
Big Graphs: Challenges and Opportunities
Wenfei Fan

Shenzhen Institute of Computing Sciences, University of Edinburgh, Beihang University
wenfei@inf.ed.ac.uk

ABSTRACT
Big data is typically characterized with 4V’s: Volume, Velocity, Va-
riety and Veracity. When it comes to big graphs, these challenges
become even more staggering. Each and every of the 4V’s raises
new questions, from theory to systems and practice. Is it possible
to parallelize sequential graph algorithms and guarantee the cor-
rectness of the parallelized computations? Given a computational
problem, does there exist a parallel algorithm for it that guarantees
to reduce parallel runtime when more machines are used? Is there
a systematic method for developing incremental algorithms with
effectiveness guarantees in response to frequent updates? Is it possi-
ble to write queries across relational databases and semistructured
graphs in SQL? Can we unify logic rules and machine learning,
to improve the quality of graph-structured data, and deduce asso-
ciations between entities? This paper aims to incite interest and
curiosity in these topics. It raises as many questions as it answers.

PVLDB Reference Format:
Wenfei Fan. Big Graphs: Challenges and Opportunities. PVLDB, 15(12):
3782 - 3797, 2022.
doi:10.14778/3554821.3554899

1 INTRODUCTION
It is increasingly common to find real-life data modeled as graphs,
which represent entities as vertices and relationships between en-
tities as edges. Indeed, graphs have found prevalent use in online
recommendation, social network analysis, transportation networks,
transaction analysis, link prediction, association deduction, event
prediction, fraud detection and drug discovery, among other things.
Graphs have made an important source of big data.

Big data is typically characterized with 4V’s, namely, Volume,
Variety, Velocity and Veracity. Already hard for structured relational
data, these issues are even more intricate for semistructured graphs.
Each and every of these issues introduces new challenges, calls for
new techniques, and demands a departure from traditional theory,
systems and practice. At the same time, with the new challenges
come new opportunities for researchers and practitioners.

To illustrate the challenges and opportunities, for each of the 4V
issues, this paper picks and discusses a couple of research topics.

(1) Volume: Parallel computation. Consider a class Q of graph
pattern queries. Given a query Q ∈ Q and a graph G, we want to
compute the setQ(G) of all matches of patternQ in graphG . When
pattern matching is defined in terms of subgraph isomorphism, it is

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 12 ISSN 2150-8097.
doi:10.14778/3554821.3554899

intractable even to decide whether Q(G) is empty (cf. [83]). In the
real world, graphs easily have billions of vertices and trillions of
edges, e.g., the social graph at Facebook and the transaction graph
at Alibaba Group. It is often prohibitively costly to compute Q(G)
in such a graph, even when we define pattern matching in terms of
graph simulation [143], which takes quadratic-time [96].

An industrial approach to coping with the volume of big graphs
is parallel computation. Several parallel graph systems have been
developed, e.g., Pregel [135], PowerGraph [87, 131], Trinity [165],
GRACE [187], Giraph++ [178], GraphX [88], and Galois [36, 148].

However, there are at least two questions about the approach.
Vertex-centric vs. graph-centric. Most of the systems adopt vertex-
centric models [87, 131, 135]; users need to “think like a vertex"
when programming. While a large number of conventional sequen-
tial algorithms are already in place, to program with the systems,
one has to recast the existing algorithms into vertex-centric ones.
The recasting is nontrivial for, e.g., algorithms for graph simulation
[96]. Moreover, the systems provides no guarantee on the correct-
ness and even the termination of vertex-centric computations.

We argue for a graph-centric model as an alternative. It simplifies
parallel programming from “think like a vertex" to “think like a
graph", and from “think parallel” to “think sequential”. The idea
is to parallelize existing sequential algorithms across a cluster of
machines. Under a generic condition, it guarantees that the paral-
lelized computation converges at correct answers as long as the
sequential algorithms are correct. For computation problems such
as graph simulation, the graph-centric model works better than the
vertex-centric ones in both efficiency and ease of programming.

A graph-centric model was proposed by GRAPE [77, 78] (GRAPh
Engine). GRAPE has been deployed and extended at Alibaba Group,
and supports 90+% of daily graph operations there [56]. It is re-
named as GraphScope and is open source at Github [1].
Parallel scalability. The assumption behind the parallel systems is
the parallel scalability [118]: the more machines are used, the less
the parallel runtime is. Unfortunately, the assumption may not hold.
For example, Single-Source Shortest Path (SSSP) is “essentially not
scalable with an increasing number of machines” [197]. This is
because parallel graph systems typically adopt the shared-nothing
architecture. The more machines are used, the heavier the communi-
cation cost is incurred. Worse yet, for some computation problems,
e.g., graph simulation, no parallelly scalable algorithm exists [75].

Then, what graph computation problems are parallelly scalable,
i.e., they admit such algorithms? An interesting observation is that
such algorithms exist for the intractable problem of subgraph iso-
morphism, but not for the quadratic-time problem of subgraph
simulation, in contrast to the classic polynomial hierarchy [151].

(2) Velocity: Incrementalization of graph algorithms. Real-
life graphs are often frequently changed by small updates. Sup-

3782

https://doi.org/10.14778/3554821.3554899
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3554821.3554899

pose that we have computed the matches Q(G) of a pattern Q in a
graph G. When G is updated by ∆G, we need to compute matches
Q(G ⊕ ∆G) in the updated graph G ⊕ ∆G for, e.g., fraud detection.
A batch approach is to recompute Q(G ⊕ ∆G) starting from scratch,
which is costly for big G. Another approach is by means of an
incremental algorithm A∆ that takes Q , G, Q(G) and ∆G as in-
put, and computes changes ∆O to the old output Q(G) such that
Q(G⊕∆G) = Q(G)⊕∆O , by minimizing unnecessary recomputation.
When ∆G is small, update ∆O to Q(G) is often small as well, and
the incremental approach is often more efficient than the batch one.

There are two questions about incremental computations.
Effectiveness measure. What is the criterion for measuring the ef-
fectiveness of an incremental algorithm A∆? A traditional charac-
terization is by means of a notion of boundedness proposed in [177]
and extended to graphs in [74, 155]. It measures the cost of A∆ in
|CHANGED| = |∆G |+ |∆O |, the size of the changes in the input and
output. AlgorithmA∆ is called bounded if its cost can be expressed
as a function of |CHANGED| and |Q |. The incremental problem for
Q is bounded if there exists a bounded A∆ for Q, and unbounded
otherwise. However, the notion of boundedness is too strong: very
few bounded incremental algorithms are known and worse yet, a
variety of problems have been proven unbounded [71].

We propose a notion of relative boundedness [58, 71]. It measures
the speedup of an incremental algorithm A∆ relative to a batch
counterpart A for its computation problem. A variety of practical
incremental algorithms can be shown relatively bounded.
Incrementalization. How can we develop incremental algorithms
with effectiveness guarantees? Incremental algorithms are hard to
write and analyze. While a large number of batch graph algorithms
have been developed, few incremental graph algorithms are yet in
place, and even fewer can provably guarantee that they outperform
their batch counterparts for small ∆G [71]. These call for systematic
methods for developing effective incremental algorithms.

We propose to incrementalize existing batch algorithms [64,
71, 73]. For a query class Q, we pick a batch algorithm A that
has been verified effective after years of practice. We deduce an
incremental algorithm A∆ from A, by reusing the original logic
and data structures ofA as much as possible, rather than to design
A∆ starting from scratch. The users of A can easily understand
howA∆ behaves w.r.t. different inputs after practicingA for years.
Moreover, when A satisfies certain conditions, one can show that
the deduced A∆ is both correct and bounded relative to A.

(3) Variety: Queries across relations and graphs. A question
raised by our FinTech collaborators asks how they can write queries
across a relational database D and a schemaless graph G, in SQL?

The need for studying this is evident. While business data often
resides in relational databases, it is increasingly common to find
graph-structured data. With this comes the need for synthesizing
data across D and G, to correlate their information pertaining to
the same entities. After all, the added value of big data comes from
diverse data sources. Moreover, practitioners often want to write
the queries in SQL after practicing SQL for decades.

Nonetheless, with the practical need come two questions.
Heterogeneous entity resolution (HER). How can we accurately de-
termine whether a tuple t in D and a vertex v in G refer to the

same real world entity? Unlike relational data, real-life graphs may
not come with a schema. Even in the same graph, entities of the
same “type” may have heterogeneous topological structures, and
their properties are often linked via paths, rather than as attributes.
While there has been a large body of work on entity resolution (ER),
HER across relations and graphs remains unsettled.

We present a notion of parametric simulation for HER [52],
which embeds semantic matching into topological matching. It is in-
ductively defined to assess the semantic closeness of “descendants”
and decide whether t matches v based on the “global” information.
Semantic joins. How can we support SQL queries across relationsD
and graphsG? This requires us to align entities acrossD andG , and
retrieve data by traversingG . Neither DBMSs nor federated systems
(polyglot systems, multistores and polystores) support these yet.

We propose a semantic extension of SQL joins. If a tuple t in D
and v in G are determined by HER to refer to the same real-world
entity, then we can naturally “join” the two, extract relevant prop-
erties of vertex v and enrich tuple t with the additional “attributes”.

(4) Veracity: The quality and values of big graph. Real-life data
is often dirty. It is common to find duplicates and semantic incon-
sistencies even in knowledge graphs widely in use. Indeed, noise in
biomedical knowledge graphs is considered a big challenge to drug
discovery [202]. Dirty data is costly. It is estimated that poor data
quality is responsible for an average of $15 million per year in losses
for organizations [84], and costs the US $3.1 trillion in 2016 alone
(cf. [157]). Data-driven decisions based on dirty data can be worse
than making decisions with no data. With this comes the need for
data cleaning, to accurately detect and fix errors in the data.

An immediate question is how to clean semistructured graphs?
Quality of graph data. The veracity is often considered the most
challenging issue of the 4V’s for big data. Already hard for rela-
tional data, it is far more difficult to clean graphs in the absence of
a schema. There has been a host of work on relational data clean-
ing, approached via either machine learning (ML) or logic rules.
However, the study of graph cleaning is still in its infancy.

We advocate an approach to cleaning graphs by unifying logic
deduction and ML [50, 60]. The idea is to embed ML models in logic
rules as predicates. On the one hand, we can plug well-trained ML
models in this uniform logical framework to cover cases overlooked
by logic rules. On the other hand, we can discover logic conditions
for ML predictions to be true and hence, interpret ML predictions.
The value of big graphs. A related question is what values we can
get out of big graph analytics by unifying ML and rules? We have
implemented such a uniform framework in Fishing Fort [166], an
industrial system for graph analytics. Fishing Fort has proven effec-
tive in online recommendation, drug discovery, and capacity grad-
ing for Lithium-Ion battery manufacturing, among other things.

Organization. Section 2 discusses parallel models and parallel
scalability. Section 3 presents effectiveness measures and methods
for incrementalizing batch algorithms. Section 4 addresses entity
resolution and SQL queries across relations and graphs. Section 5
advocates a combination of machine learning and logic rules for
cleaning graphs and getting values out of graphs. Finally, Section 6
identifies open research issues in connection with big graphs.

3783

It should be remarked that the paper aims to incite interest and
curiosity in the study of the 4V’s of big graphs. It is by no means a
comprehensive survey. It raises as many questions as it answers.

2 VOLUME: PARALLEL COMPUTATION
This section targets two issues in connection with parallel graph
computation. What parallel computation models should we employ
to answer graph queries (Section 2.1)? Would parallel processing
suffice to cope with the volume of big graphs (Section 2.2)?

2.1 Parallel Models
The most popular model for parallel graph algorithms is the vertex-
centric model, pioneered by Pregel [135] and PowerGraph [87, 131].
The idea is for programmers to “think like a vertex". For instance,
to program with Pregel, one needs to write a user-defined function
compute(msgs) to be executed at a vertex v , where v communicates
with other vertices by message passing (msgs). This requires the
users to recast existing sequential graph algorithms into vertex-
centric ones. The recasting is often nontrivial, and makes parallel
graph computations a privilege for experienced users only.

As an alternative, we present the graph-centric model of GRAPE
[77, 78]. By parallelizing existing sequential graph algorithms, it
shifts parallel graph programming from “think parallel” to “think
sequential” just like conventional programming.

Consider directed or undirected graphs G = (V , E, L), where V
is a finite set of vertices; E ⊆ V × L(E) ×V is a set of edges (v, l,v ′)
with label l ; and each v in V is labeled with its “content” L(v).

PIE programs. Consider a class Q of graph queries. GRAPE an-
swers queries of Q via data-partitioned parallelism by executing a
PIE program (see below). It works with n workers P1, . . . , Pn and a
master P0. It partitions graph G into n fragments (F1, . . . , Fn) with
an existing partitioner [24, 59, 111], and distributes the fragments
to workers such that fragment Fi resides at worker Pi (i ∈ [1,n]).

To develop a parallel algorithm for answering queries of Q with
GRAPE, the user only needs to provide three sequential algorithms,
referred to as a PIE program for Q (PEval, IncEval and Assemble).

(1) PEval: A sequential algorithm that given a query Q ∈ Q and a
graph G, computes the answer Q(G) to Q in G.

(2) IncEval: A sequential incremental algorithm that givenQ ,G ,Q(G)
and updates ∆G to G, computes updates ∆O to Q(G) such that
Q(G⊕∆G) = Q(G)⊕∆O , whereG⊕∆G denotesG updated by ∆G .

(3) Assemble: A function that collects partial answers computed lo-
cally at each worker by PEval and IncEval, and assembles the par-
tial results into Q(G). This function is typically straightforward.
PEval and IncEval can be any existing sequential algorithms for

Q. The only additions are the following declarations in PEval.
(a) Update parameters. PEval declares (a) a setCi of vertices in frag-
ment Fi as the update region of Fi ; and (b) status variables x̄ for Ci .
We denote byCi .x̄ the set of update parameters of Fi , i.e., the status
variables associated with the vertices in Ci . Intuitively, Ci .x̄ marks
candidates to be updated by the incremental steps of IncEval.
(b) Aggregate functions. PEval also specifies an aggregate function
faggr, e.g.,min and max, to resolve conflicts when multiple workers
attempt to assign different values to the same update parameter.

Fixpoint model. GRAPE parallelizes the execution of a PIE pro-

gram ρ, which can be modeled as a simultaneous fixpoint operator
defined on n fragments. To simplify the discussion, consider the
Bulk Synchronous Parallel model (BSP) [182]. The parallelized com-
putation starts with PEval for partial evaluation [105], and conducts
incremental computation in supersteps by taking IncEval as the
intermediate consequence operator, as follows:

R0
i = PEval(Q, F 0

i [x̄i]),

Rr+1
i = IncEval(Q,Rri , F

r
i [x̄i],Mi),

where i ∈ [1,n], r denotes a superstep, Rri represents the partial
results in step r at worker Pi , fragment F 0

i = Fi , F ri [x̄i] is fragment
Fi at the end of superstep r bearing update parameters Ci .x̄ , and
Mi is a message carrying changes to update parameters Ci .x̄ .

More specifically, upon receiving a query Q ∈ Q at master P0,
GRAPE posts Q to all workers and computes Q(G) as follows.
(1) Partial evaluation (PEval). In the first superstep, GRAPE com-
putes partial results R0

i = PEval(Q, Fi) in fragment Fi at each
worker Pi by invoking PEval, in parallel (i ∈ [1,n]). After Q(Fi) is
computed, worker Pi sends its set Ci .x̄ to master P0 as a message.

For each status variable x ∈ Ci .x̄ , master P0 collects a multi-
set Sx of values from messages of all workers. It computes xaggr =
faggr(Sx) by applying the aggregate function faggr declared in PEval,
to resolve conflicts. It generates message Mi to worker Pi , which
includes only those faggr(Sx)’s such that faggr(Sx) , x , i.e., only
the changed values of the update parameters of fragment Fi .
(2) Incremental computation (IncEval). In superstep r + 1, upon re-
ceiving messageMi from master P0, each worker Pi invokes IncEval
to incrementally compute Rr+1

i = IncEval(Q,Rri , F
r
i ,Mi) by treating

message Mi as updates to F ri , in parallel (i ∈ [1,n]). It refines its
partial results based on the information of Mi from other workers.

At the end of the superstep, Pi sends a message to P0 that consists
of updated values of Ci .x̄ , if any. After receiving messages from
all workers, master P0 deduces a message Mi just like in PEval. It
sends message Mi to worker Pi in the next superstep.
(3) Termination (Assemble). At each superstep, master P0 checks
whether for all i ∈ [1,m], Pi is inactive, i.e., Pi is done with its
local computation, and there exists no more change to the update
parameters of Fi . That is,Rr0+1

i = Rr0
i at a fixpoint r0 for all i ∈ [1,m]

If so, GRAPE pulls partial results from all workers, and applies
Assemble to group them together and get the final result at P0,
denoted by ρ(Q,G). It returns ρ(Q,G) and terminates.

Example 1: We show how GRAPE parallelizes the computation
of Single Source Shortest Path (SSSP). Consider a directed graph
G = (V , E, L) in which for each edge e , L(e) is a positive number.
The length of a path (v0, . . . ,vk) in G is the sum of L(vi−1,vi) for
i ∈ [1,k]. For a pair (s,v) of vertices, denote by dist(s,v) the distance
from s to v , i.e., the length of a shortest path from s to v . Given
graph G and a vertex s in V , SSSP computes dist(s,v) for all v ∈ V .

The PIE program for SSSP consists of (1) Dijkstra’s algorithm for
SSSP [80] as PEval, (2) a sequential incremental algorithm of [154]
as IncEval, and (3) a straightforward Assemble. We partition graph
G via edge cut [24]. We take the set Fi .O of “border nodes” asCi at
each worker Pi , i.e., the vertices in Fi with edges to other fragments.
Denote by Fi .I the set of vertices of Fi to which there are edges from
other fragments. Let F .O =

⋃
i ∈[1,m] Fi .O , and F .I =

⋃
i ∈[1,m] Fi .I .

