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ABSTRACT

Educational platforms are increasingly becoming AI-driven. Besides
providing a wide range of course filtering options, personalized
recommendations of learning material and teachers are driving
today’s research. While accuracy plays a major role in evaluating
those recommendations, many factors must be considered including
learner retention, throughput, upskilling ability, equity of learn-
ing opportunities, and satisfaction. This creates a tension between
learner-centered and platform-centered approaches. I will describe
research at the intersection of data-driven recommendations and
education theory. This includes multi-objective algorithms that
leverage collaboration and affinity in peer learning, studying the
impact of learning strategies on platforms and people, and automat-
ing the generation of sequences of courses. The paper ends with a
discussion of the central role data management systems could play
in enabling modern online education.
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1 INTRODUCTION

Education is a field of study that deals with the methods and prob-
lems of teaching and learning.1 and constitutes the cornerstone of
our societies. The focus in this paper is upskilling, i.e., the process
through which one acquires and improves skills. In particular, we
are interested in the research questions that arise on online edu-
cation platforms and how they can benefit from a combination of
data-driven approaches, education theory, and artificial intelligence
to provide everyone with the ability to advance their knowledge
and perfect their skills.

A brief history of education.[28]. Hunter-gatherers had to acquire
a vast knowledge of the plants, animals and landscapes on which
their survival depended. They had to develop skills in crafting and
using tools. They had to be able to take initiative and be creative in
finding food and tracking game. 10,000 years later, with the rise of
agriculture, and later of industry, people became forced laborers.
Land and business owners discovered that they could increase their
own wealth by getting other people to work for them. Successful
farming and industries required long hours of relatively unskilled,
repetitive labor, much of which could be done by children.
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1https://www.merriam-webster.com/dictionary/education

As nations becamemore centralized, employers saw education as
a way to create better workers and leaders saw schooling as means
of creating good patriots and soldiers. The most crucial lessons
were punctuality, following directions, tolerance for long hours,
and a minimal ability to read and write. Education was perceived
as community learning. Gurukula 2 is one famous such system
and was practised in India in the ancient times. It is a residential
schooling system whose origin dates back to around 5000 BC. The
students (called shishya) learn from the guru in groups. The es-
sential teachings were in language, science, mathematics through
group discussions, and self-learning. Additionally, shishya learn to
help the guru in his everyday life, including carrying out mundane
daily household chores.

The first degree-granting university is Al-Quarawiyinn in Mor-
rocco. It was founded as a mosque by Fatima al-Fihri in 857–859
and subsequently became one of the leading spiritual and educa-
tional centers of the Islamic Golden Age. It was incorporated into
Morocco’s modern state university system in 1963. The second is
Al-Azhar university in Egypt.

The idea and practice of compulsory public education developed
gradually in Europe, from the early 16th century to the 19th. By
the end of the 17th century, Germany, which was the leader in the
development of schooling, had laws in most of its states requir-
ing that children attend school. In China, in 1949, the Communist
authorities brought the educational system under national con-
trol. To favor China’s industrialization, they replaced most studies
in humanities and social sciences with engineering. The Chinese
Academy of Sciences was set up that same year. Education was
reformed and small engineering departments were amalgamated
into giant polytechnic institutes such as Tsinghua University. In
America, in the mid 17th century, Massachusetts became the first
colony to mandate schooling. In Australia, education was made
compulsory first in Victoria then Queensland and other regions
in the 19th century. In 1872 the Victorian Government passed the
Education Act 1872, which set up the colony’s public school system
that offered free, secular and compulsory education to its children.

Modern education. The same power-assertive methods that had
been used to make children work in fields and factories were quite
naturally transferred to the classroom. In some schools, children
were permitted certain periods of play (recess); but play was not
considered to be a vehicle of learning in the classroom. Two major
theories are at the basis of today’s education systems. Cognitivism
is a learning theory that emphasizes how information is received,
organized, stored and retrieved by the mind. It uses the mind as
an information processer, like a computer, and looks beyond ob-
servable behavior, viewing learning as internal mental processes.
Constructivism on the other hand, is a theory in education which

2https://en.wikipedia.org/w/index.php?title=Gurukula&redirect=no
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posits that learners do not acquire knowledge and understanding by
passively perceiving it within a direct process of knowledge trans-
mission, rather they construct new understandings and knowledge
through experience and social discourse, integrating new infor-
mation with what they already know (prior knowledge). These
theories lead to emphasizing differences between the need for indi-
vidual work versus team work, the focus on mentoring approaches,
and the confrontation of following a fixed program versus letting
students find their way.

