations by combining how ‘sur-
prising’ they are in terms of deviations from the expected patterns
and a distance measure of the explanation pattern from the output
tuple that the user wants to understand.

Example 2.3. In [50], we investigated the Chicago crime data
[11], to understand why the number of battery crimes in a given area
in Chicago in a certain year is lower than the other years. We found
explanations like the area had more battery crimes in the following
and the previous year, and adjacent areas had more battery crimes
in the same year, possibly suggesting that the observation is an
outlier. As another example with the DBLP publication dataset [12],
less than usual publications by a researcher in one conference in a
year was explained by higher publications in that venue in adjacent
years, and in other venues in the same year.

2.1.3 Explanations by augmented provenance. Our quest of finding
interesting explanations from the unused part of the data in the

query output of interest went further than the idea of counterbal-
ancing. In the above work [50], we extracted explanations from
the same input tables that were used in the query, using the input
tuples in those tables that did not contribute to the query outputs
of interest. In [41], we explored further how the other tables that
were not used in the original query can be used to find interesting
explanations apart from our work on explanation-ready databases
[57] discussed earlier. In [41], our idea was to go through multiple
related tuples from other tables to find interesting explanations for
aggregate query answers. For instance, an increased number of pub-
lications in a machine learning conference by a database researcher
can be explained by her new collaboration with a machine learning
researcher. Assuming a dataset like DBLP [12] where different tables
contain information about authors, authorship, and publications,
such explanations can only be found by joining and aggregating
multiple tables including self-joins on the authorship table for the
information on collaboration. To formalize this idea, we used join
graphs to capture how different tables relate to each other. Then
using a join graph as input, we augmented the provenance of the
query outputs of interest to input tuples belonging to other tables,
followed by outputting top explanation predicates summarizing
those input tuples as accurately as possible by adapting the ideas
of precision, recall, and F-score.

Example 2.4. In [41], we studied the NBA dataset (extracted
from [14, 16]) and observed that the team Golden State Warriors
improved their number of wins significantly in the 2015-16 season
compared to the 2012-13 season. By augmenting the provenance of
the output tuples for the number of wins to unused tables containing
information about lineups and players’ scores, we found interesting
explanations like ‘ Player S. Curry scored more than 23 points in 58
out of 73 games in 2015-16 compared to 21 out of 47 games in 2012-13’,
and, ‘Players D. Green and K. Thompson’s on-court minutes together
were more than 19 minutes in 70 out of 73 games in the 2015-16 season
compared to only 2 out of 47 games in the 2012-13 season’. These
two explanations were based on two different join graphs [41], and
the second one includes a self-join on the lineup table to find out
which players played together. [41] has other examples using the
MIMIC-III intensive-care and hospital-stay dataset [35].

2.1.4 Explanations with differential privacy. Data analysis with real
datasets might require dealing with data with private or sensitive
information. Providing explanations for such datasets using any of
the above approaches might affect data privacy. Hence, we wanted
to understand how we can find interesting explanations while giv-
ing a privacy guarantee. Differential privacy (DP) [19] is the gold
standard for protecting privacy in query processing and is criti-
cally important for sensitive data analysis. The core idea behind
DP is that the answer to a query on the original database cannot
be distinguished from the answer to the same query on a slightly
different database, which is usually achieved by adding random
noise to the query answer to create a small distortion. The problem
is that, when a user wants to understand why a value is high or
low, it may be simply due to adding noise to the query answers.
However simply revealing that, or even revealing any deterministic
ranking or scores of explanations, will again violate privacy. In our
recent work [63], we developed a framework called DPXPlain to
support DP in explanations by adapting the notion of interventions
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from [58, 73]. DPXPlain provides explanations in multiple phases,
while guaranteeing DP in all steps with a given privacy budget. It
is able to give the user insights on (with high confidence) whether
the higher/lower value of interest is due to the noise added by a DP
mechanism, and if not, it further provides a confidence interval of
relative influence and ranking of explanation predicates summariz-
ing the input tuples that contribute the most to that output. The
confidence intervals also provide insights on whether to trust an
explanation, for instance, out of 100 possible explanations if we get
an interval of [1, 5] for the rank of an explanation predicate with
95% confidence, we know that it is likely to be a good explanation,
but if the interval is [1, 95], we can discard the explanation.