3784

Input: A fragment Fi (Vi , Ei , Li), and a source vertex s .
Output: Q (Fi) consisting of current dist(s , v) for all v ∈ Vi .
Declaration: /*candidate set Ci is Fi .O*/
For each vertex v ∈ Vi , an integer variable dist(s , v);
message Mi := {dist(s , v) | v ∈ Fi .O };
aggregate function faggr = min(dist(s , v));
/*sequential algorithm for SSSP (pseudo-code)*/
1. initialize priority queue Que;
2. dist(s , s) := 0;
3. for each v in Vi do if v ! = s then dist(s , v) :=∞;
4. Que.addOrAdjust(s , dist(s , s));
5. whileQue is not empty do
6. u := Que.pop(); // pop vertex with minimal distance
7. for each child v of u do // only v that is still in Que
8. alt := dist(s , u) + Li (u , v);
9. if alt < dist(s , v) then
10. dist(s , v) := alt; Que.addOrAdjust(v , dist(s , v));
11. Q (Fi) := {dist(s , v) | v ∈ Vi };

Figure 1: Parallel SSSP: Partial evaluation PEval

(1) PEval. As shown in Fig. 1, PEval is Dijsktra’s algorithm [80]. We
only need to declare (a) a status integer variable dist(s,v) for each
vertex v , initially∞ (except dist(s, s) = 0); (b) update parameters as
Ci .x̄ = {dist(s,v) | v ∈ Fi .O}, i.e., the status variables of the border
nodes in Fi .O at Fi ; and (c) min as an aggregate function faggr.

At the end of its process, PEval sendsCi .x̄ to P0. Master P0 main-
tains dist(s,v) for all v ∈ F .O = F .I . After getting messages from
all workers, it takes the smallest value for each dist(s,v) by apply-
ing aggregate function min. It finds those with smaller dist(s,v) for
v ∈ Fj .O , groups them into message Mj , and sends Mj to Pj .
(2) IncEval. As shown in Fig. 2, IncEval is the sequential incremental
algorithm for SSSP in [155] that is mildly revised to handle changed
dist(s,v) for v in Fi .I (deduced from F .I = F .O). Using a queue
Que, it starts with changes inMi , propagates the changes to affected
area, and updates the distances (see [155]). The partial result now
consists of the revised distances. At the end of the process, it sends
to master P0 the updated values of those status variables in Ci .x̄ ,
as in PEval. It applies function min to resolve conflicts.
(3) Assemble. This function simply takesQ(G) =

⋃
i ∈[1,n]Q(Fi), the

union of the shortest distances of all vertices in all fragments. 2

Convergence. The correctness of the fixpoint computation is char-
acterized as follows. Given a class Q of graph queries, (a) the se-
quential algorithm PEval for Q is correct if for all queries Q ∈ Q
and graphs G , it converges at the answer Q(G) to Q in G; (b) the se-
quential incremental algorithm IncEval for Q is correct if it correctly
updates old output Q(G) to Q(G ⊕ M), by computing the changes
∆O to Q(G), given changes (messages) M to the update parameters;
and (c) Assemble is correct for Q w.r.t. partition strategy P if it
correctly computes Q(G) by assembling the partial answers from
all workers, when GRAPE with PEval, IncEval and P terminates.

We say that GRAPE correctly parallelizes a PIE program ρ with
partition strategy P if for all Q ∈ Q and graphs G, GRAPE guaran-
tees to reach a fixpoint such that ρ(Q,G) = Q(G).

It is shown [70, 78] that GRAPE correctly parallelizes a PIE pro-
gram ρ for Q with any partition strategy P if (a) PEval and IncEval
of ρ are correct sequential algorithms for Q, and (b) Assemble cor-
rectly combines partial results, and (c) PEval and IncEval satisfy a
monotonic condition. The condition is as follows: for all status vari-
ables x ∈ Ci .x̄ , i ∈ [1,m], (a) the values of x are from a finite set com-

Input: A fragment Fi (Vi , Ei , Li), partial result Q (Fi), and message Mi .
Output: Q (Fi ⊕ Mi).
Declaration: message Mi = {dist(s , v) | v ∈ Fi .O , dist(s , v) decreased};
1. initialize priority queue Que;
2. for each dist(s , v) in Mi do
3. Que.addOrAdjust(v , dist(s , v));
4. the same as lines 5-11 of in the batch algorithm of Figure 1;

Figure 2: Parallel SSSP: Incremental evaluation IncEval

puted from the active domain ofG and (b) there exists a partial order
px on the values of x such that IncEval updates x in the order of px .

For instance, the PIE program in Example 1 converges at correct
Q(G). Updates toCi .x̄ are “monotonic”: the value of dist(s,v) for ver-
texv is computed from the active domain ofG and does not increase.
Moreover, dist(s,v) is the shortest distance from s tov as warranted
by the sequential algorithms [80, 155] (PEval and IncEval).

Properties. The graph-centric model has the following properties.
(1) Ease of programming. GRAPE allows users to “plug in” existing
sequential algorithms and parallelizes them, without recasting them
into a new model or changing the logic of the algorithms. To experi-
ence this, one can try to develop a parallel algorithm for graph sim-
ulation [96] under the vertex-centric model and the graph centric
model [78]. The parallelization makes parallel graph computations
accessible to users who are more familiar with conventional graph
algorithms. This said, programming with GRAPE still requires users
to declare update parameters and design aggregate functions.
(2) Convergence. GRAPE parallelizes the computation across a clus-
ter of machines, based on a fixpoint computation with partial evalu-
ation and incremental computation. Under a monotonic condition,
the parallelized computation guarantees to converge at correct
answers as long as the sequential algorithms provided are correct.
(3) Optimization. GRAPE inherits optimization techniques devel-
oped for sequential graph algorithms, e.g., indexing and compres-
sion, since it executes sequential algorithms on graph fragments,
which are graphs themselves. Moreover, it reduces the costs of itera-
tive graph computations by using IncEval, to minimize unnecessary
recomputations. As shown in [56], GRAPE substantially improves
the performance of search, cyber security monitoring, ML model
training, fraud detection and online recommendation at Alibaba.
(4) Synchronous and asynchronous models. It has been shown that
under general conditions, GRAPE also guarantees to converge at
correct answers under the Adaptive Asynchronous Model (AAP) [67,
70]. AAP subsumes BSP and asynchronous parallel model (AP) as
special cases. It reduces stragglers of BSP and stale computations of
AP by learning parameters to measure (a) its progress of a worker
relative to other workers, and (b) the staleness of messages.

2.2 Parallel Scalability
Consider a sequential algorithm A designed for a class Q of graph
queries. Let t(|Q |, |G |) be the worst-case runtime of A when an-
swering queries Q of Q in graph G. Following [118], we say that a
parallel algorithmAp for Q is parallelly scalable relative toA if for
any query Q ∈ Q and graph G , the runtime ofAp for answering Q
in G using n machines in parallel can be expressed as:

T (|Q |, |G |,n) = O
(t(|Q |, |G |)

n

)
.

3785

Intuitively, the parallel scalability guarantees speedup of Ap rela-
tive to a “yardstick” sequentialA. SuchAp is able to reduce the cost
of A when more machines are used, and thus scale with large G.

Unfortunately, we cannot take the parallel scalability for granted.
For instance, the parallel scalability is beyond reach [75] for graph
simulation [143] relative to the quadratic-time algorithm of [96].
This is not surprising. The degree of parallelism is constrained by
the depth of a computation, i.e., the longest chain of dependen-
cies among its operations [106]. As a consequence, some graph
computation problems are “inherently sequential” [89].

On the other hand, parallelly scalable algorithms are known for
subgraph isomorphism, e.g., [50, 57, 69], an intractable problem.
Taken together with the negative result for graph simulation, these
tell us that the parallel scalability does not concur with the polyno-
mial hierarchy [151] in the classic computational complexity theory.

A natural question asks how we should classify graph computa-
tion problems w.r.t. the parallel scalability under the shared-nothing
architecture when we take both the computational cost and commu-
nication cost into account? What problems are parallelly scalable?
How can we reduce a problem to one that we know to have a
parallelly scalable algorithm, along the same lines as our familiar
PTIME reduction for NP problems? Does there exist a complete (the
hardest) problem in the class of parallelly scalable problems? These
questions are not only of theoretical interest, but also practical.
Among other things, given a problem, these help us decide whether
or not parallel computation for it suffices to scale with large graphs.

3 VELOCITY: INCREMENTALIZATION
This section addresses two questions about incremental graph al-
gorithms. What incremental algorithms are “good” for coping with
the velocity of big graphs (Section 3.1)? How can we systematically
develop good incremental algorithms (Section 3.2)?

3.1 Relative Boundedness
Ideally, given a class Q of graph queries, we hope to find a bounded
incremental algorithmA∆ for Q such that its cost can be expressed
as a function of the size |Q | of the input query and |CHANGED| =
|∆G | + |∆O | (the size of changes in the input and output) [155, 177],
since |CHANGED| characterizes the updating cost that is inherent
to the incremental problem itself. A boundedA∆ warrants efficient
incremental computation no matter how big graph G grows.

Unfortunately, bounded incremental algorithms are only in place
for the shortest path problems, single-source or all pairs, with posi-
tive lengths [155, 156]. Worse still, a variety of incremental problems
have been proven unbounded, for which no bounded incremental
algorithms exist, e.g., single-source reachability to all vertices (un-
der unit edge deletions) [155], subgraph isomorphism [74], strongly
connected components, regular path queries, keyword search and
maximum cardinality matching in bipartite graphs [71], even under
unit edge deletions/insertions. Moreover, for a bounded incremental
problem, it is nontrivial to develop a bounded incremental algo-
rithm, which involves delicate design of auxiliary structures.
Incrementalizing batch algorithms. We promote an alternative ap-
proach suggested by our industry collaborators, referred to as incre-
mentalization. Given a class Q of graph queries, it is to deduce an
incremental algorithmA∆ for Q from a popular batch algorithmA

for Q, by reusing the data structures and computation logic of A.
The reason is three-fold. (a) A number of batch algorithms A have
been developed after decades of study; given a query Q ∈ Q and
a graph G, A computes the answers Q(G) to Q in G. It is natural
for one to want to incrementalize existing batch ones instead of de-
signing a new one starting from scratch. (b) When practitioners get
used to a batch algorithm A and are familiar with its behaviors in
response to different inputs, e.g., after hyper-parameter tuning [46],
they often want to stick to A. (c) As will be seen shortly, under
certain conditions, it is possible to systematically incrementalize
batch algorithms with provable performance guarantees.
Relative boundedness. How can we measure the effectiveness of
the incrementalized algorithms? Consider a batch algorithm A
for Q. For a query Q in Q and a graph G, denote by G(A,Q) the
data accessed by A for computing Q(G), including the auxiliary
structure used by A. For updates ∆G to G, denote by AFF the
difference between (G⊕∆G)(A,Q) andG(A,Q), i.e., the difference in
the data inspected byA for computingA(Q,G ⊕∆G) andA(Q,G).
We use |AFF| as a parameter for measuring the cost of A∆.

An incremental algorithmA∆ for Q is bounded relative toA [71]
if for any query Q in Q, graph G and updates ∆G to G, the size of
the data checked by A∆ can be expressed as a function of the sizes
|Q |, |∆G | and |AFF|. Here AFF includes changes ∆O to outputQ(G).

A incremental problem is bounded relative to A if there exists
an incremental A∆ that is bounded relative to A.

Intuitively, |AFF| indicates the affected area by ∆G relative toA,
which is necessarily inspected by batch algorithm A in response
to ∆G. Hence a bounded algorithm A∆ relative to A incurs only
the “necessary” cost for any possible incrementalization of A.

The notion of relative boundedness is weaker than the bounded-
ness of [177]. As a consequence, a variety of problems are bounded
relative to popular batch algorithms [71], e.g., SSSP [80], graph
simulation [96], depth-first search [176], connectivity [16], local
clustering coefficient [192], regular path queries [141] and maxi-
mum cardinality matching [99], including unbounded problems.

3.2 Incrementalization of Graph Algorithms
We present the method of [73]. It identifies a class of batch graph
algorithms, referred to as fixpoint algorithms. It shows that under a
generic condition, from each fixpoint algorithm A, an incremental
algorithmA∆ can be deduced such thatA∆ is correct and bounded
relatively to A; moreover, A∆ adopts the same logic and data
structures ofA, at most using timestamps as an auxiliary structure.

Fixpoint algorithms. Given a query Q ∈ Q and a graph G, a
batch algorithmA often computes Q(G) by adopting the following.
◦ A set ΨA of status variables associated with vertices/edges of G .
◦ Data structures DA , including status in ΨA and auxiliary struc-

ture for keeping track of the (partial) results of the computation.
◦ An update function fxi : for each status variable xi ∈ ΨA , it

computes the value of xi , i.e., xi = fxi (Yxi), where Yxi ⊆ ΨA .
◦ A logical statement σxi on status variables such that σxi is true

right after each invocation of fxi (Yxi). We denote by σA the con-
junction of σxi for all xi ’s in ΨA , referred to as the invariant ofA.
Algorithm A often operates on G and DA in rounds, and pro-

duces partial results, i.e., values of the variables in ΨA in each round.

3786

We say that A is a fixpoint algorithm if it is expressible as
(Dt+1
A , H

t+1
A) = fA (D

t
A, Q, G, H

t
A), where

(1) Dt
A

denotes the status DA after t − 1 rounds of iterations, and
D0
A

includes the initial values for all status variables in ΨA ;

(2) H t
A

is a subset of status variables in ΨA collected before the
start of round t , such that their values are to be necessarily in-
spected/updated in round t ; the smaller H t

A
is, the less costly A

is; we refer to H t
A

as the scope of round t ; initially, H0
A

contains
variables xi that that violate σxi for round 0; and

(3) fA is the intermediate consequence operator of the fixpoint,
called the step function of algorithm A. It selects status variables
from the scope H t

A
and performs update fxi (Yxi) on each selected

xi to compute status Dt+1
A

. Moreover, fA returns the scope H t+1
A

that updates H t
A

with affected status variables of round t , i.e., those
xi ’s when the value of some variable in Yxi is changed in round t .

Intuitively, a fixpoint algorithm A is essentially “update-based”.
It computesQ(G) by applying its step function fA in rounds, guided
by the invariant σA . In round t , by propagating the changes from
the last round t − 1 to the scope H t

A
and corresponding parts of

Dt
A

, fA identifies the scope H t+1
A

for the next round. The process
proceeds until it reaches a fixpoint r such that Dr+1

A
= Dr

A
and

H r+1 = ∅, i.e., when no more changes can be made. All logical
statements in invariant σA hold when the process terminates.

A variety of graph problems have fixpoint algorithms, e.g., SSSP
[80], graph simulation [96], depth-first search [176], connectiv-
ity [16], local clustering coefficient [192], and bi-connectivity [176].

Example 2: Dijkstra’s algorithm for SSSP [80] is a fixpoint algo-
rithm (see Fig. 1 and Example 1). Its data structure DA associates
each vertex v with a status variable xv , recording the shortest
distance from source s , initialized as∞ for v,s (lines 2-3). It also
includes priority queue Que. The scope HA includes all children of
the vertices in Que (line 1). Initially, Que only contains xs .

Its step function fA is defined in lines 6-10. Each time fA pops
a vertex v from Que. If logical statement σxu does not hold for v’s
children u (i.e., if xu , fxu (Yxu)), it applies update function fxu
to xu , setting it to minxv ∈Yxu {xv + L(v,u)} (lines 7-10). Here Yxu
includes status variables of u’s children. Function fA also adjusts
Que accordingly, and the changes will be propagated to the next
round. This is how step function decides the scopeH t+1

A
for the next

round. The process terminates when Que and the scope become
empty. At this time, the invariant σA (shortest distances) holds. 2

Incrementalization. Given a fixpoint algorithmA, we deduce an
incremental algorithm A∆ from A. Suppose that given a graph G
and a query Q ∈ Q, batch algorithm A computes Q(G) and ends
up with a fixpoint Dr

A
. Then A∆ starts from Dr

A
. It additionally

takes updates ∆G as input, and possibly extends DA to DA∆ with
timestamps. It employs H t

A∆
and fA∆ , which are minor extensions

of their counterparts of A to cope with timestamps.
Along the same lines asA, it iterates in rounds to identify scope

HA∆ and compute new status DA∆ as follows:
(D0
A∆
,H0
A∆
) = h(Dr

A,∆G),

(Dt+1
A∆
, H t+1
A∆
) = fA∆ (D

t
A∆
, Q, G, H t

A∆
).

Input: Graph G = (V , E , L), source s , updates ∆G , previous fixpoint Dr
A

.
Output: The updated shortest distance xv for each v in G ⊕ ∆G .
1. (DA∆ , HA∆) ← h(Dr

A
, ∆G); /* apply initial scope function h */

2. initialize a priority queue Que;
3. for each child v of vertex in HA∆ do
4. Que.addOrAdjust(v , xv);
5. the same lines 5-11 as in the batch SSSP algorithm from Figure 1;

Figure 3: Incrementalized algorithm for SSSP

Here h is an initial scope function that identifies scope H0
A∆

forA∆.
It is derived from the old fixpoint Dr

A
and updates ∆G . It initializes

auxiliary structures and changes Dr
A

to status D0
A∆

.
Incremental algorithm A∆ works along the same lines as batch

algorithm A. It starts from D0
A∆

and H0
A∆

. Moreover, it employs
step function fA∆ to identify scope H t+1

A∆
and update status to Dt+1

A∆

in round t . The process iterates until it reaches a fixpoint.
More specifically, the step function fA∆ (resp. statusDA∆) ofA∆

extends fA (resp. DA) of its batch counterpartA only to cope with
newly added timestamps in SA∆ . That is, incremental algorithm
A∆ essentially adopts the same logic and data structures of A. It
differs from A mostly in the use of initial scope function h.

The initial scope function h determines initial status D0
A∆

and
scope H0

A∆
for which the corresponding logical statements are

violated by the updates ∆G. For instance, the shortest distance
value of some variable xv may become invalid in SSSP if vertex v’s
adjacent edges evolve. Function h finds all status variables affected
by ∆G, and tunes affected variables to their “feasible” status, from
where the new correct result can be computed by resuming A’s
iterative computation. An algorithm for deducing such a function
h is given in [73], which guarantees H0

A∆
⊆ AFF, i.e., it checks all

and only necessary status variables affected by ∆G.

Performance guarantees. A method for incrementalizing fix-
point algorithms is proposed in [73]. Its main results are as follows.

For any fixpoint algorithm A for Q, an incremental algorithm
A∆ for Q can be deduced from A such that A∆ is correct, i.e.,
given any query Q ∈ Q, graph G and updates ∆G, A∆ computes
∆O such that Q(G ⊕ ∆G) = Q(G) ⊕ ∆O . Moreover, if A is
contracting and monotonic, then A∆ is bounded relative to A.

Here A is contracting if there exists a partial order ⪯ such that
the status variables in ΨA are updated following the partial order. It
is monotonic if for each status variable xi ∈ ΨA , the update function
fxi is monotonic, i.e., Y 1

xi ⪯ Y 2
xi implies that fxi (Y 1

xi) ⪯ fxi (Y
2
xi).

