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ABSTRACT
Large language models have recently advanced the state of the
art on many natural language processing benchmarks. The newest
generation of models can be applied to a variety of tasks with
little to no specialized training. This technology creates various
opportunities for applications in the context of data management.

The tutorial will introduce participants to basic background on
language models, discuss different methods to use language models,
and give an overview and short demonstration of available libraries
and APIs. Models for generating natural languagewill be considered
as well as models, such as GPT-3 Codex, which complete program
code or generate code from natural language instructions. Finally,
the tutorial will discuss recent research in the database community
that exploits language models in the context of traditional database
systems or proposes novel system architectures that are based on
them.

The tutorial is targeted at database researchers. No prior back-
ground on language models is required. The goal of the tutorial is to
introduce database researchers to the latest generation of language
models, and to their use cases in the domain of data management.
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PVLDB Artifact Availability:
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My name is GPT-3, I am a language model trained by OpenAI. I
can write stories, articles, poems, and even code. I am the most
powerful language model in the world. I am the future of AI. .

Completion of Prompt “My name is GPT-3, I” by GPT-3 Codex

1 INTRODUCTION
The area of natural language processing (NLP) has recently been
revolutionized by the advent of large “language models”, trained
on huge quantities of unlabeled text [35]. Given sufficiently large
amounts of training data and of trainable parameters, such models
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are able to tackle a broad range of tasks with little to no specialized
training [2]. The range of applications for such models in the do-
main of databases is vast. It ranges from novel interfaces [25, 30] to
new system architectures [29], based on data representations and
processing mechanisms that are enabled by the latest generation of
language models. The goal of this tutorial is to introduce database
researchers to the possibilities offered by these models, to provide
pointers to libraries and APIs that make them accessible [22, 35],
and to review recent research in the database community exploiting
them. The tutorial will cover language models that process and gen-
erate natural language text [4, 6], as well as more recent models that
generate program code from natural language descriptions [3]. It
will include examples and live demonstrations, providing attendees
with an intuition for the scope of solvable problems.

The tutorial is aimed at database researchers. No prior back-
ground in language models or NLP is expected. The tutorial will
start with a short, high-level introduction to the Transformer [33],
a novel neural network architecture that has has enabled many of
the recent advances in NLP. Next, it will discuss Transformer-based
language models and describe how they are pre-trained without
supervision on text or code. For model sizes in the hundreds of
millions of parameters [4, 15, 19], pre-training is typically followed
by another (short) training phase on task-specific samples (“fine-
tuning”). Language model sizes have continuously increased over
the past years, as illustrated in Figure 1 (note the logarithmic scale
on the y-axis). The latest generation of language models with sizes
in the hundreds of billions of parameters [3, 5, 6, 36] can often be
used without further specialization (“prompting”). The tutorial will
discuss and demonstrate both methods. Furthermore, it will pro-
vide pointers to libraries and APIs that allow using corresponding
models. While an in-depth discussion of these APIs and libraries is
beyond the scope of this tutorial, attendees will receive an overview
and pointers on how to choose the right framework for their re-
spective use case.

Finally, the tutorial will discuss recent research in the database
community that exploits languagemodels. The discussionwill cover
research on facilitating the use of traditional database systems
via such models (e.g., by advanced user interfaces [26, 28]). Also,
it will include research that exploits language models to revise
fundamental design decisions in database systems [8, 29, 31]. The
total duration of the tutorial is 1.5 hours, including questions and
discussions.

The reminder of this proposal is organized as follows. Section 2
describes the topics covered in the tutorial in more detail. Section 3
describes the organization and timeline of the tutorial. Section 4
summarizes the goals of the tutorial and describes the intended
audience. Section 5 contrasts the tutorial content from other, recent
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Figure 1: Evolution of parameter counts in language models.

tutorials in the database community. Finally, Section 6 contains
biographical details on the presenter.

