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ABSTRACT
In 2011, we proposed PathSim to systematically define and com-
pute similarity between nodes in a heterogeneous information net-
work (HIN), where nodes and links are from different types. In the
PathSim paper, we for the first time introduced HIN with general
network schema and proposed the concept of meta-paths to sys-
tematically define new relation types between nodes. In this paper,
we summarize the impact of PathSim paper in both academia and
industry. We start from the algorithms that are based on meta-path-
based feature engineering, then move on to the recent development
in heterogeneous network representation learning, including both
shallow network embedding and heterogeneous graph neural net-
works. In the end, we make the connection between knowledge
graphs and HINs and discuss the implication of meta-paths in the
symbolic reasoning scenario. Finally, we point out several future
directions.
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1 INTRODUCTION
With the advent of different types of networked data, such as the
Web network, social networks, and bibliographic networks, there
was a huge demand for analytical tools on such data, on which the
traditional data mining and machine learning tools are no longer
applicable due to the violation of i.i.d. assumptions. Seminal papers
such as PageRank [34], HITS [26], and SimRank [23] set foot in
networked data and laid foundations on research in this direction.

These studies, however, focus only on networks with one type
of nodes and one type of links, which are true for Web and social
networks. But there are many complicated networks where the
nodes and links belong to multiple types. For example, in biblio-
graphic network (illustrated in Fig. 1), we have different types of
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nodes, such as authors, papers, venues, and keywords, and different
types of links, such as paper cites−−−−→ paper, author writes−−−−−→ paper, and

paper
published in
−−−−−−−−−−→ venue. It is critical to preserve these type infor-

mation, as they are associated with different semantic meanings.
The innovations of our PathSim paper [45] are three-folds: (1) we
proposed a general definition of heterogeneous information networks
(HINs) and introduced the concept of network schema to describe
the meta structure of an HIN; (2) we proposed meta-path to sys-
tematically capture the high-order relationship between any two
nodes in the networks, which is defined as a sequence of relations
between objects following the schema; and (3) we proposed a spe-
cific meta-path-based similarity measure called PathSim to quantify
the similarity between two nodes for a specific meta-path or a set
of meta-paths.

PathSim sets a solid foundation for HIN schema design and meta-
path-based algorithmic framework. Its impact has been across a
broad spectrum of research communities including database, data
mining, machine learning, artificial intelligence, network science,
and graph neural networks (deep learning), as well as diverse ap-
plications in e-commerce, biomedical domains, academic graphs,
and cybersecurity. Moreover, industry has embraced the concept
of HIN and/or meta-path in their products and systems including
Microsoft, Amazon, Meta, Alibaba, and Twitter to name a few.

When PathSim was first proposed 11 years ago, it still falls into
the feature engineering regime. Recently, representation learning,
which aims at automatically extracting “good” features from data,
receives wide attention in both academia and industry. Neverthe-
less, HIN and meta-path still play a critical role in this new era, due
to two reasons. First, with the development of all kinds of new IT
techniques, applications of HINs are expanding rapidly, covering
social media, e-commerce, healthcare, and cybersecurity. Second,
the concept of meta-path touches the fundamentals of how to un-
derstand the semantic meanings of relations between objects, and
it is frequently used as the basic semantic unit for proximity defini-
tion in heterogeneous network embedding and message passing in
heterogeneous graph neural networks.

Most of the HIN applications have a relative simple schema,
meaning with a small number of node types and link types, until the
era of knowledge graph (KG) comes (again). Interestingly, although
we mentioned the potential application of “knowledge network” in
our PathSim paper, the deeper discussions on the connections to
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Figure 1: Network schema of a bibliographic network, where
different shapes of nodes denote different node types and
labels on the links denote link types.

KG came much later [51]. KGs have a much richer network schema,
with hundreds or even thousands of relation types. In addition to
the flat structure which we call instance view between entities, KGs
could also have hierarchical structure which we call ontological
view between concepts or between entities and concepts [16]. KGs
enable the storage of knowledge in addition to data, and to some
extent blur the boundary of data and knowledge. Meta-path in this
setting naturally connects to the conjunction of predicates, and
enables symbolic reasoning in the world of representation learning,
pointing to a very exciting and promising new research frontier.

In this retrospective paper, we will review the development of
HINs and meta-path in Section 2, summarize the recent advances
on heterogeneous network embedding in Section 3 and heteroge-
neous graph neural networks in Section 4, discuss the connections
between knowledge graphs, symbolic reasoning and heterogeneous
information networks in Section 5, and finally conclude the paper
in Section 6.