Furthermore, A∆ adopts the same logic and data structure as
A; more specifically, (a) the data structure DA∆ extends DA only
by (possibly) associating a timestamp with (some of) its status
variables xi , to record the time of the last change to xi and identify
what changes to status variables have to be propagated; (b) the step
function fA∆ is the same as fA except that it updates the timestamp
of xi when xi is updated; and (c) scope HA∆ extends HA similarly.

Example 3: An incrementalization of Dijkstra’s algorithm for
SSSP [80] is shown in Fig. 3, which employs the initial scope func-
tion h deduced in [73], and initializes Que with the updated status
identified by h. It adopts the same logic and data structure of the
batch algorithm in Fig. 1, without using timestamps. Except the
initialization, it is the same as the incremental algorithm in Fig. 2. 2

3787

Remark. (1) There are graph algorithms that are not expressible
as fixpoint, e.g., METIS [107] for graph partitioning. Nonetheless,
incremental algorithms can still be deduced from such algorithms
and perform well in both the scalability and partition quality [64].
(2) There have been other incrementalization approaches at the
instruction level [7, 26, 129, 140] or for vertex-centric graph al-
gorithms via memorization [27, 194, 201] or dependency-driven
streaming frameworks [137, 185]. In contrast, (a) we target graph-
centric algorithms; (b) we deduce incremental graph algorithmA∆

by reusing the same logic and data structures of its batch counter-
partA, in contrast to the instruction-level approach [7, 26, 129]; and
(c) under the monotonic and contraction conditions, our incremen-
talized algorithms guarantee to be correct and relatively bounded.

4 VARIETY: RELATIONS AND GRAPHS
This section tackles two questions in connection with the variety.
How can we decide whether a tuple t in a relational databaseD and
a vertexv in a semistructured graphG refer to the same entity (Sec-
tion 4.1)? Can we write queries acrossD andG in SQL (Section 4.2)?

4.1 Heterogeneous Entity Resolution
To synthesize information across D and G , effective methods have
to be in place for Heterogeneous Entity Resolution (HER), to deter-
mine whether a tuple t in D and a vertex v in G match. The need
for this is evident for queryingD andG taken together, integrating
data from D and G, and enriching D with semantic information
from a knowledge graph G, among other things.

Entity resolution (ER) has been well studied for relations [12, 13,
15, 20, 28, 31, 35, 45, 51, 68, 72, 81, 91, 100, 108, 113, 117, 126, 145, 152,
175, 193, 195, 205, 208] and graphs [43, 49, 101, 102, 119, 120, 124,
161, 169, 179, 191, 196, 200, 206, 212]. However, much less is known
about HER across relationsD and graphG . To this end, JedAI [150]
considers various data formats such as RDF and CSV, by first con-
verting entities to a set of profiles (name-value pairs), and then
checking labels and attributes as in [147]. PathSim [171] extends
SimRank under a meta path framework to measure similarity via
topological matching. MAGNN [82] combines graph neural network
with meta-paths to extract embeddings and measure vertex similar-
ity. A model was trained in [207] to link entities in Web tables and
knowledge bases. Models were also trained to map cells (attribute
values) in a relation to entities in knowledge bases [149, 180].

Unfortunately, the prior methods do not work well onHER across
relations D and graphs G. Relational ER methods rely on schema
information, and do not apply to schema-agnostic graphs. In partic-
ular, entities are often represented as verticesv inG , and their prop-
erties are linked fromv via paths. To cope with these, one has to use
joins to traverse paths and incur costs way beyond quadratic time
(the worst-case complexity of relational ER). Moreover, prior meth-
ods explore only local properties, e.g., “local embedding” [28, 196]
collects local information of neighbors within limited hops. How-
ever, to identify a tuple t in D and a vertex v in G, one often has
to recursively check the pairwise semantic closeness of descen-
dants (key features) of t and v . Cell matching [149, 180] overlooks
correlated attributes of tuple t when mapping to vertex v .

We present the method of [52] for HER across relations D and
graph G. It makes an effort to improve the accuracy by embedding

semantic matching (ML) into topological matching, and employing
inductive matching to collect global information. Moreover, it takes
quadratic time in the worst case, the same as for relational ER.
Preliminaries. We start with basic notations. Consider a database
schema R = (R1, . . . ,Rn), where Ri is a relation schema (A1, . . . ,
Ak), and Ai is an attribute. A relation of schema R is a set of tu-
ples with the attributes Ai of R (i ∈ [1,k]). A database D of R is
(D1, . . . ,Dn), where Di is a relation of Ri (i ∈ [1,n]).

A path ξ from a vertex v0 in a graph G is a sequence ξ =
(v0,v1, . . . ,vl) such that (vi−1, li−1,vi) is an edge inG for i ∈ [1, l].
The length of ξ , denoted by len(ξ), is l , i.e., the number of edges on
ξ . A path is simple if vi , vj for i , j, i.e., a vertex appears on ξ at
most once. We consider simple paths in the sequel.

We refer to v2 as a child of v1 if (v1, l,v2) is an edge in E for
some label l , and as a descendant if there exists a path from v1 to
v2. A vertex is a called leaf if it has no children.

HER: Overview. Given a database D and a graph G, HER first
converts D to a canonical graph GD offline by, e.g., direct mapping
of RDB2RDF [186], which yields an 1-1 mapping fD from the tuples
and their attributes in D to the vertices and their edges in GD ,
respectively. One may use other converting methods (see [142] for
a survey). We take RDB2RDF [186] here to simplify the presentation.

HER then learns score functions and bounds offline, for assessing
semantic closeness. To determine whether a vertexu0 in a graphG1
matches a vertex v0 in another graph G2, we inductively considers
the “closeness” of descendants of u0 and descendants of v0. HER
adopts score functions hv and hξ defined as follows:

hv (u
′,v ′) = Mv (L1(u

′), L2(v
′))

hξ (ξ1, ξ2) =
Mξ (L1(ξ1), L2(ξ2))

len(ξ1) + len(ξ2)
HereMv is a function that assesses how closeu ′ andv ′ are to each
other, based on their labels (types and values), andMξ inspects
how close the association of u ′ to u0 and the association of v ′ to
v0 are, based on the labels on paths ξ1 and ξ2, where ξ1 (resp. ξ2) is
a path from u0 to u ′ (resp. v0 to v ′). Intuitively, the longer a path
is, the weaker the association is; henceMξ (ξ1, ξ2) is divided by
len(ξ1) + len(ξ2). Both hv (u

′,v ′) and hξ (ξ1, ξ2) are in [0, 1].
To identify u0 and v0 in practice, it often suffices to inspect a

small number of their characteristic features (descendants). In light
of this, we adopt an ML-based ranking function hr (·, ·) and a bound
k such that given a vertexu, hr (u,k) ranks the descendants ofu and
selects top-k ones along with a path for each; similarly for hr (v,k).
Denote by V k

v the set of top-k descendants of v picked by hr (v,k).
We use hr (·, ·) to strike a balance between the complexity and

accuracy. Since there are exponentially many paths to descendants
of u, it is impractical to enumerate them when G1 or G2 is dense.

After the models are trained, HER conducts matching online.
Given a pair (t,vд) for a tuple t in D and a vertex vд in G as input,
it finds the vertex ut in the canonical graph GD denoting t , via
mapping fD . It then checks whether (ut ,vд) makes a match via
parametric simulation. It returns true if so, and false otherwise.

Parametric simulation. This notion is an extension of graph sim-
ulation [143]. It is inductively defined to conduct global checking
following [143]. In contrast to [143], it is parameterized with score

3788

functions and closeness thresholds learned via ML models. More-
over, it may map paths in one graph to paths in another. It does
not require every edge of u to find a match in G , so as to cope with
semistructured graphs in which missing links are common.

Taking functions (hv ,hξ ,hr) and thresholds (σ , δ ,k) as parame-
ters, parametric simulation is to check whether (u0,v0) is a match,
for u0 in G1 and v0 in G2 across two graphs G1 = (V1, E1, L1) and
G2 = (V2, E2, L2). Specifically, given (u0,v0), it computes a binary
relation Π(u0,v0) ⊆ V1×V2 satisfying the following conditions:

(1) (u0,v0) ∈ Π(u0,v0); and
(2) for each pair (u,v) ∈ Π(u0,v0),

(a) hv (u,v) ≥ σ ; and
(b) if u is a non-leaf, then there is a set S(u ,v) of (u ′,v ′) that is a

partial 1-to-1 mapping fromV k
u toV k

v such that its aggregate∑
(u′,v ′)∈S(u ,v) hξ (ξ(u ,u′), ξ(v ,v ′)) ≥ δ ;

and for each (u ′,v ′) ∈ S(u ,v), (u ′,v ′) ∈ Π(u0,v0).
Here ξ(u ,u′) is the path fromu tou ′ selected byhr (u,k); similarly
for ξ(v ,v ′). We refer to S(u ,v) as a lineage set of (u,v).
We say that (u0,v0) is a match by simulation parameterized with

(hv ,hξ ,hr ,σ , δ ,k) if there exists such a nonempty Π(u0,v0). There
are possibly many such sets; to check whether (u0,v0) makes a
match, it suffices to check the existence of such a set, i.e., a witness.

Intuitively, (u0,v0) is a match if (1) u0 and v0 are close enough,
measured by function hv based on their types and values; (2) there
exists a lineage set S(u0,v0) of pairwisely matching feature pairs
such that their associations to (u0,v0) are close enough, measured
by the aggregate score with function hξ ; and (3) for a pair (u,v),
S(u ,v) is a set of pairs (u ′,v ′) such that each characteristic featureu ′
of u finds the “best” matchv ′ if it exists (hence a partial 1-to-1 map-
ping) in terms of hξ scores on paths found by hr . That is, (u0,v0)
is a match if their “values” and key features are close enough.
Remark. (1) It is shown [52] that on average, parametric simulation
has F-measure above 0.94 over a variety of relations and graphs.
(2) For any u0 ∈ G1 and v0 ∈ G2, there exists a unique maximum
Π(u0,v0) by simulation with (hv ,hξ ,hs ,σ , δ ,k) [52]. That is, para-
metric simulation retains the uniqueness of graph simulation [143].

Implementation. As shown in [52], the vertex model Mv can
be implemented with a sentence embedding model [158]. Using
embedding model BERT [40], metric learning modelMξ is trained
to cope with edge labels. The ranking functionhr first selects a set of
m paths from v by using a language model, wherem is the number
of the children of v; then it ranks the m paths by using a path
resource allocation (PRA) algorithm, and returns the top-k ones.

We selectσ , δ andk to maximize the F-measure (accuracy). These
thresholds are chosen via random search [19] for efficiency.

Once the training is done, it takes linear time for hv and hξ to
measure the similarity. It takes O(|V | |E |) time for hr to select top-k
features and associated paths for a vertex v in a graph G=(V , E, L).

For a graphG and the canonical graphGD of databaseD, it takes
O((|VD |+|ED |)(|V |+|E |)) time for parametric simulation to decide
whether a tuple t in D and a vertex v in G make a match. Such an
algorithm is provided in [52], no more expensive than relational ER
although it has to traverse G. It is parallelized to compute matches
for a set of tuples in D, with the same worst-case complexity.

4.2 Semantic Joins
To determine whether to recommend an investment plan fp0 to a
customer Bob, our FinTech collaborators want to check (a) whether
Bob has good credit, and (b) whether there exists a customer, say
Ada, who has invested in fp0 and bought two financial products
together with Bob before. This has to check a relational databaseD
for condition (a), and a transaction graph G for condition (b). Our
collaborators want to do it with an SQL query across D and G.

EmployingHER, we propose an approach to answering the query.
Consider a database D of schema R and a schemaless graph G.

Semantic joins. We develop two functions f and h.
HER matches. Given a graph G and a set S of tuples, it computes:

f (S,G) = {(t .id,v .id) | t ∈ S,v ∈ V in G, t ⇒ v}.

Here t ⇒ v denotes that tuple t and vertexv make a match decided
by HER, i.e., they refer to the same entity. It returns a relation of
(t .id,v .id), where t .id (resp.v .id) denotes t (resp.v) with identity id.

Attribute Extraction. Given a set S of tuples and a setA of keywords
that indicate users’ (query) interest, function h deduces (a) a rela-
tion schema RG = (vid,A1, . . . ,Am), where vid denotes a vertex
v , and Ai is an attribute (named by a keyword in A), and (b) an
instance h(S,G) of schema RG by extracting selected properties of
the vertices in f (S,G) that match the tuples in S by HER.

Semantic joins. A natural semantic extension to the join operator of
relational algebra (RA) is of the form S 1A G , whereG is a graph; S
denotes a set of tuples of schema R that encode entities; in relational
algebra, S is either a relation schema R or a sub-query Q ; and A
is a set of keywords that are provided by users to express their
interest and specify an extracted schema RG (vid,A). Essentially,
S 1A G is S 1 f (S,G) 1 h(S,G) via the SQL join operator. It
returns a relation of schema consisting of attributes attr(R), vid and
A, where attr(R) is the set of attributes of the schema R of S .

Intuitively, for each tuple t in S , f (S,G) identifies vertices v inG
such that t ⇒ v , and h(S,G) enriches t with additional attributes Ā
of v extracted from graph G. Since t and v refer to the same entity,
S 1A G correlates their information, extracts properties Ā ofv and
extends t with Ā. We refer to S 1A G as a semantic join.

Implementation. Implementing functions f and h as SQL UDFs,
stored procedures, PL/SQL, or a combination of SQL and external
scripts, we can convert semantic join S 1A G to an equivalent SQL
query S 1 f (S,G) 1 h(S,G). Thus S 1A G is just a syntactic sugar.

As an example, for the FinTech query described earlier, one can
use S 1A G to extract data from the transaction graphG and check
condition (b), by taking the set of customers who have invested in
fp0 as S . One can write the query in SQL with a semantic join.

We have seen how to compute HER matches f (S,G) (Section 4.1).
We can implement h(S,G) as follows: we (a) train an ML model
to select paths from G via, e.g., Long Short-Term Memory (LSTM)
networks [45]; (b) group the paths via vectorization and clustering;
and (c) select top-ranked clusters that are semantically close to one
of the keywords in A, are diverse from the existing attributes of
S , and moreover, yield the minimum number of null values. We
take these clusters as attributes A in schema RG and populate the
relation h(S,G) of RG by following the corresponding paths.

3789

Remark. (1) To simplify the discussion, we have only discussed
semantic join S 1A G to enrich relations. Moreover, one can sup-
port link joins to extract the reachability and shortest distances
between vertices that match relational tuples. Note that attribute
extraction and connectivity require to traverse graphG , and cannot
be expressed in first-order logic and relational algebra [127].
(2) We can implement semantic joins on top of database systems and
enrich the commercial systems with a capacity of querying relations
and graphs. It also sheds lights on data lakes [146] for (a) query-
driven data discovery to find relevant graphs with vertices matching
tuples in Q(D) of a query Q ; (b) on-demand data integration to aug-
ment tuples in Q(D) with properties of matching vertices; and (c)
data extraction to abstract schema/relations from raw data in graphs.
(3) HER and attribute/link extraction can be plugged into federated
systems, for aligning entities across D and G, and for correlating
and synthesizing data about the same entity, respectively. Existing
polyglot systems do not support these facilities [4, 37, 39, 48, 103,
104, 153, 168, 210]. Multistores [6, 109, 214] and polystores [44, 92,
112] do not yet support graph storage and computations.

5 VERACITY: ML VS. LOGIC DEDUCTION
This section addresses two questions in connection with the verac-
ity. How can we clean graph-structured data (Section 5.1)? What
values can we get out of big graphs (Section 5.2)? We advocate a
simple approach to unifying machine leaning and logic deduction.

5.1 The Quality of Graph Data
Graph data quality has two primitive issues: entity resolution (ER), to
identify vertices that refer to the same real-world entity; and conflict
resolution (CR), to resolve (semantic) inconsistencies of entities.

For relational data, ER and CR have been approached via either
machine learning (ML) [11, 12, 35, 42, 95, 114, 134, 145, 152, 159, 173,
184, 205], or logic rules [13, 14, 20, 33, 51, 54, 55, 86, 110, 193]. When
it comes to graphs, ML models have been studied for ER [21, 97,
124, 161, 179, 203] via unsupervised clustering and deep learning.
Rules for ER and CR include keys for graphs [49], graph functional
dependencies (GFDs) [76], graph entity dependencies (GEDs) [66],
and numeric graph functional dependencies (NGFDs) [65].

Neither ML models nor logic rules consistently outperform the
other. Well-trained ML models are able to cover various cases; but
ML predictions are probabilistic and hard to explain. In contrast,
logic rules can be interpreted and can fix errors with certainty.
However, it is hard to find high-quality rules and cover all the cases.

ML models as predicates. Can we combine ML models and logic
deduction, for the two to benefit from each other? Below we present
the attempt of [60], which proposes a uniform logical framework
based on rules in which ML models can be embedded as predicates.
Graph pattern matching. We start with basic notations.
Graphs. We model a graph as G = (V , E, L, FA) for the ease of
discussion, where V , E and L are the same as given in Section 2.1,
and each vertex v ∈ V carries a tuple FA(v) = (A1 = a1, . . . ,An =
an) of attributes of a finite arity, whereAi , Aj if i , j , representing
properties. We writev .Ai = ai , where ai is a constant. We assume a
special attribute id at each vertex v , denoting its identity. Different
vertices may carry different attributes, not constrained by a schema.

Patterns. We will define rules over graph patterns. A graph pattern
isQ[x̄] = (VQ , EQ , LQ , µ), where (1)VQ (resp. EQ) is a set of pattern
vertices (resp. edges), (2) LQ assigns a label LQ (u) (resp. LQ (e)) to
each pattern vertex u ∈ VQ (resp. edge e ∈ EQ), and (3) x̄ is a list of
distinct variables, and µ is a bijective mapping from x̄ to VQ , i.e., it
assigns a distinct variable to each vertex v inVQ . For x ∈ x̄ , we use
µ(x) and x interchangeably when it is clear in the context.
Pattern matching. A match of patternQ[x̄] in graphG is a homomor-
phism h fromQ toG such that (a) for eachu ∈ VQ , LQ (u) = L(h(u));
and (b) for each e = (u, l,u ′) inQ , e ′ = (h(u), l,h(u ′)) is an edge inG .

We denote the match as a vector h(x̄), consisting of h(x) for all
x ∈ x̄ in the same order as x̄ , as a list of entities identified by Q .