2.1.5 Tools with user interface for explanations. Explanations are
integrally meant for helping users understand, debug, or improve
a data-driven process, which makes developing efficient and easy-
to-use systems for exploring these explanations important. For our
intervention-based approach to explanations [58], we developed an
end-to-end system called LensXPlain [47], for our counterbalance-
based approach [50], we developed the CAPE (Counterbalancing
with Aggregate Patterns) system [51], and for our augmented-
provenance approach [41], we developed the CAJADE (Context-
Aware Join-Augmented Deep Explanations) system [40]. These
tools provide additional functionality through their graphical user
interfaces, such as suggesting important attributes to include in
explanations, helping users ask questions, illustrating how the ex-
planations explain the user question, and refining explanations
based on user preference. Note that these different approaches to
explanations are incomparable to each other - they provide different
types of insights in response to ‘why’ questions on aggregate query
answers asked by a user. An important future work is to combine
all these explanation approaches under one unified tool that can
display different types of explanations to the users interactively.

2.2 Explanations for Debugging Queries
Writing correct queries is another important step in data analysis
with data management systems. In a project called HNRQ: Helping
Novices Learn and Debug Relational Queries [32], we are working on
how we can help new programmers and students debug and learn
database queries. We illustrate our approaches with an example.

Example 2.5. Consider the Beers database shown in Figure 1
containing information about drinkers (Drinker table), beers (Beer
table), bars (Bar table), which drinker likes which beer (Likes table),
and which bar serves which beer (Serves table). Suppose a student
has been asked to write the following query in some relational
language (like SQL, relational algebra, or relational calculus):

𝑄𝐴 : Find beers liked by any drinker whose first name is ‘Eve’
along with bars that serve them at the highest price.

Suppose instead, they write the following very similar (and a
syntactically correct) query:

𝑄𝐵 : Find beers liked by any drinker whose name starts with
‘Eve’ along with bars that serve them not at the lowest price.

We skip writing the actual queries here (see [25]), but the reader
can check that 𝑄𝐴 is a non-monotone and more complex query,
whereas 𝑄𝐵 is a monotone and simpler query requiring a self-join
on the Serves table. For students or analysts who are learning SQL for

name addr

Eve Edwards 32767 Magic Way
John Pierce 1122 Chocolate Drive

(a) Drinker relation

name brewer

American Pale Ale Sierra Nevada
Corona Grupo Modelo

(b) Beer relation
name addr

Restaurant Memory 1276 Evans Estate
Tadim 082 Julia Underpass

Restaurante Raffaele 7357 Dalton Walks
Bar Lantern 550 Water Way

(c) Bar relation

drinker beer

Eve Edwards American Pale Ale
John Pierce American Pale Ale

Eve Edwards Corona
(d) Likes relation

bar beer price

Restaurant Memory American Pale Ale 2.25
Restaurante Raffaele American Pale Ale 2.75

Tadim American Pale Ale 3.5
Tadim Corona 3

Restaurant Memory Corona 2.5
(e) Serves relation

Figure 1: A database instance 𝐷0 of the Beers dataset with
five relations. The highlighted rows are sufficient to distin-
guish the wrong query from the correct query, and the light
highlighted cells contain redundant information

name addr

𝑑1 ∗
(a) Drinker relation

name addr

𝑥1 ∗
𝑥2 ∗
𝑥3 ∗

(b) Bar relation

bar beer price

𝑥1 𝑏1 𝑝1
𝑥2 𝑏1 𝑝2
𝑥3 𝑏1 𝑝3

(c) Serves relation

name brewer

𝑏1 ∗
(d) Beer relation

drinker beer

𝑑1 𝑏1
(e) Likes relation

𝑑1 LIKE ‘Eve%’ ∧𝑝1 > 𝑝2 ∧ 𝑝2 > 𝑝3
(f) Global condition

Figure 2: A conditional instance I0 that distinguishes the
correct and wrong queries in Example 2.5 and generalizes
the highlighted cells in Figure 1.
the first time, or are trying to write more efficient equivalent queries
for better performance, it is easy to make this type of mistakes.

The HNRQ project aims to help users understand such mistakes
and debug their queries. In this project we collaborate with col-
leagues with expertise in CS Education and evaluate our solutions
by user studies with the help of students with a varied level of
experience in writing relational queries.