2 HETEROGENEOUS INFORMATION
NETWORKS AND META-PATHS

As introduced in Section 1, earlier studies focus on homogeneous
information networks (in contrast to HINs). The main observation
by us was that many information networks do have multiple types
of objects and relations, and we proposed solutions to several spe-
cial types of HINs, such as RankClus for bi-typed networks [46]
and NetClus for HINs with star schema [48]. In PathSim, for the
first time, we formally gave the definition of a general HIN and in-
troduced the concept of network schema, which was inspired from
the entity-relationship (ER) graph from the database community.
With the network schema, which can be considered as a meta-level
graph with object types as nodes and relation types as edges, we
can explicitly write out what the object types are and what types
of (binary) relations are valid between object types. An example of
network schema can be found in Figure 1.

How to define similarity between objects in a network is a fun-
damental problem to tasks such as classification, clustering, and
similarity search. In the homogeneous network setting, a natural
assumption is that if two objects share lots of common neighbors
their similarity is higher. When coming to HIN setting, it is not

that straightforward, as the neighbors of an object come from dif-
ferent object types and are connected by different relation types.
For example, a paper can be cited by other papers, written by au-
thors, published in a venue, and contains keywords. Which of these
relations play a more important role in determining the similarity
between two papers? In addition, these relations can be composited
together to form a higher-order relation, which corresponds to a
path in the network schema, and thus called meta-path. For exam-
ple, an author can be connected to another author via a meta-path

author
writes−−−−−→ paper

written by
−−−−−−−−→ author, denoting the co-authorship.

Symmetric meta-path such as paper
cited by
−−−−−−→paper

cites−−−−→paper can
naturally capture the similarity between two objects.

When coming to the link prediction task (e.g., recommenda-
tion), meta-paths provide a systematic way to extract features for
a pair of nodes. For example, when deciding whether two authors
will become co-author in the future [42], we can examine the con-
nectivity according to meta-paths such as author writes−−−−−→ paper
written by
−−−−−−−−→ author (i.e., two authors are co-authors), author writes−−−−−→
paper

published in
−−−−−−−−−−→ venue

publishes
−−−−−−−→ paper

written by
−−−−−−−−→ author (i.e.,

two authors publish in the same venues), and author
writes−−−−−→ paper

contains−−−−−−−→ keywords
contained in−−−−−−−−−−→ paper

written by
−−−−−−−−→ author (i.e., two

authors publish papers sharing common keywords), and feed prox-
imity measures (e.g., count) defined on them as features to any
classification or learning-to-rank model. Lots of mining problems
on HINs then are reduced to meta-path selection problem [44, 47].

Applications and Deployment. In this line, there are a couple of
quite successful applications, such as co-author prediction [42],
citation prediction [30], and topic diffusion [15] in bibliographic
networks, recommendation [58], drug-target interaction prediction
[11], Android malware detection [57], and social network alignment
[60, 61]. A summary of our earlier work can be found in [43] and a
more thorough survey in this line can be found in [40].

3 HETEROGENEOUS NETWORK EMBEDDING
Feature engineering has gradually been replaced by automatic rep-
resentation learning, which is also the case in the network setting.
Inspired by the word2vec [32] algorithm that maps discrete words
into embedding vectors, several network embedding approaches
that map nodes into embedding vectors are proposed, such as Deep-
Walk [36], LINE [50], and node2vec [14]. These methods make the
assumptions that nodes in the same neighborhood (context) should
be similar to each other and thus share similar embeddings, which,
again, becomes much more sophisticated in the HIN case.

Similar to the roles played by meta-paths in the traditional min-
ing tasks, meta-paths provide a systematical way to define context
in HINs and thus the embeddings can be learned accordingly. Meta-
path2vec [7] is the most representative work in this direction. The
main idea of metapath2vec is to generate node sequences following
meta-path specific random walk, and the context of a node is the
nearby nodes along those sequences. Later, HIN2Vec [12] proposes
an embedding method that models the probability for a given pair
of nodes following a specific meta-path, which learns the embed-
dings not only for nodes but also for each meta-path. The idea of
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representing meta-path is closely related to the idea of representing
relations in KG that will be discussed in Section 5.