Graph association rules (GARs). Below we define the rules.
Predicates. A predicate of pattern Q[x̄] is one of the following:

p ::= l(x,y) | x .A ⊗ y.B | x .A ⊗ c | M(x .Ā,y.B̄),
where ⊗ is one of =,,, <, ≤, >, ≥; x and y are variables in x̄ ; c is
a constant; A and B are attributes; and x .Ā is a list of attributes at
“vertex” x ; similarly for y.B̄. The predicates are classified as follows.
◦ Logic predicates: link predicate l(x,y) indicates the existence of

an edge labeled l from vertex x to y; variable predicate x .A⊗y.B
and constant predicate x .A ⊗ c check the consistency of values.
◦ ML predicates:M(x .Ā,y.B̄) is an ML classifier that returns true

iffM predicts true at (x .Ā,y.B̄). HereM can be any ML model
that returns Boolean (e.g.,M ≥ σ for a predefined bound σ).

GARs. A graph association rule (GAR) φ is defined as
Q[x̄](X → p0),

where Q[x̄] is a graph pattern, X is a (possibly empty) conjunction
of predicates ofQ[x̄], and p0 is a predicate ofQ[x̄]. We refer toQ[x̄]
and X → p0 as the pattern and dependency of φ, respectively.

Intuitively, the pattern Q in a GAR identifies entities in a graph,
and the dependencyX → p0 is applied to the entities. Constant and
variable predicates x .A = c and x .A = y.B specify value associations
of attributes, and link predicates l(x,y) makes link associations.
Moreover, one can “plug in” pre-trained ML modelsM for ER [124],
link predictions [188] and similarity checking [40].

The embedded ML predicates allow us to make use of pre-trained
ML models and moreover, interpret ML predictions in logic.

Example 4: Below are some GARs over patterns Q1-Q4 of Fig. 4.
(1) φ1=Q1[x̄](Ms (x1.abstract, x2.abstract)∧x1.seatingCapacity =
x2.seatingCapacity → x1.id = x2.id) is a GAR mined from the
knowledge graph DBpedia [123], whereMs is a model for checking
sentence similarity. This GAR can be used for ER; it states that two
stadiums x1 and x2 can be identified if they have similar abstracts
and the same seating capacity, and moreover, they are designed by
the same architect and have a common tenant (specified in Q1).
(2) φ2 = Q2[x̄](x2.genre = x3.genre ∧Me (x5, x6) ∧Ml (x2, x3) →
x2.releaseYear ≤ x3.releaseYear) is another GAR from DBpedia for
CR. HereMe is an ML model for ER andMl is a link prediction
model that predicts an edge labeled followedBy from x2 to x3. This
rule says that if two books have the same genre, author and pub-
lisher (in Q2), and if they are from the same series (determined by
Me), then the preceding one x2 predicted byMl is released earlier.

3790

x1

x2

x3

x4

tenant

tenant

design

design

stadium

stadium

team

architect

x1

x2

x3

x4

book

x5

x6w
rit

e

has

person

has

book
series

series

company

publish

publish

x1

x2

cite

paper …
…

paper

cite

x8 x9

cite cite

cite

paper

paper

paper

x7

x1

x2

x3

x4

x5
cre

ate

person
act_in

act_in

movie

person movie

movie

create

act_in

x1

flight ticket

user

city

genre

location

theater ticket

of

y

y1

y2

x

x2

buy
theater

book
write

x1
user

user

companycity

brand

y
x

x2

relocate_to

item

friend
x3

like

company

Q1 Q2 Q3 Q4 Q5 Q6

y1

Figure 4: Example graph patterns Q1–Q6

(3) φ3 = Q3[x̄](
∧
i , j ∈[1,7],i,j (xi .id , x j .id∧xi .venue = x j .venue∧

Ms (xi .topic, x j .topic)) → cite(x1, x9)) is from the citation network
DBLP [2]. It can predict the link that paper x1 cites x9 if there are
7 different papers x1–x7 published in the same venue and having
similar topics (byMs), and all of them cite both x8 and x9 except x1.
(4) φ4 = Q4[x̄](

∧
i , j ∈[3,5],i,j (xi .id , x j .id∧Ms (xi .topic, x j .topic)

∧ xi .language = x j .language) → Ml (x2, x5)) is from the movie
database IMDB [3]. It helps interpret the modelMl which predicts
that x2 is the creator of movie x5, i.e., this prediction is made because
there are 3 different movies x3–x5 with similar topics, the same
language and a common cast, and x2 creates x3 and x4. 2

Semantics. Consider a GAR φ = Q[x̄](X → p0). Denote by h(x̄) a
match of Q in a graph G, and by p a predicate of Q[x̄]. We write
h(µ(x)) as h(x), where µ is the mapping inQ from x̄ to vertices inQ .

A match h(x̄) satisfies a predicate p, denoted by h(x̄) |= p, if one
of following conditions is satisfied: (a) when p is l(x,y), there exists
an edge with label l from h(x) to h(y); (b) when p is x .A ⊗ y.B, the
vertex h(x) (resp. h(y)) carries attribute A (resp. B), and h(x).A ⊗
h(y).B; similarly for constant predicate h(x).A ⊗ c; and (c) when p
isM(x .Ā,y.B̄), the ML modelM predicts true at (h(x).Ā,h(y).B̄).

We write h(x̄) |= X if h(x̄) |= p for all p in a set X of predicates,
We write h(x̄) |= X→p0 if whenever h(x̄) |= X , then h(x̄) |= p0.

We say that a graphG satisfies GAR φ = Q[x̄](X → p0), denoted
by G |= φ, if for all matches h(x̄) of Q[x̄] in G, h(x̄) |= X → p0. We
say that G satisfies a set Σ of GARs, denoted by G |= Σ, if for all
GARs φ ∈ Σ, G |= φ, i.e., G satisfies every GAR in Σ.
Remark. GARs support all the primitives of relational data cleaning
rules. GARs support constant patterns of conditional functional
dependencies (CFDs) [54] via x .A = c , comparison predicates =,,,
<, ≤, >, ≥ of denial constraints (DCs) [14], and similarity checking
of matching dependencies (MDs) [51] via ML modelsM.

As shown in Example 4, GARs can serve as rules for conducting
ER and CR in graphs. GARs subsume graph dependencies GFDs
and GEDs as special cases. Besides, GARs may embed ML models as
predicates, and moreover, catch missing links with link predicates.

Complexity. There are three classical problems for dependencies.
The satisfiability problem is to decide, given a set Σ of GARs,

whether there exists a graph G such that G |= Σ and for each GAR
Q[x̄](X → p0) ∈ Σ,Q has a match inG? Intuitively, this is to ensure
that all GARs can be applied toG at the same time without conflicts.

A set Σ of GARs implies a GAR φ, denoted by Σ |= φ, if for all
graphs G , if G |= Σ then G |= φ, i.e., φ is a logical consequence of Σ.

The implication problem is to decide, given a set Σ of GARs and
a GAR φ, whether Σ |= φ? Intuitively, this is to remove redundant
GARs in rule discovery and speed up graph cleaning with GARs.

The validation problem is to decide, given a graph G and a set Σ
of GARs, whetherG |= Σ? Intuitively, this is to settle the complexity
of cleaning graphs by taking GARs as data cleaning rules.

It has been shown that the satisfiability, implication and valida-
tion is coNP-complete, NP-complete and coNP-complete, respec-
tively [60, 66]. Here we assume that given two lists of attributes x .Ā
and y.B̄, checkingM(x .Ā,y.B̄) is in PTIME in the sizes |x .Ā| and
|y.B̄ |, as commonly found in practice for pre-trained ML modelsM.

The complexity bounds are the same as for reasoning about
GEDs [66]. The implication and satisfiability analyses are no harder
than for relational CFDs, which are also intractable [54].

Algorithms for graph cleaning. Practical algorithms are already
in place for discovering GARs from real-life graphs, and for de-
tecting and fixing errors in large-scale graphs. These include (a)
algorithms for discovering GARs [50, 61]; (b) parallel algorithms
for detecting errors, batch and incremental [60]; and (c) parallel
algorithms for fixing errors [69] (the algorithms were developed
for GEDs but can be readily extended to GARs). In particular, the
algorithms of [50, 60, 69] are parallelly scalable. The algorithms
of [69] guarantee that the fixes generated are logical consequences
of GARs and ground truth accumulated, i.e., they guarantee to cor-
rect errors as long as the GARs and the ground truth are correct.

5.2 The Value of Big Graphs
Besides graph cleaning, what other applications may benefit from
the uniform framework of ML predictions and logic deduction? The
answer to the question is encouraging. GARs and their variants
have been deployed at Fishing Fort [166] and proven effective in a
variety of real-life applications. Below we report three cases.

(1) Online recommendation. ML models have been widely used
in e-commerce to recommend items to users [94]. The models are
often classified as collaborative filtering (CF) and content-based
(CB). CF identifies user preference and makes recommendation by
learning from user-item historical interactions, e.g., users’ previous
ratings and browsing history [18, 93, 115, 116, 128, 132, 170, 189,
199]. CB primarily compares the contents of users and items such
as user profiles and item features [22, 130, 138, 163, 183, 190, 204].
However, a single strategy, either CF or CB, often does not suffice
in practice. For example, instead of exploring new interesting items,
CF tends to find similar ones w.r.t. the user’s past interaction due to
its collaborative nature. It does not work well when the interaction
data is sparse and when a recommender system starts cold.

To rectify these limitations, hybrid models have been explored
to unify interaction-level similarity and content-level similarity,
e.g., [9, 29, 30, 32, 172, 181, 213, 216]. However, the hybrid approach
often requires to train a new ML model starting from scratch, and
it does not explain what is needed to improve a CF or CB model.

Fishing Fort adopts a variant of GARs as an alternative approach.
Instead of training a new model, it enriches existing CF, CB and
hybrid modelM with additional logic conditions, to reduce both
false positives (FPs) and false negatives (FNs) ofM. Suppose thatM
sets a strength threshold δ such that it recommends item y to user
x ifM(x,y) ≥ δ . Fishing Fort learns rules of the following forms.

3791

(1) Q[x̄](M(x,y) ≥ δ ∧X1 → (x, likes,y)), whereM is an existing
recommendation model, and X1 consists of of logic predicates. In-
tuitively, whileM(x,y) suggests to recommend item y to user x
(i.e.,M(x,y) ≥ δ), additional conditions X1 are checked to filter
FPs. That is, item y is recommended to user x only if X1 holds.
(2) Q[x̄](M(x,y)<δ∧X2→(x, likes,y)) to reduce FNs. That is, al-
thoughM(x,y) predicts that user x may not like item y (below
threshold δ), if logic conditionX2 holds, theny is recommended to x .

As examples, below are two such rules over Q5 −Q6 of Fig. 4.
(a) φ5 = Q5[x̄](M(x,y) ≥ 0.6 ∧ x1.destination = y1.name ∧
x2.genre = y2.name→ (x, likes,y)). It enhances the hybrid model
M of [164] by incorporating context features about flights and
theaters, and filters FPs with additional logic predicates. That is,
althoughM suggests to recommend tickets of theater y to user x
(i.e.,M(x,y) ≥ 0.6), if x travels to a city different from y’s (during
the same season), or if the genre of y does not match the user’s
preference, then the prediction ofM is FP and is thus overridden.
(b) φ6 = Q6[x̄](M(x,y) < 0.6 ∧ x3.name = y1.name ∧ x2.type
= coastal ∧ y1.business = “beach accessories” → (x, likes,y)). It
reduces FNs of the ML model M [164] by considering location
changes of user x and his social links (specified in Q4) overlooked
byM. It recommends item y to x if x has moved to a coastal city
x2, his friend x1 likes beach accessories of a particular company x3,
and if y is from the company of x3, althoughM predicts against it.

We defer the full treatment of enriching ML models to a later pa-
per. As will be reported there, this approach improves the accuracy
of popular ML models by 20.89% on average, up to 33.10%.

(2) Drug discovery. Drug discovery is a time-consuming and costly
process, starting from target selection and validation, through pre-
clinical screening, to clinical trials [79]. On average, the devel-
opment of a new drug takes 15 years [41] and costs 800 million
dollars [8], with a high risk of failure (>90% [17]). To shorten the
discovery cycle, reduce the cost and increase the success rate, com-
putational methods have been explored for identifying drug-disease
associations (DDA) and drug-drug interaction (DDI).

Fishing Fort has been applied to DDA discovery. Consider
dataset CTD (Comparative Toxicogenomics Database) of published
curated data about relationships between chemicals (drugs), genes,
diseases, and their effect pathways [38]. Modeled as a graph, its
vertices represent these entities and edges denote known associa-
tions among them. In this context, DDA analysis is equivalent to
predicting missing links between drugs and diseases of interest.

Upon the request of partners in pharmacy, Fishing Fort was
used to discover GARs targeting Parkinson disease. A simplified
GAR mined is φ7 = Q7[x̄](X7 → l(x0, x1)), in whichM7 is a pre-
trained ML model that predicts the associations between genes and
disease [125, 167, 188], and patternQ7 is depicted in Fig. 5. Together
with Q7, precondition X7 specifies the following: (1) drug x0 has a
known effect on an inborn genetic blood disease x2; (2) disease x1
is a type of Parkinson; (3) drug x0 interacts with a gene x3, which
shares an effect pathway x4 with x1; (4) drug x0 can interact with
a gene x5, which has anM7-predicted relationship with x1 (the
dashed arrow in Q7); and (5) drug x0 has a known effect on a type
of skin cancer x6, which shares an effect pathway with x1. The

<latexit sha1_base64="ODAxtMw82EjOyWICd05fkxtSXU0=">AAACPHicZVC7TsNAEDzzfkOgpLGIkChQZKMIaCIh0VCGRyASWNH5sk5OOZ+duz1IsPIJtPA3/Ac9HaKl5gIWAjzVaGcfsxOmgmv0vBdnYnJqemZ2bn5hcWl5ZXWttH6pE6MYNFgiEtUMqQbBJTSQo4BmqoDGoYCrsHc81q9uQWmeyAscphDEtCN5xBlFWzoftPzWWtmreF9wi8TPSZnkqLdKTvmmnTATg0QmqNbXvpdikFGFnAkYLdwYDSllPdqBa4PRYZBxmRoEyUbuttUiI1xM3LEdt80VMBRDSyhT3G5wWZcqytCa/r0po7GOEol69L8aU+za4hn0jV1Wzw9f+EE27h9fLYiItYgKDbtfJvwaKgNBJngI9gcJxYFbqvomyO55taj9jAWZhDscfPuxsfr/QyySy72Kv1+pnlbLR4d5wHNkk2yRHeKTA3JETkidNAgjHfJAHsmT8+y8Om/O+3frhJPPbJA/cD4+ASRQrxE=</latexit>G1

<latexit sha1_base64="Qc+1N4RmdZEbJuMxuw2ElEMr9yM=">AAACPHicZVC7TsNAEDzzfkOgpLGIkChQZKMIaCIh0VCGRyASWNH5sk5OOZ+duz1IsPIJtPA3/Ac9HaKl5gIWAjzVaGcfsxOmgmv0vBdnYnJqemZ2bn5hcWl5ZXWttH6pE6MYNFgiEtUMqQbBJTSQo4BmqoDGoYCrsHc81q9uQWmeyAscphDEtCN5xBlFWzoftLzWWtmreF9wi8TPSZnkqLdKTvmmnTATg0QmqNbXvpdikFGFnAkYLdwYDSllPdqBa4PRYZBxmRoEyUbuttUiI1xM3LEdt80VMBRDSyhT3G5wWZcqytCa/r0po7GOEol69L8aU+za4hn0jV1Wzw9f+EE27h9fLYiItYgKDbtfJvwaKgNBJngI9gcJxYFbqvomyO55taj9jAWZhDscfPuxsfr/QyySy72Kv1+pnlbLR4d5wHNkk2yRHeKTA3JETkidNAgjHfJAHsmT8+y8Om/O+3frhJPPbJA/cD4+ASJ6rxA=</latexit>G0
<latexit sha1_base64="LIn7SnxH5W66Zat5P2mkhHV+Heg=">AAACPHicZVC5TsNAFFxzE64AJY1FhESBIhtFkAYpEg1lOAJIYEXrzXOyynrt7L7lsvIJtPA3/Ac9HaKlZgMWgniq0Zt3zJswFVyj5706E5NT0zOzc/OlhcWl5ZXy6tq5Toxi0GKJSNRlSDUILqGFHAVcpgpoHAq4CPuHI/3iBpTmiTzD+xSCmHYljzijaEund+3ddrniVb1vuEXi56RCcjTbq07lupMwE4NEJqjWV76XYpBRhZwJGJaujYaUsj7twpXBqB5kXKYGQbKhu2W1yAgXE3dkx+1wBQzFvSWUKW43uKxHFWVoTf/dlNFYR4lEPRyvxhR7tngCA2OXNfPDZ36QjfpHVwsi4kFEhYadbxP+ASoDQSZ4CPYHCcWBG6oGJsgeeK2o/Y4FmYRbvPvxY2P1x0MskvPdqr9XrR3XKo16HvAc2SCbZJv4ZJ80yBFpkhZhpEseyRN5dl6cN+fd+fhpnXDymXXyD87nFyYmrxI=</latexit>G2