Today’s work organization necessitates the development of dif-
ferent skills, ones that enable people to be flexible and adaptable
in different roles or in different career fields. Specific hard skills
and mastery of particular skill sets, with a focus on digital literacy,
interaction and collaboration, and managing others, are increas-
ingly in demand. Online education platforms such as Coursera and
Udemy, have become a destination for individual upskilling. These
platforms play a key role in mediating the success of individuals’
education as well as their careers by providing education services.
AI has become an enabler of education services (see for instance
OntoSIDES, the platform developed in Grenoble to serve medical
students and professionals [42]).

2 NEEDS AND CHALLENGES

The need for upskilling in various domains contributed to the rise
of online education platforms. Career advancement is considered a
right in physical workplaces, but it is still in its infancy online [44].
The next-generation education platforms will need to encompass
the ability to learn alone and from others. Several steps must to be
taken to enable that: understand how social interactions such as
affinity between individuals impact knowledge acquisition in peer
learning [22]; understand how teaching strategies that compose
learningmaterial of varying difficulty levels, impact skill acquisition
and learner’s performance and human factors interact with platform
goals [37]; provide the ability to set one’s goals and automate the
composition of teaching material to address those goals [40].

Needs. Learning and upskilling are two human factors that have
been extensively studied online [20, 21, 31, 41, 57]. The study of
humans factors is a recent trend with various contributions that
account for individual factors such as motivation [45, 46], mental
stress [34], and fatigue and boredom [12, 30, 50], as well as collabora-
tive factors such as affinity and critical mass in teams [49]. Human
factors can be computed implicitly by observing people and their
interactions, or explicitly by asking them to provide answers via
well-established questionnaires.

On peer learning. Online collaboration enables powerful and ver-
satile strategies to improve knowledge of individuals and promote
learning. For example, online critiquing communities,3 social Q&A
sites,4 and crowdsourcing platforms5 investigate how collaboration
can promote knowledge and skill improvement of individuals. It
has been shown that the increase in learning one expects from
collaboration yields fruitful coordination and higher quality con-
tributions [3, 4]. For instance, in online fan-fiction communities,

3https://movielens.org/
4http://quora.com/
5https://www.figure-eight.com/

informal mentoring improves people’s writing skills [23]. Coordina-
tion between like-minded individuals improves collaboration. This
has been verified for crowdsourced text translation [47] where, in
addition to skill complementarity, team members’ affinity, in terms
of age and location, lead to higher quality translation. In our work
on peer learning [22], we propose to explore how affinity between
group members improves peer learning, and we address modeling,
theoretical, and algorithmic challenges.

On learning strategies. In physical workplaces, upskilling strate-
gies are regularly implemented and tested [18, 32, 35]. Online, a
few studies focused on the role of difficulty and learners’ ability
to complete tasks in improving their skills [25]. Usually, such ap-
proaches require additional human cost to build training material
or give feedback to learners. Moreover, there is little understanding
of the interplay between achieving high learner performance, a.k.a.,
quality control and cost reduction, a platform-centric goal, and
improving learners’ skills and satisfaction, a learner-centric goal. In
our work on studying learning strategies [37], we combine education
theory with large-scale user studies to examine the impact of com-
posing teaching material on skill acquisition, quality of contributed
content, and learner performance.

On education pipelines. The current best practices of composing
teachingmaterial offer a continuous and consistent process which is
mostly done under the guidance of academic advisors. It is needless
to say that such a fully manual approach is expensive and inherently
not scalable. In contrast, a fully automated approach [5, 14, 15, 24,
43] may require significant historical data to learn personalized
models. Our work on course planning [40] formalizes a sequence
generation problem that is sensitive to the ordering and interleaving
of items, is personalized and captures progression in task achievement,
as well as satisfies a multitude of complex constraints.