Applications and Deployment. With the power of embedding, the
applications of this line of research has been significantly enriched
and some of them have been deployed in industry-level systems.
Meta-path-based network embedding or in general heterogeneous
network embedding have been successfully applied in author identi-
fication [4], question and answering system [28], recommendation
system in Alibaba [3], recommendation in other settings [39], simi-
larity search in Microsoft Academic Graph [7], disease diagnosis
[17], malware detection [10], and time series prediction [24]. Twit-
ter has successfully deployed industry-scale embedding for twitter
HIN [9], which has significantly enhanced different downstream
tasks, including personalized ads ranking, malicious content detec-
tion, and account recommendation. Several more detailed surveys
can be found in [8, 55].

4 HETEROGENEOUS GRAPH NEURAL
NETWORKS

Network embedding approaches discussed in Section 3 are also
called shallow embedding, as it can be considered as a linear map-
ping from one-hot encoding vector. This causes two types of issues.
First, the number of parameters is extremely large for large net-
works, as each node is associated with a learnable vector. Second,
it cannot handle node (and edge) attributes that are typically as-
sociated with the network. For example, we usually have product
description in a product recommender system. This motivates the
design of Graph Neural Networks (GNNs), which applies deep learn-
ing to graphs. A representative algorithm is Graph Convolutional
Network [25], which transforms each node’s feature into a repre-
sentation vector following a message passing framework. More
concretely, in each layer of GNN, each node collects “messages”
from their neighbors, aggregates these messages, and then applies
a non-linear transformation to the aggregated message. The param-
eters are in these transformations which are shared across different
nodes. In the inference stage, it can easily handle nodes that are not
seen in the training stage, as long as its feature and neighborhood
information is given. It is obvious that the message passing frame-
work also heavily relies on the definition of “neighbors”, which is
straightforward in the homogeneous networks but much trickier
in the HIN case.

This line of research is still very active [41], and we introduce
several representative algorithms below. R-GCN [37] differenti-
ates the transformation for each relation type, which is associated
with a separate set of parameters and thus handles edge hetero-
geneity. HAN [53] extends the neighbors from 1-hop neighbors
to high-order neighbors that are defined by meta-paths. Given a

meta-path (e.g., author writes−−−−−→ paper
written by
−−−−−−−−→author), HAN ag-

gregates messages from that meta-path determined neighbors (e.g.,
co-authors) with a meta-path specific attention mechanism, fol-
lowed by a meta-path specific non-linear transformation. Then it
aggregates those embeddings again over different meta-paths via
a second-level attention mechanism. BA-GNN [22] applies a two-
level attention at both relation-level and node-level, and designs
a node-specific attention for each relation to make the GNN more

interpretable. HetGNN [59] takes special treatment for each type
of nodes, and then designs a node type-level attention mechanism
to aggregate embeddings from different node types. HGT [19] pro-
poses to use meta-relation as the basic message passing unit, which
can be considered as a length-1 meta-path that encodes both node
types and relation type information. A special parameter sharing
design is used for both meta-relation-based message passing and
meta-relation-based attention mechanism. More interestingly, by
reading out the importance score for each meta-relation, we can
detect the most important meta-paths.

Applications and Deployment. Since GNN based approaches are
in the big umbrella of representation learning, all of the applica-
tions mentioned in Section 3 can benefit from heterogeneous GNNs,
which are more powerful in general. For example, they have been
applied to cyber security [13], social event detection [2, 35], ru-
mor detection [27], and recommender systems [38, 56]. There are
also several successful industry-level deployments. For example,
HGT [19] has been successfully deployed in Microsoft Office Graph;
DHGAT [33] has been deployed to Taobao’s search service, which
is the largest e-commerce platform in China; and others have been
deployed in advertising business in Alibaba [31] and product rec-
ommendation in Amazon [63]. These approaches can also be used
to solve KG completion task (more details in Section 5), which aims
to infer the tail entity given the head entity and the relation, such
as to infer the capital city of France.

Benchamark Datasets and Code. The HIN community has ac-
cumulated several benchmark datasets for fair evaluation, such
as the Open Academic Graph (OAG), which are hosted on Open
Graph Benchmark Platform (OGB) [18]. Open source graph learning
libraries such as PyG1 and Amazon DGL2 have provided Heteroge-
neous GNN implementation workflow, which significantly boost
the research and applications in this direction. The recent book
[41], the two surveys [8, 55], and the BA-GNN paper [22] have
provided a comprehensive introduction to heterogeneous GNNs. A
comprehensive survey on HIN-based recommender systems can be
found in [29].