<latexit sha1_base64="81NI9s+mFOSfxWVRSGPvoBDUMxw=">AAACPHicZVC5TsNAFFyH+w5Q0lhESBQosiECGiQkGspwBCIRK1pvnpNV1mtn9y2XlU+ghb/hP+jpEC01G7AQ4KlGb94xb8JUcI2e9+KUxsYnJqemZ2bn5hcWl8rLKxc6MYpBgyUiUc2QahBcQgM5CmimCmgcCrgM+0cj/fIalOaJPMe7FIKYdiWPOKNoS2e37Z12ueJVvS+4ReLnpEJy1NvLTqXVSZiJQSITVOsr30sxyKhCzgQMZ1tGQ0pZn3bhymC0H2RcpgZBsqG7YbXICBcTd2TH7XAFDMWdJZQpbje4rEcVZWhN/96U0VhHiUQ9/F+NKfZs8RQGxi6r54fP/SAb9Y+uFkTEg4gKDVtfJvwDVAaCTPAQ7A8SigPXVA1MkN3zWlH7GQsyCTd4++3Hxur/D7FILrar/m61dlKrHO7nAU+TNbJONolP9sghOSZ10iCMdMkDeSRPzrPz6rw579+tJSefWSV/4Hx8Aif8rxM=</latexit>G3

has

has

has next

next

Battery State

Procedure

Procedure

Procedure

State
<latexit sha1_base64="xr390YyMMsxsK3A4yO6AkhJ7CFs=">AAACPHicZVC5TsNAFFyH+w5Q0lhESBQoslE4GiQkGspwBCIRK1pvnpNV1mtn9y2XlU+ghb/hP+jpEC01G7AQ4KlGb94xb8JUcI2e9+KUxsYnJqemZ2bn5hcWl8rLKxc6MYpBgyUiUc2QahBcQgM5CmimCmgcCrgM+0cj/fIalOaJPMe7FIKYdiWPOKNoS2e37Z12ueJVvS+4ReLnpEJy1NvLTqXVSZiJQSITVOsr30sxyKhCzgQMZ1tGQ0pZn3bhymC0H2RcpgZBsqG7YbXICBcTd2TH7XAFDMWdJZQpbje4rEcVZWhN/96U0VhHiUQ9/F+NKfZs8RQGxi6r54fP/SAb9Y+uFkTEg4gKDVtfJvwDVAaCTPAQ7A8SigPXVA1MkN3zWlH7GQsyCTd4++3Hxur/D7FILrar/m61dlKrHO7nAU+TNbJONolP9sghOSZ10iCMdMkDeSRPzrPz6rw579+tJSefWSV/4Hx8AiuorxU=</latexit>G5

<latexit sha1_base64="+1Mpb+rQqMMNIz11Z3FSBR7pHXY=">AAACPHicZVC7TsNAEDzzfkOgpLGIkChQZKMIaJAQNJQBkhAJrOh8WYcT57O524OAlU+ghb/hP+jpEC01l8RCgKca7exjdsJUcI2e9+aMjU9MTk3PzM7NLywuLa+UVps6MYpBgyUiUa2QahBcQgM5CmilCmgcCrgIb44H+sUdKM0TWceHFIKYdiWPOKNoS+e9drW9UvYq3hBukfg5KZMctXbJKV91EmZikMgE1frS91IMMqqQMwH9uSujIaXshnbh0mC0H2RcpgZBsr67abXICBcTd2DH7XAFDMWDJZQpbje47JoqytCa/r0po7GOEom6/78aU7y2xTO4NXZZLT9c94Ns0D+4WhARDyIqNGwPTfgHqAwEmeAh2B8kFAfuqLo1QfbIq0XtZyzIJNxjb+THxur/D7FImjsVf7dSPa2WD4/ygGfIOtkgW8Qne+SQnJAaaRBGuuSJPJMX59V5dz6cz1HrmJPPrJE/cL6+ASzUrx4=</latexit>G4
<latexit sha1_base64="ODAxtMw82EjOyWICd05fkxtSXU0=">AAACPHicZVC7TsNAEDzzfkOgpLGIkChQZKMIaCIh0VCGRyASWNH5sk5OOZ+duz1IsPIJtPA3/Ac9HaKl5gIWAjzVaGcfsxOmgmv0vBdnYnJqemZ2bn5hcWl5ZXWttH6pE6MYNFgiEtUMqQbBJTSQo4BmqoDGoYCrsHc81q9uQWmeyAscphDEtCN5xBlFWzoftPzWWtmreF9wi8TPSZnkqLdKTvmmnTATg0QmqNbXvpdikFGFnAkYLdwYDSllPdqBa4PRYZBxmRoEyUbuttUiI1xM3LEdt80VMBRDSyhT3G5wWZcqytCa/r0po7GOEol69L8aU+za4hn0jV1Wzw9f+EE27h9fLYiItYgKDbtfJvwaKgNBJngI9gcJxYFbqvomyO55taj9jAWZhDscfPuxsfr/QyySy72Kv1+pnlbLR4d5wHNkk2yRHeKTA3JETkidNAgjHfJAHsmT8+y8Om/O+3frhJPPbJA/cD4+ASRQrxE=</latexit>G1

<latexit sha1_base64="Qc+1N4RmdZEbJuMxuw2ElEMr9yM=">AAACPHicZVC7TsNAEDzzfkOgpLGIkChQZKMIaCIh0VCGRyASWNH5sk5OOZ+duz1IsPIJtPA3/Ac9HaKl5gIWAjzVaGcfsxOmgmv0vBdnYnJqemZ2bn5hcWl5ZXWttH6pE6MYNFgiEtUMqQbBJTSQo4BmqoDGoYCrsHc81q9uQWmeyAscphDEtCN5xBlFWzoftLzWWtmreF9wi8TPSZnkqLdKTvmmnTATg0QmqNbXvpdikFGFnAkYLdwYDSllPdqBa4PRYZBxmRoEyUbuttUiI1xM3LEdt80VMBRDSyhT3G5wWZcqytCa/r0po7GOEol69L8aU+za4hn0jV1Wzw9f+EE27h9fLYiItYgKDbtfJvwaKgNBJngI9gcJxYFbqvomyO55taj9jAWZhDscfPuxsfr/QyySy72Kv1+pnlbLR4d5wHNkk2yRHeKTA3JETkidNAgjHfJAHsmT8+y8Om/O+3frhJPPbJA/cD4+ASJ6rxA=</latexit>G0
<latexit sha1_base64="LIn7SnxH5W66Zat5P2mkhHV+Heg=">AAACPHicZVC5TsNAFFxzE64AJY1FhESBIhtFkAYpEg1lOAJIYEXrzXOyynrt7L7lsvIJtPA3/Ac9HaKlZgMWgniq0Zt3zJswFVyj5706E5NT0zOzc/OlhcWl5ZXy6tq5Toxi0GKJSNRlSDUILqGFHAVcpgpoHAq4CPuHI/3iBpTmiTzD+xSCmHYljzijaEund+3ddrniVb1vuEXi56RCcjTbq07lupMwE4NEJqjWV76XYpBRhZwJGJaujYaUsj7twpXBqB5kXKYGQbKhu2W1yAgXE3dkx+1wBQzFvSWUKW43uKxHFWVoTf/dlNFYR4lEPRyvxhR7tngCA2OXNfPDZ36QjfpHVwsi4kFEhYadbxP+ASoDQSZ4CPYHCcWBG6oGJsgeeK2o/Y4FmYRbvPvxY2P1x0MskvPdqr9XrR3XKo16HvAc2SCbZJv4ZJ80yBFpkhZhpEseyRN5dl6cN+fd+fhpnXDymXXyD87nFyYmrxI=</latexit>G2

<latexit sha1_base64="81NI9s+mFOSfxWVRSGPvoBDUMxw=">AAACPHicZVC5TsNAFFyH+w5Q0lhESBQosiECGiQkGspwBCIRK1pvnpNV1mtn9y2XlU+ghb/hP+jpEC01G7AQ4KlGb94xb8JUcI2e9+KUxsYnJqemZ2bn5hcWl8rLKxc6MYpBgyUiUc2QahBcQgM5CmimCmgcCrgM+0cj/fIalOaJPMe7FIKYdiWPOKNoS2e37Z12ueJVvS+4ReLnpEJy1NvLTqXVSZiJQSITVOsr30sxyKhCzgQMZ1tGQ0pZn3bhymC0H2RcpgZBsqG7YbXICBcTd2TH7XAFDMWdJZQpbje4rEcVZWhN/96U0VhHiUQ9/F+NKfZs8RQGxi6r54fP/SAb9Y+uFkTEg4gKDVtfJvwDVAaCTPAQ7A8SigPXVA1MkN3zWlH7GQsyCTd4++3Hxur/D7FILrar/m61dlKrHO7nAU+TNbJONolP9sghOSZ10iCMdMkDeSRPzrPz6rw579+tJSefWSV/4Hx8Aif8rxM=</latexit>G3

<latexit sha1_base64="xr390YyMMsxsK3A4yO6AkhJ7CFs=">AAACPHicZVC5TsNAFFyH+w5Q0lhESBQoslE4GiQkGspwBCIRK1pvnpNV1mtn9y2XlU+ghb/hP+jpEC01G7AQ4KlGb94xb8JUcI2e9+KUxsYnJqemZ2bn5hcWl8rLKxc6MYpBgyUiUc2QahBcQgM5CmimCmgcCrgM+0cj/fIalOaJPMe7FIKYdiWPOKNoS2e37Z12ueJVvS+4ReLnpEJy1NvLTqXVSZiJQSITVOsr30sxyKhCzgQMZ1tGQ0pZn3bhymC0H2RcpgZBsqG7YbXICBcTd2TH7XAFDMWdJZQpbje4rEcVZWhN/96U0VhHiUQ9/F+NKfZs8RQGxi6r54fP/SAb9Y+uFkTEg4gKDVtfJvwDVAaCTPAQ7A8SigPXVA1MkN3zWlH7GQsyCTd4++3Hxur/D7FILrar/m61dlKrHO7nAU+TNbJONolP9sghOSZ10iCMdMkDeSRPzrPz6rw579+tJSefWSV/4Hx8AiuorxU=</latexit>G5

<latexit sha1_base64="X8G0+OZ+usX/aPFiZEjdCRp3YV8=">AAACPHicZVC7TsNAEDzzJrwSKGksIiQKFNkoCmkiIdFQhkcIEljR+ViHE+ezc7cHASufQAt/w3/Q0yFaai5gIcBTjXb2MTthKrhGz3txJianpmdm5+ZLC4tLyyvlyuqpToxi0GGJSNRZSDUILqGDHAWcpQpoHArohtf7Y717A0rzRJ7gXQpBTPuSR5xRtKXjYa/RK1e9mvcFt0j8nFRJjnav4lQvLhNmYpDIBNX63PdSDDKqkDMBo9KF0ZBSdk37cG4wagYZl6lBkGzkblotMsLFxB3bcS+5AobizhLKFLcbXHZFFWVoTf/elNFYR4lEPfpfjSle2eIRDIxd1s4Pn/hBNu4fXy2IiK2ICg3bXyb8FioDQSZ4CPYHCcWBG6oGJsjueb2o/YwFmYRbHH77sbH6/0MsktOdmt+o1Q/r1b1mHvAcWScbZIv4ZJfskQPSJh3CSJ88kEfy5Dw7r86b8/7dOuHkM2vkD5yPTy1+rxY=</latexit>G6

<latexit sha1_base64="+1Mpb+rQqMMNIz11Z3FSBR7pHXY=">AAACPHicZVC7TsNAEDzzfkOgpLGIkChQZKMIaJAQNJQBkhAJrOh8WYcT57O524OAlU+ghb/hP+jpEC01l8RCgKca7exjdsJUcI2e9+aMjU9MTk3PzM7NLywuLa+UVps6MYpBgyUiUa2QahBcQgM5CmilCmgcCrgIb44H+sUdKM0TWceHFIKYdiWPOKNoS+e9drW9UvYq3hBukfg5KZMctXbJKV91EmZikMgE1frS91IMMqqQMwH9uSujIaXshnbh0mC0H2RcpgZBsr67abXICBcTd2DH7XAFDMWDJZQpbje47JoqytCa/r0po7GOEom6/78aU7y2xTO4NXZZLT9c94Ns0D+4WhARDyIqNGwPTfgHqAwEmeAh2B8kFAfuqLo1QfbIq0XtZyzIJNxjb+THxur/D7FImjsVf7dSPa2WD4/ygGfIOtkgW8Qne+SQnJAaaRBGuuSJPJMX59V5dz6cz1HrmJPPrJE/cL6+ASzUrx4=</latexit>G4

<latexit sha1_base64="DUBpSizsBvT8TAHjAWpFyVw/MD4=">AAACPHicZVC5TsNAFFyHK9wEShqLCIkCRTaKCA1SBA1lOAJIYEXr5Tmssl47u2+5rHwCLfwN/0FPh2ip2RALAZ5q9OYd8yZMBdfoea9OaWx8YnKqPD0zOze/sLhUWT7ViVEM2iwRiToPqQbBJbSRo4DzVAGNQwFnYW9/qJ/dgNI8kSd4n0IQ067kEWcUben4rtPoLFW9mvcNt0j8nFRJjlan4lQvrxJmYpDIBNX6wvdSDDKqkDMBg5lLoyGlrEe7cGEw2gkyLlODINnAXbdaZISLiTu0415xBQzFvSWUKW43uOyaKsrQmv69KaOxjhKJevC/GlO8tsUj6Bu7rJUfPvGDbNg/vFoQEXcjKjRsfpvwd1EZCDLBQ7A/SCgO3FDVN0H2wOtF7WcsyCTc4t3Ij43V/x9ikZxu1fztWv2wXm3u5QGXySpZIxvEJw3SJAekRdqEkS55JE/k2Xlx3px352PUWnLymRXyB87nFzJWryE=</latexit>G7

Drug

Pathway

Disease

Pathway

Gene

Gene

Disease

Disease

<latexit sha1_base64="nUip8iYWqr2qF3afngaHyuq3QLk=">AAACPHicZVC7TsNAEDyH95tASWMRIVGgyEYRoUGKoKFMgAASWNH5WIdTzmfnbo+XlU+ghb/hP+jpEC01F2IhwFONdvYxO2EquEbPe3VKY+MTk1PTM7Nz8wuLS8vllVOdGMWgzRKRqPOQahBcQhs5CjhPFdA4FHAW9g6G+tkNKM0TeYL3KQQx7UoecUbRlo5bnXpnueJVvW+4ReLnpEJyNDtlp3J5lTATg0QmqNYXvpdikFGFnAkYzF4aDSllPdqFC4PRbpBxmRoEyQbuhtUiI1xM3KEd94orYCjuLaFMcbvBZddUUYbW9O9NGY11lEjUg//VmOK1LR5B39hlzfzwiR9kw/7h1YKIuBdRoWHr24S/h8pAkAkegv1BQnHghqq+CbIHXitqP2NBJuEW70Z+bKz+/xCL5HS76u9Ua61apbGfBzxN1sg62SQ+qZMGOSRN0iaMdMkjeSLPzovz5rw7H6PWkpPPrJI/cD6/AOpfrvo=</latexit>

&7
<latexit sha1_base64="s7/j4tKC7HO1K53xamz8H+Dhn/s=">AAACPHicZVC7TsNAEDyH9zuBksYiQqJAkY0ioEGKoKFMgAASWNH5WIdTzmfnbo+XlU+ghb/hP+jpEC01F2IhwFONdvYxO2EquEbPe3VKY+MTk1PTM7Nz8wuLS+XK8qlOjGLQZolI1HlINQguoY0cBZynCmgcCjgLewdD/ewGlOaJPMH7FIKYdiWPOKNoS8etzm6nXPVq3jfcIvFzUiU5mp2KU728SpiJQSITVOsL30sxyKhCzgQMZi+NhpSyHu3ChcFoN8i4TA2CZAN33WqRES4m7tCOe8UVMBT3llCmuN3gsmuqKENr+vemjMY6SiTqwf9qTPHaFo+gb+yyZn74xA+yYf/wakFE3Iuo0LD5bcLfQ2UgyAQPwf4goThwQ1XfBNkDrxe1n7Egk3CLdyM/Nlb/f4hFcrpV87dr9Va92tjPA54mq2SNbBCf7JAGOSRN0iaMdMkjeSLPzovz5rw7H6PWkpPPrJA/cD6/AOw1rvs=</latexit>

&8

<latexit sha1_base64="c1ONfT/8gIFUSvN84fYOGGsnmOU=">AAACfXicZVDLbtNAFJ2YVymvtCzZWESVihRZdhXRsqhUwYYNUkBNW6mxrOvJdTvqeOzO3GlTRv4WvoYtrPkaGAergvqsjs65r3PzWgpDcfxrENy7/+Dho7XH60+ePnv+YrixeWQqqznOeCUrfZKDQSkUzkiQxJNaI5S5xOP84kPrH1+hNqJSh3RTY1rCmRKF4EBeyobv5iXQOQfpPjXZ3vYy24lWiilcIRTIeWYICJtxuMwmt5ZYNG+y4SiO4hXCPkk6MmIdptnGYDxfVNyWqIhLMOY0iWtKHWgSXGKzPrcGa+AXcIanloq91AlVW0LFm3DLe4WVIVVhGyNcCI2c5I0nwLXwE0J+Dho4+bD/TnJQmqJSZJq7apvFi1/w0vph027xYZK6tr7d2jOJ9guQBserI5J90hZTJ0WOPoPCfsMV6Eubuq9i0vdu21Kn8JqW3T15JRct9f9N7n6zT452ouRtNPk8GR287z69xl6x12ybJWyXHbCPbMpmjLNv7Dv7wX4OfgdbwTiI/pYGg67nJfsPwe4fSYTFwQ==</latexit>M8(x2.final_state, x4.id)

<latexit sha1_base64="Zr8uRFn20VUkL2PjiJvzwiNOnuU=">AAACfXicZVDLbtNAFJ2YVymvFJZsLKJKRYosuwRaFpUq2LBBCqhpKzWWdT25bkcdj92ZOyVl5G/ha9jCmq+BcbAqqM/q6Jz7OjevpTAUx78Gwa3bd+7eW7u//uDho8dPhhtPD01lNccZr2Slj3MwKIXCGQmSeFxrhDKXeJSfv2/9o0vURlTqgK5qTEs4VaIQHMhL2fDtvAQ64yDdxybb3Vpmr6KVYgpXCAVynhkCwmYcLrPX15ZYNC+z4SiO4hXCPkk6MmIdptnGYDxfVNyWqIhLMOYkiWtKHWgSXGKzPrcGa+DncIonlord1AlVW0LFm3DTe4WVIVVhGyNcCI2c5JUnwLXwE0J+Bho4+bD/TnJQmqJSZJqbapvFi5/xwvph027xQZK6tr7d2jOJ9gqQBserI5I90hZTJ0WOPoPCfsMl6Aubuq9i0veu21Kn8Astu3vySi5a6v+b3PxmnxxuR8mbaPJpMtp/1316jT1nL9gWS9gO22cf2JTNGGff2Hf2g/0c/A42g3EQ/S0NBl3PM/Yfgp0/TXfFww==</latexit>M8(x3.final_state, x5.id)

<latexit sha1_base64="rVvsrU54DYykrvk/jvcOVOt2lxM=">AAACW3icZVDLSuRAFK2O42PaV6sMLmYTbASFpkmkfWwEcTZuhB6xVbBDqFTfaGGlEqtuaWvI17h1PsiF/2LFCaLmrA733Nc5USa4Rs97aTgTPyanpmd+Nmfn5hcWW0vLZzo1isGApSJVFxHVILiEAXIUcJEpoEkk4Dy6+VPq53egNE/lKT5kECT0SvKYM4q2FLZWhwnFa0ZFflyEuxvjcLvjjkN/M2y1va73DrdO/Iq0SYV+uNToDEcpMwlIZIJqfel7GQY5VciZgKI5NBoyym7oFVwajPeCnMvMIEhWuOtWi41wMXXLJ90RV8BQPFhCmeJ2g8uuqaIMrZXPm3Ka6DiVqIvv1dKWLZ7ArbHL+tXhUz/Iy/7yak1E3I+p0NB5f8LfR2UgyAWPwHqQUB+4o+rWBPkj79W1j7Egl3CP4+qfKBWjktp8/e9p1snZVtff6fb+9toHh1XSM+Q3WSMbxCe75IAckT4ZEEYK8kSeyb/GqzPhNJ25/61Oo5pZIV/g/HoDk0e2rw==</latexit>M7(x5, x1)

Figure 5: Graph patterns Q7–Q8

predicted link l(x0, x1) (the bold line in Q7) indicates that drug x0
may be associated to Parkinson’s disease x1 in some way.