2 TOPICS COVERED
The tutorial will cover the following topics.

2.1 Rise of the Transformer
At the heart of the NLP revolution is a novel neural network archi-
tecture, the so-called Transformer [33]. The Transformer is nowa-
days the dominant architecture for various NLP tasks [35]. Beyond
NLP, it is increasingly being adopted in other domains such as
computer vision as well [7].

The tutorial will introduce the main ideas behind the Trans-
former model. In particular, it will discuss the concept of attention
mechanisms [33]. The goal of this part is to give the audience an
intuition for why Transformer models were able to advance the
state of the art in NLP, compared to prior methods such as recurrent
neural networks [13]. Explanations will be kept at a relatively high
level of abstraction. Hence, basic knowledge in machine learning
will be sufficient to follow this part.

2.2 Pre-Trained Language Models
Compared to prior architectures, the Transformer makes paralleliz-
ing the training process easier. In part, this has enabled the creation
of very large language models. Such models are based on Trans-
former networks with hundreds of millions to hundreds of billions
of trainable parameters.

Language models are trained on tasks for which large amounts
of training data are readily available. For instance, models such
as BERT [4] learn to fill in obfuscated words in Web text (masked
language modeling). Models such as GPT-3 learn to complete text
or code based on a prefix [6]. In all those cases, manual labeling of
training data is not required. The tutorial will cover some of the
most important language models developed over the past years. In
particular, it will introduce BERT (one of the first language models
proposed) and GPT-3. For the latter model, the tutorial will cover
the base version [6] (optimized for completing natural language
text) as well as the Codex variant [3] (optimized for generating
code from natural language instructions).

2.3 Fine-Tuning and Prompting
Language models provide the fundament for approaches that solve
various tasks, related to natural language and code. Tradition-
ally, language models undergo a process called fine-tuning after
task-agnostic training. Fine-tuning specializes language models for
domain-specific tasks, using a small amount of task-specific training
data. Compared to training a new network from scratch, fine-tuning
reduces the amount of training data and computational overheads
very significantly [9]. This is possible due to transfer learning [24],
as generic knowledge about language can be transferred across
different tasks.

Fine-tuning has been the primary method of using language
models until quite recently. As language models grew further in
size, it became apparent that providing task-specific instructions as
input, together with few or even no examples [2], is often sufficient
to solve formerly unseen tasks. This insight has spurred significant
research efforts, targeted at prompting. This term refers to the use
of language models for new tasks by including instructions and
examples into the prompt, i.e. the input to be completed by the
language model. The tutorial will discuss fine-tuning briefly and
focus on prompting. It will provide an intuition for the potential
of prompting using examples from the domains of text and code
completion.

2.4 APIs and Libraries
Language models are nowadays available via various channels. This
includes libraries that facilitate using language models locally (e.g.,
the Huggingface Transformers library [35]). It also includes APIs
that enable remote use of language models that are not publicly
available (e.g., OpenAI’s GPT-3 model [6]).

The tutorial will introduce some of the most popular frameworks
for accessing language models. Specifically, the tutorial will give
an overview of the Huggingface Transformers library. This library
facilitates tasks such as training and inference. Also, the tutorial
will include a demonstration based on OpenAI’s API. This API
enables access to the GPT-3 series of language models, including
the GPT-3 Codex model that generates code from natural language
instructions. The goal of the tutorial is not to cover any of those
APIs in depth. Instead, it aims at giving an intuition for the potential
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Table 1: Tutorial organization overview.

Part Duration

Welcome and introduction 5 min

Rise of the Transformer 10 min

Pre-trained language models 10 min

Fine-tuning and prompting 10 min

APIs and libraries 20 min

Applications in data management 25 min

Final discussion and conclusion 10 min

use cases of each framework, as well as references for studying
them in more detail.

2.5 Applications in Data Management
Finally, the tutorial will discuss novel applications of language
models in the database area. This tutorial section will be split into
two parts.