2.2.1 Explaining wrong queries with counterexamples. Suppose we
have a hidden test database 𝐷 available, which detects that 𝑄𝐵

in Example 2.5 is wrong since 𝑄𝐵 (𝐷) ≠ 𝑄𝐴 (𝐷) (e.g., if an auto-
grader with a carefully constructed test instance is used). These test
databases can be big to be able to detect different types of errors,
and simply showing the database to users may not be enough to
help them understand how their query was wrong. Consider the in-
stance 𝐷0 in Figure 1. The reader can verify that𝑄𝐵 (𝐷0) ≠ 𝑄𝐴 (𝐷0).
In particular,𝑄𝐵 returns the tuples (Restaurante Raffaele, American
Pale Ale), (Tadim, American Pale Ale), and (Tadim, Corona) while
𝑄𝐴 only returns the latter two tuples. In [48, 49], we developed
a tool called RATest for explaining wrong relational algebra (RA)
queries by providing a small database instance as a counterexample
that differentiates the wrong query from the correct query. For in-
stance, in Figure 1, the entire database is not needed to convince the
user that their query is wrong, only showing the highlighted rows
is sufficient for this purpose. We formulated this as an optimization
problem: given 𝐷 such that 𝑄𝐵 (𝐷) ≠ 𝑄𝐴 (𝐷), can we compute the
smallest subinstance 𝐷 ′ ⊆ 𝐷 such that𝑄𝐵 (𝐷 ′) ≠ 𝑄𝐴 (𝐷)′ holds? We
studied the complexity of this problem for different query classes.
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Although the problem was NP-hard in general for non-monotone
queries like 𝑄𝐴 , and even conceptually more difficult for queries
with aggregates and group-by, we obtained practical solutions us-
ing data provenance and SAT/SMT (Satisfiability Modulo Theory)
solvers. We conducted a detailed user study in an undergraduate
database course with about 170 students and analyzed its usefulness
in helping students debug their queries. In addition, the feedback
we received from students was overwhelmingly positive, like, “It
was incredibly useful debugging edge cases in the larger dataset not
provided in our sample dataset with behavior not explicitly described
in the problem set.”, “Overall, very helpful and would like to see similar
testers for future assignments.”, “I liked how it gave us a concise exam-
ple showing what we did wrong.”, etc. Since then, RATest has been
used by more than 1000 students in undergraduate and graduate
database courses at Duke. We are working on making other tools
developed in the HNRQ project available in our database classes.

2.2.2 Abstract conditional instances for explaining wrong queries.
Small concrete database instances as counterexamples help students
understand how their queries are wrong to some extent, but we
observed multiple prospects for improvement. Again consider Fig-
ure 1: just showing the highlighted tuples does not explain how the
query𝑄𝐵 went wrong. Further, the cells that are lightly highlighted
are completely redundant in explaining how 𝑄𝐵 is wrong. In addi-
tion, [48] starts with a given database instance differentiating the
queries that may not be available (it does not check query equiva-
lence). Finally, there may be multiple mistakes in a wrong query
(see the two boldfaced parts in 𝑄𝐵 ), and a given counterexample
may not highlight all of them.

Therefore, in our follow-up work [25], we explored how we can
output a set of conditional instances (c-instances) explicitly showing
the differences between the queries 𝑄𝐴 and 𝑄𝐵 . Figure 2 shows a c-
instance I0 that again differentiates𝑄𝐴 and𝑄𝐵 . However, I0 shows
abstract tuples with variables instead of constants (∗ are ‘don’t care’
variables) and a condition that the variables must satisfy (there
should be a drinker whose name starts with ‘Eve’ and the order
of the prices in Serves table should be 𝑝1 > 𝑝2 > 𝑝3). Thus, I0
not only generalizes the counterexample in Figure 1 (i.e., there
exists an assignment to the variables that results in the instance
in Figure 1 and satisfies the global condition), but, it also specifies
the ‘minimal’ condition for which 𝑄𝐵 differs from 𝑄𝐴 (the global
condition). This is one of the c-instances in our universal solution
[25]; each c-instance captures some aspect of the difference between
𝑄𝐵 and 𝑄𝐴– another c-instance I1 will contain only the first two
tuples in Serves, and the global condition 𝑑1 LIKE ‘Eve%’ ∧¬(𝑑1 LIKE
‘Eve␣%’) ∧𝑝1 > 𝑝2, suggesting that two queries will be different on
an instance where the name of the drinker starts with ‘Eve’ rather
than the first name being ‘Eve’. Our user study with undergraduate
and graduate students shows that although both [25, 48] help users
detect errors, conditional instances help users detect multiple errors
in wrong queries unlike concrete instances provided by [48].