Such GARs suggest 5 drugs that may have a hidden association
with Parkinson’s disease. Our partners in pharmacy have verified 4
predictions with published evidence, including Colforsin (Forskolin)
[209], Sulindac [34, 162], Tamoxifen [122], and Tretinoin [174]. The
remaining one is undergoing their active lab investigation.

(3) Lithium-Ion battery manufacturing. Capacity grading is a
critical process in Lithium-Ion battery manufacturing. For safety,
only battery cells with roughly the same capacity can be packed
in the same module. Thus, cell capacities must be graded with
high accuracy. The current industrial practice is conservative: first
fully charge every battery, and then measure its capacity with a
full discharge. It takes 14+ hours and is energy-consuming. Our
industrial partners want to make accurate estimations based on
measurements collected during a partial charge/discharge.

As a cost-effective solution, Fishing Fort first discretizes the time-
series measurements; it splits the entire process into consecutive
procedures based on their charging/discharging current. It trains an
ML classifierM8 via unsupervised clustering. Taking as input a vec-
tor of battery state statistics (voltage, temperature, and accumulated
quantity of electricity),M8 maps each snapshot of measurements
into a set S of discrete states. The graph G is modeled with three
types of vertices: (1) Procedure carries an array of attributes in-
cluding the procedure ID, its initial/final weights, the initial/final
battery state statistics, and the charging/discharging current; (2)
State denotes a state in S; and (3) Battery carries metadata of a
battery cell, e.g., the cell ID, the testing slot ID, and its capacity
interval. An edge denotes either a transition between procedures,
or an association between a battery cell and a procedure.

On graphsG , Fishing Fort discovered GARs for capacity grading.
A (simplified)GAR isφ8 = Q8[x̄](X8 → x0.capacity = 8), whereQ8
is a pattern shown in Fig. 5, and its consequence grades a matching
battery cell as Capacity Interval 8. Together with Q8, X8 specifies
the following conditions: (1) the weight before and after the Elec-
trolyte Filling procedure (x1) is 555±25g and 605±25g, respectively;
(2) its Formation-A procedure (x2) uses a constant charging current
at 3.8A, with initial voltage between 0–100mV and a final state 324
(x4) categorized byM8 (dashed arrows inQ8); and (3) its Formation-
B procedure (x3) uses a constant charging current at 8.8A, with
initial voltage between 3.3–3.4V and final state 738 (x5).

With such GARs, Fishing Fort reduces charging to 35–50% of the
full battery capacity, 75–100% of discharge (in some cases it even
avoids discharging completely), and the time for the capacity grad-
ing process from 14 hours to 4 hours. With statistics of the partial
charge/discharge, it keeps the error rate under 0.4%, a record in the
industry. These translate to 80% reduction in energy consumption
for charging and cooling, and cut equipment costs in half.

3792

6 OPEN RESEARCH ISSUES
We have demonstrated that each and every of the 4V characteri-
zations of big graphs is a rich source of questions and vitality. As
remarked earlier, the study of big graphs has raised as many ques-
tions as it has answered. There is naturally much more to be done.

Below we highlight a few topics that demand a full treatment.

(1) Volume. One topic is to study the parallel scalability of com-
putational problems (Section 2.2). What parallel computations can
scale with big graphs by adding more machines? For what prob-
lems is parallel processing not effective and we have to seek other
solutions? Is there a hierarchy of parallel computation complexity
classes with reductions and complete problems, when both compu-
tational cost and communication cost are taken into account?

Another issue concerns the capacity of a single machine for big
graph analytics. Small companies may not afford a 1000-node cluster.
To this end several single-machine graph systems have been devel-
oped [10, 36, 85, 121, 133, 139, 160, 198, 215]. However, how far can
we go with such systems for big graph analytics? Would a problem
become parallelly scalable when we adopt multi-core parallelism
instead of multi-machine parallelism? For out-of-core systems,
how can we systematically optimize CPU-bound and I/O-bound
computations? When does a vertex-centric model work better than
the graph-centric model, and vice versa? When parallelism alone
does not suffice, can we query big graphs under limited resources
by making graphs small [62, 63] and queries compact [47]?

(2) Velocity. As shown in Section 3.2, we can deduce an incremental
algorithmA∆ from fixpoint batch algorithmA such thatA∆ is cor-
rect and bounded relative toA. Can we extend the method and sys-
tematically incrementalize graph algorithms beyond fixpoint? Can
we develop a practical system to incrementalize algorithms with
performance guarantees and with minimum human intervention?
Can we incrementalize algorithms beyond graph computations?

Another topic is to give a full treatment of the complexity models
of incrementalized algorithms. There has been work on modeling
the complexity of incremental computation, in the classical set-
ting [144] and parameterized complexity setting [136]. When it
comes to incrementalization, we need to revisit the complexity
models in terms of |AFF|, the size of affected areas by updates.

(3) Variety. One topic concerns how to efficiently support semantic
joins S 1A G. The evaluation strategy of Section 4.2 requires
database systems to invoke HER and attribute/link extraction from
graph G. A question is whether we can compute S 1A G without
calling these external functions at runtime?

When S is a relation D in the input database D, we can com-
pute f (D,G) and h(D,G) offline; we reuse them when needed with-
out calling HER and data extraction at runtime, and incrementally
maintain them in response to updates to D and G. As opposed to
federated systems, this does not require to store the entire vertex
and edge relations of G in a database. However, when S is a sub-
query Q , it is more challenging. Can we approximate Q 1A G
by pre-computing certain HER match and property relations, and
rewriting the semantic join by using the cached relations as an
heuristic solution? How accurate is this approximate solution?

Another topic is about incomplete information, a critical issue
of data quality [53]. On the one hand, it is common to find at-

tribute values and tuples missing from relational databases. On the
other hand, several knowledge graphs are already in place, e.g.,
FreeBase [23], Yago [98], Wikipedia [5] and DBpedia [123]. These
knowledge graphs have accumulated semantic information and
expert knowledge about entities. Can we make use of the semantic
information of a knowledge graph G to impute missing data in our
databases D? This is feasible by leveraging HER to align entities
across relations D and graphs G (Section 4.1). We can also enrich
D with additional attributes and hidden links extracted fromG , not
limited to filling in null values. Moreover, we can extract data from
other source graphs G, not limited to knowledge graphs.

(4) Veracity. As shown in Section 5.1, GARsQ[x̄](X → p0) support
the primitives of CFDs, DCs and MDs. However, it is intractable
to reason about GARs. Worse yet, it is expensive to learn GARs
and detect/fix errors in dense graphs when GARs have large pat-
terns Q . Can we find rules that extend relational cleaning rules
to graphs, embed ML models as predicates and moreover, allow
“tractable” reasoning without degrading the accuracy of ER and
CR? In addition, is it possible for such rules to support parametric
simulation across diverse graphs, extract data from external sources
and impute missing values and missing links? After all, the problem
of missing data is more staggering for schemaless graphs than for
relational databases. Furthermore, can such rules also deduce tem-
poral orders to cope with stale data? That is, we aim to deal with
ER, CR, timeliness and missing data in a uniform framework, while
retaining the tractability and accuracy. These also demand revisions
to algorithms for rule discovery and error detection/correction.

As shown in Example 4, GARs of the form Q[x̄](X →M) sug-
gests that we could discover logic conditions X to characterize ML
predictions of modelM. This is feasible for GNN-basedM. It is
known that GNN models are at most as expressive as two-variable
first-order logic with counting quantifiers ∃≥pz [25, 90]. Then, can
we systematically discover logic interpretation of ML predictions
of such models, for vertex classification and link prediction?

A third topic is to explore potential values of big graph analyt-
ics. As shown in Section 5.2, Fishing Fort has found encouraging
applications in online recommendation, drug discovery and bat-
tery manufacturing. It is currently practiced for target identification
to identify molecular that cures or stops the progression of a dis-
ease, drug repurposing to treat new diseases with known drugs,
and adverse drug reaction (ADR) prediction to identify undesirable
effects [202]. Extending GARs with temporal graph patterns, it has
also proven effective in event prediction when applied to temporal
graphs [61], to predict a real-world occurrence that relates to a par-
ticular topic and will take place at a specific time [211]. Provided
with sufficient data, we expect that it will bring us more surprises
from predicting fraud, system failures and disease outbreaks.

ACKNOWLEDGMENTS
The results presented here are from joint work with Yang Cao, Grace
Fan, Wenzhi Fu, Ruochun Jin, Muyang Liu, Ping Lu, Chao Tian,
Jingbo Xu, Ruiqi Xu, Wenyuan Yu, Qiang Yin, and Jingren Zhou. The
author thanks them for their contributions. The author also thanks
Shuhao Liu and Chao Tian for their help in preparing examples in
this article. The work was supported in part by ERC 652976 and
Royal Society Wolfson Research Merit Award WRM/R1/180014.

3793

REFERENCES
[1] 2020. GraphScope. https://graphscope.io/.
[2] 2021. DBLP collaboration network.

https://snap.stanford.edu/data/com-DBLP.html.
[3] 2022. IMDB. https://www.imdb.com/interfaces.
[4] 2022. Neo4J Project. http://neo4j.org/.
[5] 2022. Wikipedia. https://www.wikipedia.org.
[6] Azza Abouzeid, Kamil Bajda-Pawlikowski, Daniel J. Abadi, Alexander Rasin,

and Avi Silberschatz. 2009. HadoopDB: An Architectural Hybrid of MapReduce
and DBMS Technologies for Analytical Workloads. PVLDB 2, 1 (2009), 922–933.

[7] Umut A. Acar. 2005. Self-Adjusting Computation. Ph.D. Dissertation. CMU.
[8] Christopher P Adams and Van V Brantner. 2006. Estimating the cost of new

drug development: is it really 802 million? Health affairs 25, 2 (2006), 420–428.
[9] Sajad Ahmadian, Nima Joorabloo, Mahdi Jalili, Majid Meghdadi, Mohsen Af-

sharchi, and Yongli Ren. 2018. A temporal clustering approach for social recom-
mender systems. In ASONAM. IEEE, 1139–1144.

[10] Zhiyuan Ai, Mingxing Zhang, Yongwei Wu, Xuehai Qian, Kang Chen, and
Weimin Zheng. 2017. Squeezing out All the Value of Loaded Data: An Out-of-
core Graph Processing System with Reduced Disk I/O. In USENIX. 125–137.

[11] João Paulo Aires and Felipe Meneguzzi. 2017. Norm Conflict Identification
Using Deep Learning. In AAMAS Workshops. 194–207.

[12] Arvind Arasu, Michaela Götz, and Raghav Kaushik. 2010. On active learning of
record matching packages. In SIGMOD. 783–794.

[13] Arvind Arasu, Christopher Ré, and Dan Suciu. 2009. Large-Scale Deduplication
with Constraints Using Dedupalog. In ICDE. 952–963.

[14] Marcelo Arenas, Leopoldo Bertossi, and Jan Chomicki. 1999. Consistent Query
Answers in Inconsistent Databases. In PODS. 68–79.

[15] Zeinab Bahmani, Leopoldo E. Bertossi, and Nikolaos Vasiloglou. 2017. ERBlox:
Combining matching dependencies with machine learning for entity resolution.
Int. J. Approx. Reasoning 83 (2017), 118–141.

[16] Jørgen Bang-Jensen and Gregory Z. Gutin. 2009. Digraphs - Theory, Algorithms
and Applications, Second Edition. Springer.

[17] Nurken Berdigaliyev and Mohamad Aljofan. 2020. An overview of drug discov-
ery and development. Future Medicinal Chemistry 12, 10 (2020), 939–947.

[18] Rianne van den Berg, Thomas N Kipf, and Max Welling. 2017. Graph convolu-
tional matrix completion. arXiv preprint arXiv:1706.02263 (2017).

[19] James Bergstra and Yoshua Bengio. 2012. Random search for hyper-parameter
optimization. JMLR 13, 1 (2012), 281–305.

[20] Leopoldo E. Bertossi, Solmaz Kolahi, and Laks V. S. Lakshmanan. 2013. Data
Cleaning and Query Answering with Matching Dependencies and Matching
Functions. Theory Comput. Syst. 52, 3 (2013), 441–482.

[21] Indrajit Bhattacharya and Lise Getoor. 2006. Entity resolution in graphs. Mining
graph data (2006).

[22] Dmitry Bogdanov, Martín Haro, Ferdinand Fuhrmann, Anna Xambó, Emilia
Gómez, and Perfecto Herrera. 2013. Semantic audio content-based music recom-
mendation and visualization based on user preference examples. Information
Processing & Management 49, 1 (2013), 13–33.

[23] Kurt D. Bollacker, Colin Evans, Praveen K. Paritosh, Tim Sturge, and Jamie
Taylor. 2008. Freebase: A collaboratively created graph database for structuring
human knowledge. In SIGMOD. 1247–1250.

[24] Florian Bourse, Marc Lelarge, and Milan Vojnovic. 2014. Balanced graph edge
partition. In SIGKDD. 1456–1465.

[25] Jin-yi Cai, Martin Fürer, and Neil Immerman. 1992. An optimal lower bound on
the number of variables for graph identifications. Comb. 12, 4 (1992), 389–410.

[26] Yufei Cai, Paolo G. Giarrusso, Tillmann Rendel, and Klaus Ostermann. 2014. A
theory of changes for higher-order languages: Incrementalizing λ-calculi by
static differentiation. In PLDI. 145–155.

[27] Zhuhua Cai, Dionysios Logothetis, and Georgos Siganos. 2012. Facilitating
real-time graph mining. In CloudDB.

[28] Riccardo Cappuzzo, Paolo Papotti, and Saravanan Thirumuruganathan. 2020.
Creating Embeddings of Heterogeneous Relational Datasets for Data Integration
Tasks. In SIGMOD. 1335–1349.

[29] Dawei Chen, Cheng Soon Ong, and Lexing Xie. 2016. Learning points and routes
to recommend trajectories. In CIKM. 2227–2232.

[30] Xu Chen, Yongfeng Zhang, and Zheng Qin. 2019. Dynamic explainable recom-
mendation based on neural attentive models. In AAAI, Vol. 33. 53–60.

[31] Zhaoqiang Chen, Qun Chen, Fengfeng Fan, Yanyan Wang, Zhuo Wang, Youcef
Nafa, Zhanhuai Li, Hailong Liu, and Wei Pan. 2018. Enabling quality control
for entity resolution: A human and machine cooperation framework. In ICDE.
IEEE, 1156–1167.

[32] Wei-Ta Chu and Ya-Lun Tsai. 2017. A hybrid recommendation system consider-
ing visual information for predicting favorite restaurants. World Wide Web 20,
6 (2017), 1313–1331.

[33] Gao Cong, Wenfei Fan, Floris Geerts, Xibei Jia, and Shuai Ma. 2007. Improving
Data Quality: Consistency and Accuracy. In VLDB. 315–326.

[34] A Dairam, Edith M Antunes, KS Saravanan, and Santylal Daya. 2006. Non-
steroidal anti-inflammatory agents, tolmetin and sulindac, inhibit liver tryp-
tophan 2, 3-dioxygenase activity and alter brain neurotransmitter levels. Life

sciences 79, 24 (2006), 2269–2274.
[35] Sanjib Das, Paul Suganthan G. C., AnHai Doan, Jeffrey F. Naughton, Ganesh

Krishnan, Rohit Deep, Esteban Arcaute, Vijay Raghavendra, and Youngchoon
Park. 2017. Falcon: Scaling Up Hands-Off Crowdsourced Entity Matching to
Build Cloud Services. In SIGMOD. 1431–1446.

[36] Roshan Dathathri, Gurbinder Gill, Loc Hoang, Hoang-Vu Dang, Alex Brooks,
Nikoli Dryden, Marc Snir, and Keshav Pingali. 2018. Gluon: A Communication-
Optimizing Substrate for Distributed Heterogeneous Graph Analytics. In PLDI.
752–768.

[37] Ankur Dave, Alekh Jindal, Li Erran Li, Reynold Xin, Joseph Gonzalez, and Matei
Zaharia. 2016. GraphFrames: an integrated API for mixing graph and relational
queries. In GRADES. 2.

[38] Allan Peter Davis, Cynthia J Grondin, Robin J Johnson, Daniela Sciaky, Jolene
Wiegers, Thomas C Wiegers, and Carolyn J Mattingly. 2021. Comparative
toxicogenomics database (CTD): update 2021. Nucleic acids research 49, D1
(2021), D1138–D1143.

[39] Amol Deshpande. 2018. In situ graph querying and analytics with graphgen:
Extended abstract. In GRADES. 2:1–2:2.

[40] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of deep bidirectional transformers for language understanding. In
NAACL-HLT.

[41] J A. Dimasi. 2001. New drug development in the United States from 1963 to
1999. In Clinical pharmacology and therapeutics vol. 69,5.

[42] Mohamad Dolatshah, Mathew Teoh, Jiannan Wang, and Jian Pei. 2018. Cleaning
Crowdsourced Labels Using Oracles For Statistical Classification. PVLDB 12, 4
(2018), 376–389.

[43] Yuxiao Dong, Nitesh V. Chawla, and Ananthram Swami. 2017. metapath2vec:
Scalable Representation Learning for Heterogeneous Networks. In KDD.

[44] Jennie Duggan, Aaron J. Elmore, Michael Stonebraker, Magdalena Balazinska,
Bill Howe, Jeremy Kepner, Sam Madden, David Maier, Tim Mattson, and Stan-
ley B. Zdonik. 2015. The BigDAWG Polystore System. SIGMOD Rec. 44, 2 (2015),
11–16.