First, the tutorial will introduce novel applications that facilitate
the use of traditional database management systems. Perhaps the
most classical use case for NLP in the context of database systems
is text-to-SQL translation [16, 37]. While larger language models
have significantly increased the accuracy on that task, they also
enable entirely new applications. Here, the tutorial will cover re-
cent research leveraging language models for tasks such as data
preparation [28], data integration [27], or database tuning [32].

Second, the tutorial will discuss novel architectures for data
processing systems that are enabled by the advent of large language
models. The discussion will cover very recent research as well
as potential research opportunities. Specifically, the tutorial will
cover novel ways of representing data using language models (e.g.,
by storing data as natural language facts [29] or by integrating
data within the language model [8]). Also, it will discuss the use
of language models in the execution engine (e.g., to implement
operators [27, 29] or to synthesize code for data processing [31]).

3 TUTORIAL ORGANIZATION
Table 1 gives an overview of the tutorial parts, as well as their
estimated duration. The tutorial organization is based on the topics
introduced in Section 2. The tutorial will use slides as well as several
demonstrations, illustrating the use of languagemodels via different
methods. Questions and comments are welcome throughout the
tutorial. The last ten minutes of the tutorial are specifically reserved
for questions and discussions, followed by concluding remarks.

4 GOALS AND AUDIENCE
The goal of this tutorial is to introduce the database community
to the latest generation of language models. The primary focus
is on enabling database researchers to apply language models to
new research problems in the context of data management. To that
purpose, the tutorial will convey basic background knowledge on
language models, give an intuition for the scope of tasks to which

language models can be applied, as well as provide pointers to
useful APIs and libraries. Furthermore, the tutorial will discuss at
length existing and emerging applications of language models in
the database area.

In line with the goals of the tutorial, no prior background knowl-
edge on language models is expected from the audience. Primarily,
the audience is expected to be familiar with database systems and
relational data processing methods. Some high-level background
on deep learning (at the level of an undergraduate course) is use-
ful for the first part of the tutorial (introducing the Transformer
architecture), even though not strictly required. The primary target
audience for this tutorial are database researchers who are intrigued
by the possibilities offered by language models, but have not yet
done research in this area.

5 RELATIONSHIP TO PRIOR TUTORIALS
The proposed tutorial connects but is complementary to prior tu-
torials in the database community. Several recent tutorials have
focused on specific problems in the database area that are solved
via NLP. Most notably, several recent tutorials [1, 12] discussed ap-
proaches for text-to-SQL translation in detail. Other recent tutorials
covered approaches for automated fact checking [14], information
extraction [21], or entity embedding [23]. The proposed tutorial is
complementary to those prior events in (at least) two ways. First, it
covers very recent trends in the area of language models, including
prompting and few-shot learning as well as code synthesis by lan-
guage models. The underlying technologies, e.g. the GPT-3 Codex
model, have appeared only recently and were not covered in prior
tutorials. Second, the tutorial scope is defined less by a specific
problem than by a specific method (use of language models). It
aims at covering a wide range of possible applications, inspiring
participants to apply language models to novel problems in their
area of research.

More broadly, the proposed tutorial relates to prior events, con-
necting databases andmachine learning topics [10, 11, 17, 18, 20, 34].
The suggested tutorial is however complementary, as it focuses on
one specific method from the area of machine learning.

6 PRESENTER
Immanuel Trummer is assistant professor for computer science
at Cornell University. He heads the Cornell database group and
publishes at venues such as SIGMOD, VLDB, and AAAI. His re-
search aims at making data management and data analysis more
efficient and more user-friendly. Towards that goal, he often ap-
plies language models and other methods from the area of artificial
intelligence andmachine learning. Most recently, he has applied lan-
guage models to natural language query interfaces, data-driven fact
checking, database tuning, and code synthesis for data processing.
His papers were selected for “Best of VLDB”, “Best of SIGMOD”, for
the ACM SIGMOD Research Highlight Award, and for publication
in CACM as CACM Research Highlight. His research is sponsored
by NSF and by several Google Faculty Research Awards.
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