2.2.3 Tracing the output of SQL queries. Our RATest system [48, 49]
only supports RA (with some aggregates, having, and group-by)
and can show the intermediate results from each operator explain-
ing how an output is generated. When we extended the smallest
counterexample computation to SQL, there were new challenges in
showing how the output of a SQL query is computed, especially for

queries with correlated/nested subqueries and outerjoins. Unlike
procedural RA that specifies how the query is evaluated, SQL is
declarative (only what needs to be computed is specified). There-
fore, it is not obvious how to trace the output from a declarative
SQL query, because its execution plan often differs from how it
was originally written. This required addressing new challenges in
generating counterexamples in the backend as well as developing
a novel user interface in the frontend for tracing outputs. We de-
veloped the iRex system (demonstrated in [46], research paper in
preparation) to help users trace SQL query evaluation and debug
SQL queries interactively. This system will be deployed soon in our
classes at Duke and a thorough evaluation will be performed.

2.3 Other Work on Explanations
While working on the two main directions in explanations discussed
above, several other related problems surfaced, often they are of
independent interest and has other applications. In [36, 37], we
explored explanations for contentions in shared clusters when com-
ponents coming from different queries like jobs and parallel tasks
therein compete for different resources like CPU, memory, and net-
work, by assignment of blame at different granularity at the levels of
tasks, jobs, and queries. For explanations for aggregate queries, we
observed that the search space of possible explanations is huge, and
directly showing the top-k explanations by some scoring function
may have repetitive information missing other interesting insights.
Inspired by this problem, we studied optimizations for interactive
exploration and summarization of aggregate query answers, where
the user can see clusters of predicates on input attributes satisfying
certain parameters for diversity (in terms of distance among the
clusters), relevance (alignment with the original scoring function),
and coverage (for top tuples by the original ranking), and visualize
how changes in parameters affect clustering [69, 70]. In our first
work on explanations [58], we used interventions, which can be de-
fined as the set of input tuples that are ‘affected’ by an explanation
predicate, and these input tuples in turn may affect other tuples in
the database recursively. Inspired by this idea, we explored delta
rules [23, 24] in the context of data repair, when repairing tuples in
one relation leads to cascaded updates in other relations, e.g., by
foreign keys or by SQL triggers. We developed a generalized frame-
work for such cascaded updates by a set of user-defined update rules
and studied their possible semantics with algorithms and complex-
ity analysis. In the other direction, to understand how to achieve
a certain degree of intervention in aggregate query answers with
minimal changes in the input, we studied the problem of aggregated
deletion propagation, which may have applications in measuring
robustness of query answers [34]. One key aspect in the work on
explanations is scalability and interactivity, for which we often had
to relax the requirement of getting the optimal solution in favor of
more efficient solutions by heuristics [58]. In such interactive data
analysis, users are likely to be interested in examining a subset of
query answers or explanations satisfying some properties, This led
to our work [66] on query optimization for complex queries with
having clauses and other filtering predicates that filter out certain
output tuples (called iceberg queries [21]). Such problems inspired
our other work on query optimizations and data repair that we do
not discuss in this paper [33, 43, 44, 64, 67].
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3 CAUSAL ANALYSIS↔ DATAMANAGEMENT:
SCALABLE SOUND CAUSAL ANALYSIS FOR
COMPLEX OBSERVATIONAL DATA

Our first work [58] on explaining aggregate queries was motivated
by causality and intervention, but none of the explanations dis-
cussed in Section 2 are ‘causal’. All the approaches described in
Section 2 mine interesting patterns that only intend to ‘explain’ the
questions asked by the user on the query answers in different ways,
and give useful insights to understand and improve a data-driven
process. ‘Causal explanations’ might be considered as the gold stan-
dard for explanations in many applications, for instance, in our
examples in Section 2, it would be nice to find ‘what caused the
number of database papers from industry to drop after year 2000’,
or ‘what caused the number of battery crimes to decrease in a year
in a Chicago area’. However, understanding causality and to be able
to do a formal and sound causal analysis go way beyond causal
explanations. Our research in explanations and pursuit for causal
explanations introduced us to the rich research area of causal anal-
ysis in AI and also in statistics, and revealed a plethora of research
directions on how causal analysis and data management research
can make each other stronger.