[45] Muhammad Ebraheem, Saravanan Thirumuruganathan, Shafiq R. Joty, Mourad
Ouzzani, and Nan Tang. 2018. Distributed Representations of Tuples for Entity
Resolution. PVLDB 11, 11 (2018), 1454–1467.

[46] Federico Errica, Marco Podda, Davide Bacciu, and Alessio Micheli. 2020. A Fair
Comparison of Graph Neural Networks for Graph Classification. In ICLR.

[47] Grace Fan, Wenfei Fan, Yuanhao Li, Ping Lu, Chao Tian, and Jingren Zhou. 2020.
Extending Graph Patterns with Conditions. In SIGMOD. 715–729.

[48] Jing Fan, Adalbert Gerald Soosai Raj, and Jignesh M. Patel. 2015. The Case
Against Specialized Graph Analytics Engines. In CIDR.

[49] Wenfei Fan, Zhe Fan, Chao Tian, and Xin Luna Dong. 2015. Keys for graphs.
PVLDB 8, 12 (2015), 1590–1601.

[50] Wenfei Fan, Wenzhi Fu, Ruochun Jin, Ping Lu, and Chao Tian. 2022. Discovering
Association Rules from Big Graphs. PVLDB 15, 7 (2022), 1479–1492.

[51] Wenfei Fan, Hong Gao, Xibei Jia, Jianzhong Li, and Shuai Ma. 2011. Dynamic
constraints for record matching. VLDB J. 20, 4 (2011), 495–520.

[52] Wenfei Fan, Ling Ge, Ruochun Jin, Ping Lu, and Wenyuan Yu. 2022. Linking
Entities across Relations and Graphs. In ICDE. IEEE.

[53] Wenfei Fan and Floris Geerts. 2012. Foundations of Data Quality Management.
Morgan & Claypool Publishers.

[54] Wenfei Fan, Floris Geerts, Xibei Jia, and Anastasios Kementsietsidis. 2008. Con-
ditional Functional Dependencies for Capturing Data Inconsistencies. ACM
Trans. Database Syst. 33, 1 (2008), 25:1–25:49.

[55] Wenfei Fan, Floris Geerts, Nan Tang, and Wenyuan Yu. 2014. Conflict resolution
with data currency and consistency. J. Data and Information Quality 5, 1-2
(2014), 6:1–6:37.

[56] Wenfei Fan, Tao He, Longbin Lai, Xue Li, Yong Li, Zhao Li, Zhengping Qian,
Chao Tian, Lei Wang, Jingbo Xu, Youyang Yao, Qiang Yin, Wenyuan Yu, Kai
Zeng, Kun Zhao, Jingren Zhou, Diwen Zhu, and Rong Zhu. 2021. GraphScope:
A Unified Engine For Big Graph Processing. PVLDB 14, 12 (2021), 2879–2892.

[57] Wenfei Fan, Chunming Hu, Xueli Liu, and Ping Lu. 2020. Discovering Graph
Functional Dependencies. ACM Trans. Database Syst. 45, 3 (2020), 15:1–15:42.

[58] Wenfei Fan, Chunming Hu, and Chao Tian. 2017. Incremental Graph Computa-
tions: Doable and Undoable. In SIGMOD. 155–169.

[59] Wenfei Fan, Ruochun Jin, Muyang Liu, Ping Lu, Xiaojian Luo, Ruiqi Xu, Qiang
Yin, Wenyuan Yu, and Jingren Zhou. 2020. Application Driven Graph Partition-
ing. In SIGMOD. 1765–1779.

[60] Wenfei Fan, Ruochun Jin, Muyang Liu, Ping Lu, Chao Tian, and Jingren Zhou.
2020. Capturing Associations in Graphs. PVLDB 13, 11 (2020), 1863–1876.

[61] Wenfei Fan, Ruochun Jin, Ping Lu, Chao Tian, and Ruiqi Xu. 2022. Towards
Event Prediction in Temporal Graphs. PVLDB 15, 9 (2022), 1861–1874.

[62] Wenfei Fan, Yuanhao Li, Muyang Liu, and Can Lu. 2021. Making Graphs
Compact by Lossless Contraction. In SIGMOD. 472–484.

[63] Wenfei Fan, Yuanhao Li, Muyang Liu, and Can Lu. 2022. A Hierarchical Con-
traction Scheme for Querying Big Graphs. In SIGMOD. 1726–1740.

[64] Wenfei Fan, Muyang Liu, Chao Tian, Ruiqi Xu, and Jingren Zhou. 2020. Incre-
mentalization of Graph Partitioning Algorithms. PVLDB 13, 8 (2020), 1261–1274.

3794

[65] Wenfei Fan, Xueli Liu, Ping Lu, and Chao Tian. 2018. Catching Numeric Incon-
sistencies in Graphs. In SIGMOD. 381–393.

[66] Wenfei Fan and Ping Lu. 2019. Dependencies for Graphs. ACM Trans. Database
Syst. 44, 2 (2019), 5:1–5:40.

[67] Wenfei Fan, Ping Lu, Xiaojian Luo, Jingbo Xu, Qiang Yin, Wenyuan Yu, and
Ruiqi Xu. 2018. Adaptive Asynchronous Parallelization of Graph Algorithms.
In SIGMOD. 1141–1156.

[68] Wenfei Fan, Ping Lu, and Chao Tian. 2020. Unifying logic rules and machine
learning for entity enhancing. Sci. China Inf. Sci. 63, 7 (2020).

[69] Wenfei Fan, Ping Lu, Chao Tian, and Jingren Zhou. 2019. Deducing Certain
Fixes to Graphs. PVLDB 12, 7 (2019), 752–765.

[70] Wenfei Fan, Ping Lu, Wenyuan Yu, Jingbo Xu, Qiang Yin, Xiaojian Luo, Jingren
Zhou, and Ruochun Jin. 2020. Adaptive Asynchronous Parallelization of Graph
Algorithms. ACM Trans. Database Syst. 45, 2 (2020), 6:1–6:45.

[71] Wenfei Fan and Chao Tian. 2022. Incremental Graph Computations: Doable
and Undoable. ACM Trans. Database Syst. 47, 2 (2022), 6:1–6:44.

[72] Wenfei Fan, Chao Tian, Yanghao Wang, and Qiang Yin. 2021. Discrepancy
Detection and Incremental Detection. PVLDB 14, 8 (2021), 1351–1364.

[73] Wenfei Fan, Chao Tian, Ruiqi Xu, Qiang Yin, Wenyuan Yu, and Jingren Zhou.
2021. Incrementalizing Graph Algorithms. In SIGMOD. 459–471.

[74] Wenfei Fan, Xin Wang, and Yinghui Wu. 2013. Incremental graph pattern
matching. ACM Trans. Database Syst. 38, 3 (2013).

[75] Wenfei Fan, Xin Wang, and Yinghui Wu. 2014. Distributed graph simulation:
Impossibility and possibility. PVLDB 7, 12 (2014), 1083–1094.

[76] Wenfei Fan, Yinghui Wu, and Jingbo Xu. 2016. Functional dependencies for
graphs. In SIGMOD. 1843–1857.

[77] Wenfei Fan, Jingbo Xu, Yinghui Wu, Wenyuan Yu, Jiaxin Jiang, Zeyu Zheng,
Bohan Zhang, Yang Cao, and Chao Tian. 2017. Parallelizing Sequential Graph
Computations. In SIGMOD. 495–510.

[78] Wenfei Fan, Wenyuan Yu, Jingbo Xu, Jingren Zhou, Xiaojian Luo, Qiang Yin, Ping
Lu, Yang Cao, and Ruiqi Xu. 2018. Parallelizing Sequential Graph Computations.
ACM Trans. Database Syst. 43, 4 (2018), 18:1–18:39.

[79] Chris Fotis, Asier Antoranz, Dimitris Hatziavramidis, Theodore Sakellaropoulos,
and Leonidas G. Alexopoulos. 2017. Pathway-based technologies for early drug
discovery. Drug Discovery Today (2017).

[80] Michael L Fredman and Robert Endre Tarjan. 1987. Fibonacci heaps and their
uses in improved network optimization algorithms. JACM 34, 3 (1987).

[81] Cheng Fu, Xianpei Han, Le Sun, Bo Chen, Wei Zhang, Suhui Wu, and Hao Kong.
2019. End-to-end multi-perspective matching for entity resolution. In IJCAI.
4961–4967.

[82] Xinyu Fu, Jiani Zhang, Ziqiao Meng, and Irwin King. 2020. MAGNN: Metap-
ath aggregated graph neural network for heterogeneous graph embedding. In
WWW. 2331–2341.

[83] Michael Garey and David Johnson. 1979. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman.

[84] Gartner. 2018. How to create a business case for data quality improvement.
https://www.gartner.com/smarterwithgartner/how-to-create-a-business-case-for-
data-quality-improvement/.

[85] Gurbinder Gill, Roshan Dathathri, Loc Hoang, Ramesh Peri, and Keshav Pingali.
2020. Single Machine Graph Analytics on Massive Datasets Using Intel Optane
DC Persistent Memory. PVLDB 13, 8 (2020), 1304–1318.

[86] Lukasz Golab, Howard Karloff, Flip Korn, Divesh Srivastava, and Bei Yu. 2008.
On generating near-optimal tableaux for conditional functional dependencies.
PVLDB 1, 1 (2008), 376–390.

[87] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos
Guestrin. 2012. PowerGraph: Distributed Graph-Parallel Computation on Natu-
ral Graphs. In USENIX. 17–30.

[88] Joseph E. Gonzalez, Reynold S. Xin, Ankur Dave, Daniel Crankshaw, Michael J.
Franklin, and Ion Stoica. 2014. GraphX: Graph Processing in a Distributed
Dataflow Framework. In OSDI. 599–613.

[89] Raymond Greenlaw, H. James Hoover, and Walter L. Ruzzo. 1995. Limits to
Parallel Computation: P-Completeness Theory. Oxford University Press.

[90] Martin Grohe. 2020. word2vec, node2vec, graph2vec, X2vec: Towards a Theory
of Vector Embeddings of Structured Data. In PODS. ACM, 1–16.

[91] Songtao Guo, Xin Luna Dong, Divesh Srivastava, and Remi Zajac. 2010. Record
Linkage with Uniqueness Constraints and Erroneous Values. PVLDB 3, 1 (2010),
417–428.

[92] Daniel Halperin, Victor Teixeira de Almeida, Lee Lee Choo, Shumo Chu,
Paraschos Koutris, Dominik Moritz, Jennifer Ortiz, Vaspol Ruamviboonsuk,
Jingjing Wang, Andrew Whitaker, Shengliang Xu, Magdalena Balazinska, Bill
Howe, and Dan Suciu. 2014. Demonstration of the Myria big data management
service. In SIGMOD. 881–884.

[93] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative filtering. In WWW. 173–182.

[94] Xinran He, Junfeng Pan, Ou Jin, Tianbing Xu, Bo Liu, Tao Xu, Yanxin Shi,
Antoine Atallah, Ralf Herbrich, Stuart Bowers, and Joaquin Quiñonero Candela.
2014. Practical lessons from predicting clicks on ads at facebook. In Proceedings
of the Eighth International Workshop on Data Mining for Online Advertising. 1–9.

[95] Alireza Heidari, Joshua McGrath, Ihab F Ilyas, and Theodoros Rekatsinas. 2019.
HoloDetect: Few-Shot Learning for Error Detection. In SIGMOD. 829–846.

[96] M. R. Henzinger, T. Henzinger, and P. Kopke. 1995. Computing simulations on
finite and infinite graphs. In FOCS. 453–462.

[97] Linus Hermansson, Tommi Kerola, Fredrik Johansson, Vinay Jethava, and Dev-
datt Dubhashi. 2013. Entity disambiguation in anonymized graphs using graph
kernels. In CIKM. 1037–1046.

[98] Johannes Hoffart, Fabian M. Suchanek, Klaus Berberich, and Gerhard Weikum.
2013. YAGO2: A Spatially and Temporally Enhanced Knowledge Base from
Wikipedia: Extended Abstract. In IJCAI. 3161–3165.

[99] John E. Hopcroft and Richard M. Karp. 1973. An n5/2 Algorithm for Maximum
Matchings in Bipartite Graphs. SIAM J. Comput. 2, 4 (1973), 225–231.

[100] Boyi Hou, Qun Chen, Yanyan Wang, Youcef Nafa, and Zhanhua Li. 2022. Gradual
Machine Learning for Entity Resolution. TKDE 34, 4 (2022), 1803–1814.

[101] Robert Isele, Anja Jentzsch, and Christian Bizer. 2010. Silk Server - Adding
missing Links while consuming Linked Data. In COLD, Vol. 665.

[102] Glen Jeh and Jennifer Widom. 2002. Simrank: A measure of structural-context
similarity. In KDD. 538–543.

[103] Alekh Jindal, Samuel Madden, Malú Castellanos, and Meichun Hsu. 2015. Graph
analytics using Vertica relational database. In BigData. IEEE Computer Society,
1191–1200.

[104] Alekh Jindal, Praynaa Rawlani, Eugene Wu, Samuel Madden, Amol Deshpande,
and Mike Stonebraker. 2014. VERTEXICA: Your Relational Friend for Graph
Analytics! PVLDB 7, 13 (2014), 1669–1672.

[105] N. D. Jones. 1996. An Introduction to Partial Evaluation. Comput. Surveys 28, 3
(1996), 480–503.

[106] Richard M. Karp and Vijaya Ramachandran. 1988. A Survey of Parallel Algo-
rithms for Shared-Memory Machines. Technical Report UCB/CSD-88-408. EECS
Department, University of California, Berkeley. http://www.eecs.berkeley.edu/
Pubs/TechRpts/1988/5865.html

[107] George Karypis and Vipin Kumar. 1998. Multilevel k-way Partitioning Scheme
for Irregular Graphs. J. Parallel Distributed Comput. 48, 1 (1998), 96–129.

[108] Jungo Kasai, Kun Qian, Sairam Gurajada, Yunyao Li, and Lucian Popa. 2019.
Low-resource deep entity resolution with transfer and active learning. arXiv
preprint arXiv:1906.08042 (2019).

[109] Jeremy Kepner, William Arcand, William Bergeron, Nadya T. Bliss, Robert Bond,
Chansup Byun, Gary Condon, Kenneth Gregson, Matthew Hubbell, Jonathan
Kurz, Andrew McCabe, Peter Michaleas, Andrew Prout, Albert Reuther, Antonio
Rosa, and Charles Yee. 2012. Dynamic distributed dimensional data model (D4M)
database and computation system. In ICASSP. IEEE, 5349–5352.

[110] Zuhair Khayyat, Ihab F. Ilyas, Alekh Jindal, Samuel Madden, Mourad Ouzzani,
Paolo Papotti, Jorge-Arnulfo Quiané-Ruiz, Nan Tang, and Si Yin. 2015. BigDans-
ing: A System for Big Data Cleansing. In SIGMOD. 1215–1230.

[111] Mijung Kim and K Selçuk Candan. 2012. SBV-Cut: Vertex-cut based graph
partitioning using structural balance vertices. DKE 72 (2012), 285–303.

[112] Boyan Kolev, Carlyna Bondiombouy, Patrick Valduriez, Ricardo Jiménez-Peris,
Raquel Pau, and José Pereira. 2016. The CloudMdsQL, Multistore System. In
SIGMOD. ACM, 2113–2116.

[113] Pradap Konda, Sanjib Das, Paul Suganthan G. C., AnHai Doan, Adel Ardalan,
Jeffrey R. Ballard, Han Li, Fatemah Panahi, Haojun Zhang, Jeffrey F. Naughton,
Shishir Prasad, Ganesh Krishnan, Rohit Deep, and Vijay Raghavendra. 2016.
Magellan: Toward building entity matching management systems. PVLDB 9, 12
(2016), 1197–1208.

[114] Hanna Köpcke, Andreas Thor, and Erhard Rahm. 2010. Evaluation of entity
resolution approaches on real-world match problems. PVLDB 3, 1 (2010), 484–
493.

[115] Yehuda Koren. 2008. Factorization meets the neighborhood: a multifaceted
collaborative filtering model. In SIGKDD. 426–434.

[116] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization
techniques for recommender systems. Computer 42, 8 (2009), 30–37.

[117] Christos Koutras, Marios Fragkoulis, Asterios Katsifodimos, and Christoph
Lofi. 2020. REMA: Graph Embeddings-based Relational Schema Matching. In
EDBT/ICDT, Vol. 2578.

[118] Clyde P. Kruskal, Larry Rudolph, and Marc Snir. 1990. A Complexity Theory of
Efficient Parallel Algorithms. Theor. Comput. Sci. 71, 1 (1990), 95–132.

[119] Mitsuru Kusumoto, Takanori Maehara, and Ken-ichi Kawarabayashi. 2014. Scal-
able similarity search for SimRank. In SIGMOD. 325–336.

[120] Selasi Kwashie, Lin Liu, Jixue Liu, Markus Stumptner, Jiuyong Li, and Lujing
Yang. 2019. Certus: An effective entity resolution approach with graph differen-
tial dependencies (GDDs). PVLDB 12, 6 (2019), 653–666.

[121] Aapo Kyrola, Guy E. Blelloch, and Carlos Guestrin. 2012. GraphChi: Large-scale
graph computation on just a PC. In OSDI. 31–46.

[122] Jeanne C Latourelle, Merete Dybdahl, Anita L Destefano, Richard H Myers, and
Timothy L Lash. 2010. Risk of Parkinson’s disease after tamoxifen treatment.
BMC neurology 10, 1 (2010), 1–7.

[123] Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas,
Pablo N. Mendes, Sebastian Hellmann, Mohamed Morsey, Patrick van Kleef,
Sören Auer, and Christian Bizer. 2015. DBpedia - A large-scale, multilingual

3795

http://www.eecs.berkeley.edu/Pubs/TechRpts/1988/5865.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/1988/5865.html

knowledge base extracted from Wikipedia. Semantic Web 6, 2 (2015), 167–195.
[124] Bing Li, Wei Wang, Yifang Sun, Linhan Zhang, Muhammad Asif Ali, and Yi Wang.

2020. GraphER: Token-Centric Entity Resolution with Graph Convolutional
Neural Networks.. In AAAI. 8172–8179.

[125] Yu Li, Hiroyuki Kuwahara, Peng Yang, Le Song, and Xin Gao. 2019. PGCN:
Disease gene prioritization by disease and gene embedding through graph
convolutional neural networks. biorxiv (2019), 532226.