5 KNOWLEDGE GRAPHS, SYMBOLIC
REASONING, AND HETEROGENEOUS
INFORMATION NETWORKS

Knowledge Graph (KG) or Knowledge Base (KB) has been used in
expert systems to conduct symbolic reasoning in early days, which
is a collection of triples denoted as (ℎ, 𝑟, 𝑡) (head entity, relation, and
tail entity) as well as a graph with entities as nodes and relations as
edges. An example of KG can be found in Figure 2. More recently,
KGs become extremely important to provide external background
knowledge for many applications, such as search engine, question
and answering system, dialogue systems, and e-commerce. KG-
based reasoning such as KG completion receives wide attention.
Then a natural question is: what is the relationship between KG and
HIN? In our view, KGs are special cases of HINs, but with much
richer schema than most of the HINs that we have discussed so far.

1https://pytorch-geometric.readthedocs.io/en/latest/notes/heterogeneous.html
2https://docs.dgl.ai/en/0.6.x/tutorials/basics/5_hetero.html
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Figure 2: An example of KG, where nodes denote entities and
links denotes relations. (Figure is adapted from [16])

Similar to the HIN representation learning, KG community nowa-
days embraces representation learning and conducts symbolic rea-
soning in a differentiable way. Earlier KG embedding approaches
are shallow embedding methods similar to the ones mentioned in
Section 3, but provide embeddings for both entities and relations.
More precisely, relations are considered as algebraic operators that
transform the head entity to the tail entity. For example, in TransE
[1], a relation is considered as a translation operation, which is rep-
resented as a vector with the same dimensionality as the entities.
In DistMult [54], a relation is considered as a linear transformation,
which is represented as a matrix (simplified as a diagonal matrix in
DistMult). In RotatE [49], the entities are represented as vectors in
complex space, and a relation is considered as a rotation operation,
which is represented by a vector of rotation angles. Then the losses
are evaluated based on the projected tail entity and the ground
truth tail entity. Not surprisingly, some of the heterogeneous GNNs
can be applied to KG completion tasks directly, such as R-GCN [37]
and BA-GNN [22].

More interestingly, from logic perspective, a triple in KG is a
ground binary predicate, e.g., (𝑀𝑖𝑙𝑙𝑒𝑟, 𝑙𝑖𝑣𝑒𝐼𝑛,𝑈𝑆𝐴) corresponds to
liveIn (Miller, USA); a path in KG is a conjunction of predicates,

e.g., Thomas
liveIn−−−−→ USA

hasOfficialLanguage
−−−−−−−−−−−−−−−−→ English corresponds

to liveIn (Thomas, USA) ∧ hasOfficialLanguage (USA, English); and
a meta-path can be considered as the body of a logical rule, e.g.,

the meta-path person
liveIn−−−−→ country

hasOfficialLanguage
−−−−−−−−−−−−−−−−→ language

corresponds to the body in speakLanguage(𝑝𝑒𝑟𝑠𝑜𝑛, 𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒) ←
liveIn(𝑝𝑒𝑟𝑠𝑜𝑛, 𝑐𝑜𝑢𝑛𝑡𝑟𝑦) ∧ hasOfficalLanguage(𝑐𝑜𝑢𝑛𝑡𝑟𝑦, 𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒).

Applications. With this view, we can enhance the KG embedding
tasks by incorporating logical rules (e.g., UniKER [6]) and explore
new applications such as mining logical rules from KGs (e.g., RLogic
[5]). This direction is still very new, and will inspire us to define
new techniques for HINs.

6 FUTURE DIRECTIONS AND CONCLUSION
Where are we going from here? We list several challenging and
promising directions below.

• Scalability. For web-scale applications such as Microsoft
Office Graph and LinkedIn Economics Graph, how to make
meta-path-based approach more scalable is always a chal-
lenging question. In PathSim, we proposed partial mate-
rialization to address the issue. For heterogeneous GNNs,
methods such as smart sampling will be a promising direc-
tion.

• Deeper understanding of heterogeneity. From earlier days’
meta-path-based feature engineering to more recent meta-
relation/meta-path-based relation projection in heteroge-
neous GNNs, we have deeper and deeper understanding
on what heterogeneity implies. Recently, several studies
propose that heterogeneity could also mean the nodes in
the network belong to different geometric spaces [21, 52].

• Frommeta-path tometa-structure. From logic perspective, a
good meta-path should correspond to a high-quality logical
rule, where the rule body is a conjunction of predicates. Can
we extend it to model more complicated dependency? There
are some studies to extend meta-path to meta-structure [20]
or meta-graph [62], and there is plenty room to explore in
this direction.

In all, in the past decade we have evidenced the booming of research
on HINs in different research communities, the successful applica-
tions of HINs across different domains, and the deployment of HIN
techniques at industry-level systems. We are looking forward to
more exciting work in this area.
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