There is a need for new research at the intersection

of Data Management, Education Theory, and Machine

Learning

Challenges. Research on upskilling and online education strate-
gies requires to launch large-scale user studies to test and validate
different solutions. Traditionally, such studies were conducted by
gathering subjects in a physical space. Going online calls for a
principled approach for sampling subjects, building control and
treatment groups, and developing a reproducible experimental pro-
tocol. In all our studies, we adopt the same protocol wherein a
pre-assessment of subject skills is conducted first by asking sub-
jects to complete a set of tasks and aggregating their skills. That
is followed by deploying the actual experiment after which a post-
assessment of subjects’ skills is done with another set of tasks. The
difference between post-assessed and pre-assessed skills constitutes
a subject’s upskilling.

Gathering data about human subjects is Europe is strictly reg-
ulated by the General Data Protection Regulation (GDPR) 6 that
requires to inform subjects of the use of their data, where their data
is stored and how secure it is, with whom it is shared during the
course of the experiment, and for how long it is kept in the system.

6https://gdpr-info.eu/
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This necessitates to work with data protection lawyers to establish
consent forms that are general enough to cover all types of data
gathered as well as all the treatments such data will go through.
Subjects of our experiments sign such a consent form and have a
right to pre-emption, i.e., withdrawal from the experiment, and of
asking that their data be permanently deleted.

One of the biggest challenges is to manage human

volatility and the evolving nature of humans factors

One major challenge we need to deal with when conducting
large scale user studies is to manage human volatility. Since online
subjects have a pre-emption right, they may withdraw any time.
This necessitates to develop reactive approaches such as incremen-
tal optimization to make sure other subjects are not idle for too
long.

Another challenge is the many confounding factors due to fluid
boundaries between physical and virtual worlds. While user studies
are conducted in the virtual world, experiment subjects live in the
physical world. Consequently, checking hypotheses via experimen-
tal deployment in the virtual world, has to be done carefully.

Finally, the ability to conduct longitudinal observational studies
that follow human factors over time is conditioned by the devel-
opment of back-ends for the management of human factors that
will enable the creation of experimental narratives by making the
results of user studies persistent and comparable.

3 REVIEW OF SOMEWORK

3.1 Peer learning

Peer learning is a form of cooperative learning that relies on ex-
plicit/implicit social interactions where one or more individuals act
as peer teacher(s), and others experience skill improvement, a.k.a.
upskilling. In our work [22], we explored how affinity impacts
learning potential in teams. We formalized learning potential and
affinity structures and developed novel team formation algorithms
with provable theoretical guarantees.
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Figure 1: Skill improvement with and w/o affinity in LpA

Team formation in online communities [7, 8, 36, 47, 49] is often
stated as: given a set of individuals and tasks, form a set of groups
for the tasks that optimize some aggregated utility subject to con-
straints such as team size, maximum workload etc. Utility can be
aggregated in different ways: the sum of individual skills, their
product, etc [8]. Team formation is combinatorial in nature and

proposed algorithms solve the problem under different constraints
and utility definitions (e.g., [36]). Unlike these problems, we study
how to form teams with the goal of maximizing peer learning under
different affinities.

Our first contribution is to present principled models to formalize
peer learning and affinity structures. The learning potential of
a peer from a more skilled peer is naturally defined as the skill
difference between the latter and the former [3, 4]. We use that to
formulate two common learning models (see Figure 2): LpA where
each member learns from all higher skilled ones, and LpD where
the least skilled member (resp., the most skilled) learns from (resp.
teaches to) all others.

Figure 2: Two formulations of learning potential

Affinity, on the other hand, depends on the application and can
be expressed using common socio-demographic attributes or more
generally, using models that capture psychological traits such as
the Myers-Briggs test [11]. We study our two learning models in
conjunction with two common affinity structures (see Figure 3):
AffD where group affinity is a function of all pairwise affinities
between its members, and AffC where it depends on affinities with
a moderator.