[126] Yuliang Li, Jinfeng Li, Yoshihiko Suhara, AnHai Doan, and Wang-Chiew Tan.
2020. Deep Entity Matching with Pre-Trained Language Models. PVLDB 14, 1
(2020), 50–60.

[127] Leonid Libkin. 2004. Elements of Finite Model Theory. Springer.
[128] Greg Linden, Brent Smith, and Jeremy York. 2003. Amazon. com recommenda-

tions: Item-to-item collaborative filtering. IEEE Internet computing 7, 1 (2003),
76–80.

[129] Yanhong A. Liu. 2000. Efficiency by Incrementalization: An Introduction. High.
Order Symb. Comput. 13, 4 (2000), 289–313.

[130] Beth Logan and Ariel Salomon. 2001. A content-based music similarity function.
Cambridge Research Labs-Tech Report (2001).

[131] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin,
and Joseph M. Hellerstein. 2012. Distributed GraphLab: A Framework for
Machine Learning in the Cloud. PVLDB 5, 8 (2012), 716–727.

[132] Xin Luo, Mengchu Zhou, Yunni Xia, and Qingsheng Zhu. 2014. An efficient
non-negative matrix-factorization-based approach to collaborative filtering for
recommender systems. IEEE Transactions on Industrial Informatics 10, 2 (2014),
1273–1284.

[133] Steffen Maass, Changwoo Min, Sanidhya Kashyap, Woon-Hak Kang, Mohan
Kumar, and Taesoo Kim. 2017. Mosaic: Processing a Trillion-Edge Graph on a
Single Machine. In EuroSys. ACM, 527–543.

[134] Mohammad Mahdavi, Ziawasch Abedjan, Raul Castro Fernandez, Samuel Mad-
den, Mourad Ouzzani, Michael Stonebraker, and Nan Tang. 2019. Raha: A
Configuration-Free Error Detection System. In SIGMOD. 865–882.

[135] Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C. Dehnert,
Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: A system for
large-scale graph processing. In SIGMOD. 135–146.

[136] Bernard Mans and Luke Mathieson. 2017. Incremental Problems in the Parame-
terized Complexity Setting. Theory Comput. Syst. 60, 1 (2017), 3–19.

[137] Mugilan Mariappan and Keval Vora. 2019. GraphBolt: Dependency-Driven
Synchronous Processing of Streaming Graphs. In EuroSys. 25:1–25:16.

[138] Brian McFee, Luke Barrington, and Gert Lanckriet. 2012. Learning content
similarity for music recommendation. IEEE transactions on audio, speech, and
language processing 20, 8 (2012), 2207–2218.

[139] Frank McSherry, Michael Isard, and Derek Gordon Murray. 2015. Scalability!
But at what COST?. In HotOS.

[140] Frank McSherry, Derek Gordon Murray, Rebecca Isaacs, and Michael Isard. 2013.
Differential Dataflow. In CIDR.

[141] Alberto O. Mendelzon and Peter T. Wood. 1995. Finding Regular Simple Paths
in Graph Databases. SIAM J. Comput. 24, 6 (1995), 1235–1258.

[142] Franck Michel, Johan Montagnat, and Catherine Faron Zucker. 2014. A survey
of RDB to RDF translation approaches and tools.
https://hal.archives-ouvertes.fr/hal-00903568/file/Rapport_Rech_I3S_v2_-
_Michel_et_al_2013_-_A_survey_of_RDB_to_RDF_translation_approaches_
and_tools.pdf.

[143] Robin Milner. 1989. Communication and Concurrency. Prentice Hall.
[144] Peter Bro Miltersen, Sairam Subramanian, Jeffrey Scott Vitter, and Roberto

Tamassia. 1994. Complexity Models for Incremental Computation. Theor.
Comput. Sci. 130, 1 (1994), 203–236.

[145] Sidharth Mudgal, Han Li, Theodoros Rekatsinas, AnHai Doan, Youngchoon
Park, Ganesh Krishnan, Rohit Deep, Esteban Arcaute, and Vijay Raghavendra.
2018. Deep Learning for Entity Matching: A Design Space Exploration. In
SIGMOD. 19–34.

[146] Fatemeh Nargesian, Erkang Zhu, Renée J. Miller, Ken Q. Pu, and Patricia C.
Arocena. 2019. Data Lake Management: Challenges and Opportunities. PVLDB
12, 12 (2019), 1986–1989.

[147] Axel-Cyrille Ngonga Ngomo and Sören Auer. 2011. LIMES - A Time-Efficient
Approach for Large-Scale Link Discovery on the Web of Data. In IJCAI. 2312–
2317.

[148] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. 2013. A lightweight
infrastructure for graph analytics. In SOSP. 456–471.

[149] Phuc Nguyen, Ikuya Yamada, Natthawut Kertkeidkachorn, Ryutaro Ichise, and
Hideaki Takeda. 2020. MTab4Wikidata at SemTab 2020: Tabular Data Annotation
with Wikidata. In SemTabISWC, Vol. 2775. 86–95.

[150] George Papadakis, Leonidas Tsekouras, Emmanouil Thanos, George Gian-
nakopoulos, Themis Palpanas, and Manolis Koubarakis. 2018. The return of
JedAI: End-to-end entity resolution for structured and semi-structured data.
PVLDB 11, 12 (2018), 1950–1953.

[151] Christos H. Papadimitriou. 1994. Computational complexity. Addison-Wesley.
[152] Kun Qian, Lucian Popa, and Prithviraj Sen. 2017. Active Learning for Large-Scale

Entity Resolution. In CIKM. 1379–1388.

[153] Abdul Quamar and Amol Deshpande. 2016. NScaleSpark: subgraph-centric
graph analytics on Apache Spark. In NDA. ACM, 5:1–5:8.

[154] G. Ramalingam and Thomas Reps. 1996. An incremental algorithm for a gener-
alization of the shortest-path problem. J. Algorithms 21, 2 (1996), 267–305.

[155] G. Ramalingam and Thomas Reps. 1996. On the computational complexity of
dynamic graph problems. ACM Trans. Database Syst. 158, 1-2 (1996), 233–277.

[156] G. Ramalingam and Thomas W. Reps. 1996. An Incremental Algorithm for a
Generalization of the Shortest-Path Problem. J. Algorithms 21, 2 (1996), 267–305.

[157] Thomas C. Redman. 2016. Bad Data Costs the U.S. $3 Trillion Per Year. Harvard
Business Review. https://hbr.org/2016/09/bad-data-costs-the-u-s-3-trillion-per-
year.

[158] Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks. In EMNLP-IJCNLP. 3980–3990.

[159] Theodoros Rekatsinas, Xu Chu, Ihab F. Ilyas, and Christopher Ré. 2017. Holo-
Clean: Holistic Data Repairs with Probabilistic Inference. PVLDB 10, 11 (2017),
1190–1201.

[160] Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. 2013. X-stream: Edge-
centric graph processing using streaming partitions. In SOSP. ACM, 472–488.

[161] Alieh Saeedi, Eric Peukert, and Erhard Rahm. 2018. Using link features for entity
clustering in knowledge graphs. In ESWC. 576–592.

[162] R Sandyk and MA Gillman. 1985. Acute exacerbation of Parkinson’s disease
with sulindac. Annals of neurology 17, 1 (1985), 104–105.

[163] Jan Schluter and Christian Osendorfer. 2011. Music similarity estimation with
the mean-covariance restricted Boltzmann machine. In ICMLA, Vol. 2. IEEE,
118–123.

[164] Shilad Sen, Jesse Vig, and John Riedl. 2009. Tagommenders: connecting users to
items through tags. In WWW. 671–680.

[165] Bin Shao, Haixun Wang, and Yatao Li. 2013. Trinity: a distributed graph engine
on a memory cloud. In SIGMOD. 505–516.

[166] Shenzhen Institute of Computing Sciences. 2022. Fishing Fort.
https://en.sics.ac.cn/col84/index.

[167] Juan Shu, Yu Li, Sheng Wang, Bowei Xi, and Jianzhu Ma. 2021. Disease gene pre-
diction with privileged information and heteroscedastic dropout. Bioinformatics
37, Supplement_1 (2021), i410–i417.

[168] Benjamin A. Steer, Alhamza Alnaimi, Marco A. B. F. G. Lotz, Félix Cuadrado,
Luis M. Vaquero, and Joan Varvenne. 2017. Cytosm: Declarative Property Graph
Queries Without Data Migration. In GRADES. 4:1–4:6.

[169] Fabian M. Suchanek, Serge Abiteboul, and Pierre Senellart. 2011. PARIS: Prob-
abilistic Alignment of Relations, Instances, and Schema. PVLDB 5, 3 (2011),
157–168.

[170] Huifeng Sun, Yong Peng, Junliang Chen, Chuanchang Liu, and Yuzhuo Sun.
2011. A New Similarity Measure Based on Adjusted Euclidean Distance for
Memory-based Collaborative Filtering. JSW 6, 6 (2011), 993–1000.

[171] Yizhou Sun, Jiawei Han, Xifeng Yan, Philip S. Yu, and Tianyi Wu. 2011. Path-
Sim: Meta Path-Based Top-K Similarity Search in Heterogeneous Information
Networks. PVLDB 4, 11 (2011), 992–1003.

[172] Zhu Sun, Qing Guo, Jie Yang, Hui Fang, Guibing Guo, Jie Zhang, and Robin
Burke. 2019. Research commentary on recommendations with side information:
A survey and research directions. Electronic Commerce Research and Applications
37 (2019).

[173] Katia P. Sycara. 1993. Machine learning for intelligent support of conflict
resolution. Decision Support Systems 10, 2 (1993), 121–136.

[174] Bo-Tao Tan, Li Wang, Sen Li, Zai-Yun Long, Ya-Min Wu, and Yuan Liu. 2015.
Retinoic acid induced the differentiation of neural stem cells from embryonic
spinal cord into functional neurons in vitro. International journal of clinical and
experimental pathology 8, 7 (2015).

[175] Nan Tang, Ju Fan, Fangyi Li, Jianhong Tu, Xiaoyong Du, Guoliang Li, Samuel
Madden, and Mourad Ouzzani. 2021. RPT: Relational Pre-trained Transformer
Is Almost All You Need towards Democratizing Data Preparation. PVLDB 14, 8
(2021), 1254–1261.

[176] Robert Endre Tarjan. 1972. Depth-First Search and Linear Graph Algorithms.
SIAM J. Comput. 1, 2 (1972), 146–160.

[177] Tim Teitelbaum and Thomas W. Reps. 1981. The Cornell Program Synthesizer:
A Syntax-Directed Programming Environment. Commun. ACM 24, 9 (1981),
563–573.

[178] Yuanyuan Tian, Andrey Balmin, Severin Andreas Corsten, and John McPherson
Shirish Tatikonda. 2013. From "Think Like a Vertex" to "Think Like a Graph".
PVLDB 7, 7 (2013), 193–204.

[179] Rakshit Trivedi, Bunyamin Sisman, Jun Ma, Christos Faloutsos, Hongyuan Zha,
and Xin Luna Dong. 2018. Linknbed: Multi-graph representation learning with
entity linkage. In ACL.

[180] Shalini Tyagi and Ernesto Jimenez-Ruiz. 2020. LexMa: Tabular data to knowl-
edge graph matching using lexical techniques. In CEUR Workshop Proceedings,
Vol. 2775. 59–64.

[181] Farman Ullah, Ghulam Sarwar, Sung Chang Lee, Yun Kyung Park, Kyeong Deok
Moon, and Jin Tae Kim. 2012. Hybrid recommender system with temporal
information. In ICOIN. IEEE, 421–425.

[182] Leslie G. Valiant. 1990. A Bridging Model for Parallel Computation. Commun.

3796

ACM 33, 8 (1990), 103–111.
[183] Aäron Van Den Oord, Sander Dieleman, and Benjamin Schrauwen. 2013. Deep

content-based music recommendation. In NIPS. Neural Information Processing
Systems Foundation (NIPS), 2643–2651.

[184] Larysa Visengeriyeva and Ziawasch Abedjan. 2018. Metadata-driven error
detection. In SSDBM. 1:1–1:12.

[185] Keval Vora, Rajiv Gupta, and Guoqing (Harry) Xu. 2017. KickStarter: Fast and
Accurate Computations on Streaming Graphs via Trimmed Approximations. In
ASPLOS.

[186] W3C. 2012. Relational Databases to RDF (RDB2RDF).
[187] Guozhang Wang, Wenlei Xie, Alan J. Demers, and Johannes Gehrke. 2013.

Asynchronous Large-Scale Graph Processing Made Easy. In CIDR.
[188] Xiaochan Wang, Yuchong Gong, Jing Yi, and Wen Zhang. 2019. Predicting gene-

disease associations from the heterogeneous network using graph embedding. In
IEEE International conference on bioinformatics and biomedicine (BIBM). 504–511.

[189] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019.
Neural graph collaborative filtering. In SIGIR. 165–174.

[190] Xinxi Wang and Ye Wang. 2014. Improving content-based and hybrid music
recommendation using deep learning. In ACM Multimedia. 627–636.

[191] Yue Wang, Zhe Wang, Ziyuan Zhao, Zijian Li, Xun Jian, Hao Xin, Lei Chen,
Jianchun Song, Zhenhong Chen, and Meng Zhao. 2022. Effective Similarity
Search on Heterogeneous Networks: A Meta-path Free Approach. TKDE 34, 7
(2022), 3225–3240.

[192] Duncan J Watts and Steven H Strogatz. 1998. Collective dynamics of ‘small-
world’ networks. Nature 393, 6684 (1998), 440–442.

[193] Steven Euijong Whang and Hector Garcia-Molina. 2013. Joint entity resolution
on multiple datasets. The VLDB Journal 22, 6 (2013), 773–795.

[194] Charith Wickramaarachchi, Charalampos Chelmis, and Viktor K. Prasanna.
2015. Empowering Fast Incremental Computation over Large Scale Dynamic
Graphs. In IPDPS.

[195] Renzhi Wu, Sanya Chaba, Saurabh Sawlani, Xu Chu, and Saravanan Thirumu-
ruganathan. 2020. ZeroER: Entity Resolution using Zero Labeled Examples. In
SIGMOD. 1149–1164.

[196] Yuting Wu, Xiao Liu, Yansong Feng, Zheng Wang, Rui Yan, and Dongyan Zhao.
2019. Relation-Aware Entity Alignment for Heterogeneous Knowledge Graphs.
In IJCAI. 5278–5284.

[197] Chenning Xie, Rong Chen, Haibing Guan, Binyu Zang, and Haibo Chen. 2015.
SYNC or ASYNC: Time to fuse for distributed graph-parallel computation. In
PPOPP. 194–204.

[198] Xianghao Xu, Fang Wang, Hong Jiang, Yongli Cheng, Dan Feng, and Yongxuan
Zhang. 2020. A Hybrid Update Strategy for I/O-Efficient Out-of-Core Graph
Processing. IEEE Trans. Parallel Distributed Syst. 31, 8 (2020), 1767–1782.

[199] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,

and Jure Leskovec. 2018. Graph convolutional neural networks for web-scale
recommender systems. In SIGKDD. 974–983.

[200] Weiren Yu, Xuemin Lin, Wenjie Zhang, Jian Pei, and Julie A McCann. 2019.
SimRank*: effective and scalable pairwise similarity search based on graph
topology. The VLDB Journal 28, 3 (2019), 401–426.

[201] Timothy A. K. Zakian, Ludovic A. R. Capelli, and Zhenjiang Hu. 2019. Incre-
mentalization of Vertex-Centric Programs. In IPDPS.

[202] Xiangxiang Zeng, Xinqi Tu, Yuansheng Liu, Xiangzheng Fu, and Yansen Su.
2022. Toward better drug discovery with knowledge graph. Current opinion in
structural biology 72 (2022), 114–126.

[203] Baichuan Zhang and Mohammad Al Hasan. 2017. Name disambiguation in
anonymized graphs using network embedding. In CIKM. 1239–1248.

[204] Bingjun Zhang, Jialie Shen, Qiaoliang Xiang, and Ye Wang. 2009. Compositemap:
a novel framework for music similarity measure. In SIGIR. 403–410.

[205] Dongxiang Zhang, Long Guo, Xiangnan He, Jie Shao, Sai Wu, and Heng Tao
Shen. 2018. A Graph-Theoretic Fusion Framework for Unsupervised Entity
Resolution. In ICDE. 713–724.

[206] Qingheng Zhang, Zequn Sun, Wei Hu, Muhao Chen, Lingbing Guo, and Yuzhong
Qu. 2019. Multi-view Knowledge Graph Embedding for Entity Alignment. In
IJCAI. 5429–5435.

[207] Shuo Zhang, Edgar Meij, Krisztian Balog, and Ridho Reinanda. 2020. Novel
Entity Discovery from Web Tables. In WWW. 1298–1308.

[208] Chen Zhao and Yeye He. 2019. Auto-EM: End-to-end Fuzzy Entity-Matching
using Pre-trained Deep Models and Transfer Learning. In WWW. 2413–2424.

[209] Jie Zhao, Manish Kumar, Jeevan Sharma, and Zhihai Yuan. 2021. Arbutin effec-
tively ameliorates the symptoms of Parkinson’s disease: The role of adenosine
receptors and cyclic adenosine monophosphate. Neural regeneration research
16, 10 (2021), 2030.

[210] Kangfei Zhao and Jeffrey Xu Yu. 2017. All-in-One: Graph Processing in RDBMSs
Revisited. In SIGMOD. 1165–1180.

[211] Liang Zhao. 2021. Event Prediction in the Big Data Era: A Systematic Survey.
ACM Comput. Surv. 54, 5 (2021), 94:1–94:37.

[212] Zhongying Zhao, Xuejian Zhang, Hui Zhou, Chao Li, Maoguo Gong, and
Yongqing Wang. 2020. HetNERec: Heterogeneous network embedding based
recommendation. Knowledge-Based Systems 204 (2020).

[213] Lei Zheng, Vahid Noroozi, and Philip S Yu. 2017. Joint deep modeling of users
and items using reviews for recommendation. In WSDM. 425–434.

[214] Minpeng Zhu and Tore Risch. 2011. Querying combined cloud-based and
relational databases. In CSC. 330–335.

[215] Xiaowei Zhu, Wentao Han, and Wenguang Chen. 2015. GridGraph: Large-Scale
Graph Processing on a Single Machine Using 2-Level Hierarchical Partitioning.
In USENIX ATC. 375–386.

[216] Cai-Nicolas Ziegler, Georg Lausen, and Lars Schmidt-Thieme. 2004. Taxonomy-
driven computation of product recommendations. In CIKM. 406–415.

3797