Causal analysis – i.e., estimating the effect of a treatment on an
outcome – lays the foundation of sound and robust policy making
by providing a means to estimate the impact of a certain interven-
tion to the world. It forms the stepping stone for actionable data
analysis that correlation, association, or model-based prediction
analysis cannot provide, and is practically indispensable in health,
medicine, social sciences, and other domains (e.g., whether a new
drug is effective in curing a disease, whether a job-training program
helps improve employment prospects, or, whether giving incentives
for not smoking in terms of reduction in insurance premium helps
people quit smoking). For instance, if non-smokers pay reduced
insurance premium anyway, and introducing the plan of reduced
premium does not help smokers quit smoking, then a simple corre-
lation analysis between people who pay less premium and who do
not smoke may not be sufficient to convince policy makers in the
government or in insurance companies that the new policy should
be introduced – as cited widely in statistical studies, correlation does
not imply causation.

Two popular models used in causal inference in statistical studies,
AI, social science, or network analysis are Rubin’s potential outcome
framework [59] and Pearl’s graphical causal model [55]. There are
some ‘units’ (e.g., patients) in either the ‘treatment’ group (e.g.,
who receives a drug) or the ‘control’ group (e.g., who receives a
placebo). If the units were assigned to treatment or control group
at random, as done in randomized controlled experiments, then the
difference in the average outcome of these two groups gives a
measure of causal effect of the treatment on the outcome. This does
not hold when we cannot do randomized experiments (e.g., due
to ethical reasons to answer questions like effect of smoking on
health) and only can do an ‘observational study’ based on the data
available to us. Although the term causality has been overloaded
and used in different applications for data management, true causal
inference (e.g., inferring whether smoking causes lung diseases)
was largely unexplored by the data management community until
very recently. Similarly, the causal analysis community did not take

much advantage of the convenient and robust data management
techniques to make observational causal inference scalable and
applicable to more complex data. Our research brings together
techniques in databases, statistics, AI, and machine learning to
develop causal analysis techniques for large complex datasets.

3.1 Interpretable Matching Algorithms and
Scalable Data Management Techniques

In observational studies, since there is no guarantee on how the
treatment was assigned, one popular and interpretable approach to
handling observational data is ‘matching’. Matching in causal infer-
ence accounts for possible confounding covariates (that can affect
treatment assignment) by matching treatment and control units
on the same or similar values of the covariates and then studying
their difference in the outcome. Therefore, the data analyst is able
to see the matches of a treated unit that led to the estimation of
its treatment effect, which leads to easy debugging and decision
making (unlike dimensionality reduction techniques like propensity
scores [56] and regression techniques that are uninterpretable and
require the model to be specified correctly). However, in high di-
mensional data, exact matches on all covariates leaves most of the
units unmatched, and produces confusing results by matching on
irrelevant covariates. In our work on observational causal analysis,
we have developed a number of scalable and interpretable almost
exact matching methods that we describe below.

3.1.1 Almost exact matching algorithms FLAME and DAME. In our
interdisciplinary Almost Matching Exactly (AME) lab [2], in collabo-
ration with colleagues in machine learning and statistics, we devel-
oped two data-adaptive and interpretable approaches to matching
for causal inference called FLAME (Fast Large-scale Almost Match-
ing Exactly) [68] and DAME (Dynamic Almost Matching Exactly)
[18]. DAME solves an optimization problem that matches units
on as many covariates as possible by learning a distance metric,
prioritizing matches on important covariates and utilizing pruning
of the search space using an approach similar to the seminal apriori
algorithm for frequent itemset mining [1]. FLAME approximates the
solution found by DAME via a much faster backward feature selec-
tion procedure, and leverages techniques that are natural for query
processing in the area of database management; the first implemen-
tation uses SQL queries that have been optimized through several
decades (suitable for larger datasets), and the second one uses bit-
vector techniques (suitable for smaller datasets). We showed with
extensive evaluation that not only DAME and FLAME qualitatively
improve over other state-of-the-art matching and other techniques
for causal analysis, FLAME also scales to huge datasets with more
than a million units where existing state-of-the-art methods fail.
One option to use the better matching quality of DAME and better
efficiency of FLAME is to run hybrid FLAME-DAME, which first
removes obviously unimportant variables by running FLAME, then
runs DAME to select variables to remove more carefully in the later
iterations. We illustrated how FLAME can be used to obtain inter-
pretable estimates of treatment effects for an important societal
question: the effect of prenatal smoking on the health of the new-
born child in terms of birth weight and NICU admissions using the
Natality dataset [13], and presented another case study for DAME
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on the causal effect of participation in the Breaking the Cycle social
program [29] on reducing non-drug future arrest rates.