Figure 3: Two formulations of affinity

Different combinations of learning models and affinity structures
capture different real-world cases. For instance, for fact-checking
tasks, each member learns from those who better know the facts,
and the two least collaborative individuals must get along. For fact-
learning tasks, each member learns from those who better know
the facts, and all members must get along with the moderator. We
investigate these two kinds of tasks in our experiments and observe
that AffD LpA best represents groups whose goal is to check facts,
while AffC LpA is more appropriate for fact-learning.
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Our second contribution is to study the formalized models system-
atically and present our theoretical findings. Our original problem
formulations are bi-objective optimizations, with the goals to build
𝑘 equi-sized groups over a set of 𝑛 members that maximize both
learning potential and affinity. Interestingly, we prove that both
learning potential variants, LpD and LpA, can be solved in poly-
nomial time by sorting individuals on their skills, however, the
problems become NP-hard when affinity and group size constraints
are considered. Therefore, our solution first finds 𝑘 groups that
yield the highest possible learning potential value and then trans-
forms our two-objective problem into a constrained optimization
that looks for 𝑘 groups that optimize affinity, with that learning
potential value as a constraint.

Figure 4: Our technical contributions on peer learning with

affinities.

Our third contribution is algorithmic. We present a suite of scal-
able algorithms that form groups to maximize learning potential
and optimize affinity within constant approximation factors. To at-
tain their approximation guarantees, these algorithms assume that
affinity satisfies triangle inequality [36]. Many similarity/distance
measures such as Jaccard distance and edit distance are known
to satisfy metric properties and these properties are usually as-
sumed to design algorithms with guarantees [36]. Our technical
contributions are summarized in Figure 4.

3.2 Learning strategies

In our work on learning strategies [37], we study how composing
learning material of various difficulty levels impacts the inher-
ent skill improvement of humans and their overall performance.
We focus on a common class of tasks referred to as “Knowledge
and Comprehension tasks” in Bloom’s taxonomy of educational
objectives [10, 33] such as image classification, labeling, editing
grammar&spelling mistakes, and speech transcription.

There are two education theories underlying our framework.
First, Zone of Proximal Development (ZPD) [56] is a well-known
theory that defines three zones of tasks with different skill improve-
ments; (1) A learnable zone that contains tasks a person can learn
how to complete when assisted by a teacher or peer with a higher
skill set, (2) a flow/comfort zone of tasks that are easy and can be
completed with no help, and (3) a frustration zone of tasks that
a learner cannot complete even with help. Second, the Flow the-
ory [16] states that people are able to immerse themselves in doing
things whose challenge matches their skills. Figure 5 integrates
the two theories and illustrates their relationship with respect to
the task challenge, the subject skill, and the affect state [9, 53].
In [9], the authors claim that to improve skills, the tasks should
be either in the flow/comfort zone, or in the learnable zone on the
condition that there is some “scaffolding” to help subjects complete
tasks that are a bit more challenging for them. This results in skill

Figure 5: Zone of Proximal Flow [9], which combines the

results of Zone of Proximal Development and Flow Theory.

Scaffolding tasks helps learners improve their skills by com-

pleting more challenging tasks (the dotted line).

Figure 6: Learning strategies: Given a learner 𝑟 and a set of

tasks𝑇 , generate a sequence of 𝑘 tasks to maximize learning.

improvement (the dotted line). Our formalization builds on that
and defines the learning potential for both individual tasks (mainly
in the flow/comfort zone) and collaborative tasks (mainly in the
learnable zone).

Our question is illustrated in Figure 6. We have a set 𝑇 of tasks
of varying difficulty levels, each task receives 𝑁 (=3 in the figure)
contributions. At each iteration, some tasks have already been
completed by some subjects.

Given a learner 𝑟 and the batches of tasks completed by 𝑟 up to
iteration 𝑖: 𝐵1 . . . 𝐵𝑖 , find a batch 𝐵 of at most 𝑘 tasks to assign to
𝑟 at iteration 𝑖 + 1 such that it maximizes the learner’s upskilling.
Here, learning potential is the maximum possible improvement
in 𝑤 ’s skill. We assume that subject skill and task difficulty are
uni-dimensional and that the skill of a subject either remains the
same or increases as time passes [38, 55].

Our challenges are: How to choose an appropriate batch of 𝑘
tasks where a subject can see previous higher-skilled subjects’ con-
tributions? How to order the 𝑘 tasks so that the subject’s skill
improvement is maximized? How to reconcile subject-centric and
platform-centric goals?
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Our problem can be solved as a knapsack problem and top-k
search can be computed linearly in the number of tasks.

Figure 7: Experimental protocol for deploying our learning

strategies for individual tasks

We devise learning strategies which build on two ideas: (1) task
ordering, and (2) interleaving individual and collaborative tasks.
We study their impact on subjects’ performance and skills. Previous
work found that both task ordering and task types impact contri-
bution quality and completion time [13, 17, 19]. That is the basis
for designing our four task orderings: NoOrder, a baseline where
tasks are in no particular order; TotalOrder, where tasks are pre-
sented in increasing difficulty level, PartialOrder, a variation of
TotalOrder, where tasks are grouped according to their difficulty
and groups presented in increasing difficulty; and Alternate, that
groups tasks and presents them in alternating difficulty levels.

Figure 8: Individual tasks

Figure 9: Results of learning strategies for individual tasks

Our subjects go through the following protocol (see Figure 7). A
subject takes a pre-assessment test following which the subject is as-
signed to a treatment group and takes the corresponding treatment,
i.e., task ordering. After completing the treatment test, the subject
takes the post-assessment test, which is similar to the pre-test but
with different questions. Upskilling is computed as a difference
between post-assessed and pre-assessed skills.

We empirically studied the impact of learning strategies applied
to individual tasks. The task is simply to identify the specified bird
type given a pair of bird images (see Figure 8). We conducted two
variants of this experiment: one with 12 tasks and another with
120 tasks. Results are reported in Figure 9. We observe that all
treatments are effective in helping learners improve their skill. In
particular, Alternate yielded the highest average skill improve-
ment in both 12-task and 120-task experiments. Further, it is the
best strategy for both novice and intermediate learners while there
is a ceiling effect for expert learners.

We further examined the learners’ upskilling and performance in
a series of interleaved collaborative tasks (CTs) and individual tasks
of text editing (See Figure 10). We asked subjects to correct English
spelling and grammar errors. In the collaborative version, they can
see answers of higher-skilled subjects and have the option to edit the
current answer. We asked subjects to take a pre-assessment test to
measure their English skills and based on the test result, they were
classified as novice-intermediate or expert. Novice-intermediate
subjects then work using either the CTs only strategy or the inter-
leaved strategy. Lastly, novice-intermediate subjects take a post-test.
Our experiments confirmed the observations we had in the indi-
vidual task experiment. Skill improvement is significantly higher
in the interleaved case compared to the case where subjects had
CTs only. The higher skill improvement in the interleaved case
may be attributed to the fact that individual tasks are similar to
CTs, which may have contributed to the learning of the subjects.
Moreover, in the case of CTs only, since there are already answers
from expert subjects, the novice-intermediate subjects may have
become under-challenged, resulting in a lower skill improvement.
Throughput is also observed to be higher in the interleaved case.
We can conjecture that as skills improve, subjects become more
proficient and faster.

Our experiments show, with statistical significance, that the
learning strategies are effective in helping subjects improve their
skills. More specifically, Alternate yields the highest average skill
improvement for individual tasks, and subjects produce the highest
quality contributions, best task throughput, and highest skill im-
provement, when collaborative and individual tasks are interleaved.
We can hence conclude by saying that hypotheses verified in phys-
ical workplaces also apply in virtual marketplaces: the alternation
of task difficulty yields the highest upskilling and throughput.

3.3 Education pipelines

In our work on automating education pipelines [40], we propose
a computational framework to automate the generation of course
plans that is applicable to a variety of domains. Scenarios where
in-person education is rare and costly and platforms that need to
scale up the process to thousands of items such as MOOCs [51] are
ideal for our problem.
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Figure 10: Deployment of interleaved individual and collaborative tasks

Consider an aspiring youngster wanting to jump-start her career
as a data scientist right after her B.S. in Computer Science, or a
seasoned IT analyst with years of experience in industry wanting to
join the bandwagon of data science to change her career focus. For
both individuals, designing a course plan is a complex and intellec-
tually demanding task with the goal of managing their upskilling
goal, and satisfying requirements that are compatible with their
experience and background.