We maintain several Python and R packages of our algorithms
with detailed documentation (available from our AME lab website
[2]) that are being used in different applications by consumers of
causal inference research.

3.1.2 Extensions and applications of almost exact matching meth-
ods. The algorithms FLAME and DAME had several applications
for related problems in causal inference. We studied extensions of
FLAME/DAME to data from randomized experiments on network
structures [5] (treatment applied to a unit can affect the outcomes of
its neighbors) by matching units almost exactly on counts of unique
subgraphs within their neighborhood graphs. We also did a case
study about factors affecting election participation and self-help-
group participation using a dataset collected from several villages
in India [7]. Moreover, we studied extensions of FLAME/DAME for
instrumental variables [4] with an application to political canvass-
ing. Instrumental variables correlate with the treatment assignment,
affect the outcome only through their effect on the treatment, and
are commonly used to reduce the effects of unmeasured confound-
ing variables that affect treatment assignments. For datasets with
continuous covariates, AME methods may not work well due to
large number of distinct values. Hence we developed an adaptive
hyper-box matching method [52] that matches units with others in
unit-specific, hyper-box-shaped regions of the covariate space, with
a study on the LaLonde dataset [39] on the effect of work training
programs on future earnings. These regions are large enough such
that many matches are created for each unit, and small enough
such that the treatment effect is roughly constant throughout.

3.1.3 An application of interpretable matching algorithms for causal
inference on evaluation of pre-trial programs. As a concrete applica-
tion of causal inference and our matching algorithms, in a recent
work [61], with colleagues from the Law department, we studied the
effectiveness of participation in a pre-trial community supervision
program on new criminal charges. We used multiple methods of
observational causal inference to conduct this evaluation, including
popular propensity score matching [56] and our FLAME/DAME
matching algorithms. All methods of observational causal infer-
ence provided an estimated average treatment effect that is approxi-
mately zero, indicating that we could not conclude from this dataset
that the program is effective at reducing new criminal charges in
this community. In addition, the interpretable FLAME/DAME meth-
ods automatically performed important covariate selection and
provided insights into how the matching and final results have
been obtained. If this finding replicates across other datasets, after
rigorously evaluating other pre-trial programs, policymakers may
consider alternative strategies in managing low-risk populations or
might consider focusing their resources on higher-risk populations
instead. A rigorous causal inference analysis assists in actionable
data analysis, which explanations, correlations, or predictions may
not be able to provide.

3.2 Causal Analysis with Relational Data
Bringing data management and causality research together does
not stop at scalable causal analysis using database queries. The

traditional causal inference research primarily assumes the units
to be homogeneous (all having the same covariates, treatment, and
outcome variables) apart from some recent work on causal inference
when homogeneous units are connected in a network (e.g., [53]).
Therefore, new methods are needed to be developed to allow causal
analysis on complex ‘relational data’ where multiple tables contain
different types of entities and relationships among them.

3.2.1 Causal relational learning. In many applications, data analy-
sis is needed to be performed on large datasets with a number of
inter-related tables, often with primary keys-foreign keys and other
dependencies (e.g., hospitals - patients - providers - treatment -
insurance data, product/business - customers - review data, authors
- submissions - authorship - review data, or, students - enrollment -
courses - taught-by - instructors data). We have been working on ex-
tending Rubin’s and Pearl’s models for causal inference [55, 59] for
such relational data. The challenge with relational datasets is that
some crucial assumptions needed for most of the existing causal
inferences approaches (e.g., both treatment and outcome apply to
the same unit, only one treatment level, and no interference among
units) may no longer hold on them. As an example on students,
courses, and instructors, a treatment of a special training can be
applied to the instructors whereas the outcomes may be observed
on students in terms of their grades, and there is a many-to-many
relationship between the entities students and instructors through
enrollment and course offerings. To make the causal inference pro-
cess simpler and sound on relational data, in our work called CARL
(Causal Relational Learning) [60], we developed a declarative frame-
work to answer a number of possible causal questions on such
data. We showed the effectiveness of CARL on real datasets and
interesting causal questions. Here is an example.