Our example calls out the following requirements in course plan-
ning - (1) Satisfying Hard Constraints: Plans must match these
constraints (e.g., # core vs. # elective courses, as well as prerequisite
requirements). (2) Maximizing Soft Constraints: These are of two
kinds: (a) Designed plans must maximize the coverage of the top-
ics/themes a learner wishes to acquire (e.g., recommend courses on
clustering and neural networks); (b) Recommended sequences must
adhere as much as possible to a “template” provided by a domain
expert to reflect ideal permutations of core and elective courses.

Our first contribution is to formalize a constrained sequence
generation problem. We model a Constrained Markov Decision
Process [6] where a state is a course, an action generates a tran-
sition that adds one or more course, and a “reward” is associated
with every transition to quantify how well the action satisfies the
hard constraints, and maximizes the soft constraints. Designing a
reward function that captures all these nuances is a complex and
intellectually demanding data science task.

Our second contribution is to present a computational frame-
work, that is inspired by Constrained Reinforcement Learning (C-
RL) [2, 27], specifically Weighted RL [26], but non-trivially adapts
it to handle multiple hard and soft constraints. Essentially, we pro-
pose a weighted reward function to transform the Markov process
to an unconstrained process that captures multiple hard constraints
as well as maximizes the actual value by maximizing the soft con-
straints. We prove that our designed reward function satisfies all
hard constraints. We adapt the popular model-free on-policy algo-
rithm SARSA [52] for updating the 𝑄 values of the states, that is
known to converge faster and with fewer errors [48].

Our third contribution is an extensive evaluation using two real
datasets to plan courses for 4 different sought after degree programs.
Our results convincingly demonstrate that: (a) Our algorithm gen-
erates course plans that are comparable in quality to handcrafted

ones, and are superior to fully automated sequence-aware recom-
mendations (e.g., OMEGA [54]) and to next-step recommendation
in EDA [39]; (b) based on user studies involving 25 data science com-
putational track (DS-CT) major students, our course plans achieve
highly comparable satisfaction scores w.r.t. handcrafted gold stan-
dards designed by domain experts; (c) the policy learned by our
solution, RL-Planner, for the M.S. DS-CT is transferable to a dif-
ferent degree program in M.S. Computer Science inside the same
university and vice versa; (d) our algorithm is robust to the different
parameters, takes reasonable time for learning the policy, and can
therefore make interactive recommendations. More specifically, our
experiments address the following questions:

Q1. How well RL-Planner performs in comparison to base-
lines?

Q2. How do end users (students or travelers) compare recom-
mendations by RL-Planner to gold standards?

Q3. How effective is RL-Planner for transfer learning?
Q4. How robust is RL-Planner w.r.t. different parameters?
Q5. How scalable is RL-Planner?

To answer Q1 and Q4, we present average scores over 10 runs.
For Q2, we run a user study and measure user satisfaction in a 1− 5
scale. We describe two case studies to answer Q4. The score of each
recommendation is computed as the highest distance with each
ideal composition 𝐼 ∈ 𝐼𝑇 to capture satisfaction of soft constraints.
Finally, we study running time to answer Q5.

We consider datasets extracted from the NJIT (Univ-1) and Stan-
ford (Univ-2) websites. Univ-1 (NJIT) contains 1216 courses com-
prising 126 degree programs through 6 professional schools and
colleges. We focus on 3M.S. programs: Data Science-Computational
Track (DS-CT), Cybersecurity, and Computer Science (CS). The hard
constraints consider the number of core and elective courses while
satisfying the gap between a course and its prerequisites. Univ-2
(Stanford) contains 3742 courses for 4 different departments re-
lated to data science. Each course has a title, department number,
department code, course description, prerequisites, minimum and
maximum number of required units. We focus on the M.S. Data Sci-
ence (DS) program. The hard constraints are designed considering
the number of units constraints in the following 6 sub-disciplines
while satisfying prerequisites gaps: a. Mathematical and Statistical
Foundations; b. Experimentation; c. Scientific Computing (includes
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software development and large-scale computing); d. Applied Ma-
chine Learning and Data Science; e. Practical Component; f. Elective
course in the data science. To form topic vectors, we extract nouns
from course names and remove stopwords. In Univ-1, we get 60,
61, and 100 distinct topics for DS-CT, Cybersecurity, and CS. We
obtain 73 topics from Univ-2.

We have two baselines. Manual Gold Standard, a handcrafted
sequence of courses designed by academic advisors for the relevant
degree programs at Univ-1. For Univ-2, we obtain the gold standard
from the website of the degree program. The gold standard scores
are 10 for Univ-1 and 15 for Univ-2, since the ideal course plans
consist of 10 and 15 courses, respectively. Automated Solutions,
one that performs sequence mining, and the other that adapts
exploratory data analysis (EDA), cannot be adapted to transfer
learning.

Figure 11: RL-Planner vs OMEGA, EDA, and Gold Standard

Our results demonstrate that: (a) Existing fully automated ap-
proaches are not capable to adapt to sequence recommendations
with complex constraints. Both OMEGA [54] and EDA are unable to
generate course plans that satisfy hard constraints most of the time,
RL-Planner generates high quality course plans that are compara-
ble to handcrafted gold standards; (b) Based on user studies involv-
ing 25 data science computational track (DS-CT) major students,
RL-Planner is highly comparable w.r.t. handcrafted gold standards.
RL-Planner gets 3.39 user satisfaction score on average out of 5
compared to 3.74 for gold standards. (c) RL-Planner is effective in
transferring policies between different Master’s programs, whereas,
the fully automated baselines cannot; (d) RL-Planner takes reason-
able time for learning the policy, and is capable to make interactive
recommendations in real time.

We compare the plans generated by RL-Planner to baselines
OMEGA, EDA and to the fully manual gold standard. Figure 11
presents the average scores where a score is computed as a distance
from the interleaving template to reflect howwell the soft constraint
is satisfied. We observe that RL-Planner generates plans that are
higher in score than the fully automated baselines for all cases while
being very close to the gold standard. This confirms the suitability
of reinforcement learning for training education pipelines under
constraints.

4 OPEN RESEARCH QUESTIONS

We are now ready to define AI-powered data-driven education:

AI-powered data-driven education is the use of data and

AI algorithms to devise learning strategies and study

their impact on humans, and on platforms

We conclude with a discussion of three open questions.
OQ1: Peer recommendation. This question relates to finding

peers who serve as teachers and help one upskill. This is different
from people recommendation [1] as in dating systems where the
recommendation is reciprocal. Peer recommendation is asymmetric
and concerns a learner and one or multiple teachers. The exact
identity of teachers need not be fixed. Rather, it is the profile of
recommended teachers that needs to be determined and how they
complement a learner’s profile. This could be powered by a profile
management database that contains profile descriptions rather than
specific individuals. Once a profile is recommended to a learner,
it could be used to find actual subjects on different platforms that
best fit that profile. This will help handle human volatility, i.e.,
the fact that some subjects may or not actually commit to the
experiment. By managing profiles, the systemwill be able to quickly
identify a replacement, especially if the task at hand is collaborative
and involves other learners and teachers, as in team formation in
Section 3.1, who cannot be left idle for too long.

OQ2: Compose humans and learningmaterial.This question
relates to the ability to combine teaching material, in the form of
individual or collaborative tasks, with humans. This composition
must incorporate learning strategies as described in Section 3.2. The
challenge here is to express optimization problemswhose solution is
an education pipeline that implements a strategy that best combines
tasks of various difficulty levels. Reinforcement learning appears
to be a relevant approach here where a state is a task/learning
material, an action is the addition of that material to the pipeline,
and a reward captures a learning strategy. The deployment of these
strategies in practice needs to account for other human factors, in
particular, fatigue and boredom [29]. Capturing those factors while
people are consuming learning material, and feeding them into the
composition process is an open research question.

OQ3: Learner feedback. The last question pertains to providing
learners with the ability to express their goals in a declarative
manner as shown in Section 3.3. This must be complemented with
the design and deployment of longitudinal observational studies of
human factors over time to observe individuals as they consume
learning material, quantify their performance and growth, and
adapt optimization goals and solutions accordingly. Leveraging ML
approaches will enable learning profiles dynamically. The question
of revisiting optimization goals would require to rethink the way
algorithms adapt to this dynamicity by learning the relationship
between profiles and needs over time. This has the potential to
impact new domains that go beyond education thereby widening
the scope of "AI-powered and data-driven" research.
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