Example 3.1. In [60], we studied the effect of authors’ prestige
on the scores they receive in single-blind and double-blind review
processes using a paper review dataset [54]. We observed that there
is a strong correlation between authors’ prestige (from the ranking
of the schools they belong to) and the review scores of the papers
co-authored by them in both single-blind and double-blind reviews,
which is probably as expected as papers from higher-ranked in-
stitutions are likely to be of good quality in general. However,
when we do causal analysis, there is a significant impact of their
prestige on the review scores for single-blind reviews and not for
double-blind reviews, which illustrates the difference between cor-
relation and causation, and may encourage conference organizers
to adopt double-blind review processes for the sake of fairness.
We also had other case studies in [60]: in the hospital-stay critical-
care MIMIC-III dataset [35], we studied the effect of not having
insurance on patient’s mortality and length of hospital stay, and in
another hospital-stay dataset (called NIS [30]), the effect of the size
of a hospital on affordability of healthcare.

3.2.2 Answering what-if and how-to queries with causal dependen-
cies of attributes. Hypothetical reasoning by answering what-if and
how-to queries is a well-studied problem in core database research
(e.g., [6, 17, 31, 38, 45]) with applications in decision-making and
risk assessment in businesses. These queries aim to understand how
(hypothetical) modifications of the input tuples affect the output
tuples and vice versa. For instance, suppose we have a database
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containing information about different products and reviews about
products. An analyst may ask a what-if query: ‘what would be the
effect of increasing the price of Asus laptops by 10% on their average
ratings?’, or, a how-to query: ‘how to maximize the average rating
of laptops by updating their price such that the new price is at most
100 away from its original value?’. In a recent work [22], as an ap-
plication of causal analysis on relational data described above [60],
we developed a novel probabilistic framework called HYPER for
hypothetical reasoning in relational databases, which accounts for
collateral effects of hypothetical updates in terms of causal depen-
dencies among attributes and tuples. For instance, changing states
in addresses can change tax rates, changing price of a product can
affect the ratings of several related products, and making changes
to one’s social network may affect one’s political inclinations. Such
causal dependencies can be modeled by a causal DAG [55] that cap-
tures the effects of exogenous variables by a probability distribution
on the endogenous variables. A ‘what-if’ question can be considered
as an intervention on this probabilistic causal model that changes
the distribution on the outcome variables, and in turn changes the
distribution on the query answers, whereas a ‘how-to’ question
can be modeled as an optimization problem over several satisfying
what-if queries. We used techniques from causal inference, proba-
bilistic databases, and solvers for integer programming to obtain
efficient solutions for what-if and how-to queries.

4 FUTUREWORK AND CONCLUSIONS
With the recent focus on responsible data science in data manage-
ment and ML/AI communities, explanations and causality are broad
and timely topics with many exciting future directions both within
data management research and of interdisciplinary nature. We are
trying to bridge the gap between our work on explanations and
causal inference, by computing causal explanations for aggregate
and non-aggregate queries. We are also exploring explanations for
other phases in data analysis like data cleaning, data labeling, and
private synthetic data generation, and explanations using Shapley
values [42, 62] for network data. For explaining wrong queries, we
are working on generating useful hints that would allow a user fix
a query. For causal analysis, we are working on treatment effect
modifiers to understand the effect of a treatment on different sub-
populations, and on the sensitivity of observational causal analysis
methods in terms of the availability of confounding covariates that
can affect the treatment assignment. In the long run, we envision
a system that can combine different notions of explanations and
causality with confidence measures, incorporate ‘common knowl-
edge’ from knowledge bases, and output explanations in a form
using natural language that is understandable and useful for deci-
sion making to a broad range of users. Combining explanations and
causality with classical database systems and theory research, we
will continue our pursuit toward effective, provable, interpretable,
and actionable data analysis approaches in the future.
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