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ABSTRACT
As one of the most fundamental problems in graph data mining,
the densest subgraph discovery (DSD) problem has found a broad
spectrum of real applications, such as social network community
detection, graph index construction, regulatory motif discovery in
DNA, fake follower detection, and so on. Theoretically, DSD closely
relates to other fundamental graph problems, such as network
flow and bipartite matching. Triggered by these applications and
connections, DSD has garnered much attention from the database,
data mining, theory, and network communities.

In this tutorial, we first highlight the importance of DSD in
various applications and the unique challenges that need to be
addressed. Subsequently, we classify existing DSD solutions into
several groups, which cover around 50 research papers published in
many well-known venues (e.g., SIGMOD, PVLDB, TODS, WWW),
and conduct a thorough review of these solutions in each group.
Afterwards, we analyze and compare the models and solutions in
these works. Finally, we point out a list of promising future research
directions. We believe that this tutorial not only helps researchers
have a better understanding of existing densest subgraph models
and solutions, but also provides them insights for future study.
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1 INTRODUCTION
As one of the most fundamental problems in graph data mining,
the densest subgraph discovery (DSD) problem aims to discover a
very “dense” subgraph from a given graph. More precisely, given an
undirected graph, the original DSD problem [34] finds a subgraph
with the highest edge-density, which is defined as the number of
edges over the number of vertices in the subgraph, and it is often
termed as densest subgraph (DS). This problem was also studied
on directed graphs [39] by extending the above edge-density for
considering the edge directions. The DSD problem lies in the core of
graph mining [33], and is widely used in network science [3, 35], bi-
ological analysis [27], graph databases [19, 38], system optimization
[31–33], and graph compression [12]. Besides, the DSD problem is
also closely related to other fundamental graph problems, such as
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network flow and bipartite matching [54]. Due to the theoretical
and practical importance, researchers from the database, data min-
ing, computer science theory, and network communities designed
efficient and effective solutions to the DSD problem.

Despite the wide applications of DSD, the DSD problem is a very
challenging task because: (1) the exact DSD solutions (e.g., [25, 34])
often involve the computation of maximum flow, which has a very
high time complexity; and (2) many real-world graphs are often
with huge sizes (e.g., Facebook user network has more than 2.89
billion monthly active users as of October 20211). Thus, the first
key challenge is to develop efficient algorithms. To improve the
efficiency of DSD, researchers have tried many different techniques
as shown in the literature, which are summarized as follows: (1)
following the prune-and-verify framework (e.g., [25, 44]) to locate
the DS; (2) proposing approximate algorithms with theoretical guar-
antees that sacrifice some accuracy for achieving higher efficiency
(e.g., [15]); and (3) developing distributed algorithms to compute in
a parallel manner (e.g., [5]).

Besides, many real networks are not just undirected or directed
graphs, and a real application (e.g., community detection) often
needs not just one single DS, while the original DSD problem stud-
ied on undirected and directed graphs is only able to return one
single DS. Therefore, the second key challenge is how to perform
effective DSD such that it can well satisfy different requirements on
different graphs. To this end, some researchers have attempted to
extend the original DSD problem and solutions for bipartite graphs
(e.g., [1]), multilayer graphs (e.g., [37]), uncertain graphs (e.g., [48]).
Meanwhile, many variants of the DSD have been studied to sat-
isfy different practical requirements, such as clique-density-based
DSD (e.g., [57]), pattern-density-based DSD (e.g., [25]), densest 𝑘-
subgraph [4], density-friendly graph decomposition [56], locally
DSD (e.g., [51]), DS deconstruction (e.g., [14]), etc.

In summary, there are many existing works focusing on different
aspects of the DSD topic. Nevertheless, there is a lack of systematic
review and comparison study among them, except for two very
preliminary works [18, 26] which briefly reviewed the works in the
general area of dense subgraph computation, with a little attention
to the topic of DSD. To this end, in this tutorial, we aim to provide
a comprehensive review of these densest subgraph discovery works,
which directly use the edge-density definition, or density definitions
extended from it. In other words, other dense subgraph models [24],
such as 𝑘-core, 𝑘-truss, 𝑘-clique, 𝑘-edge connected component, and
so on, will not be covered by this tutorial.

In the tutorial, we will first offer an introduction to the research
field to highlight the popularity and applications of DSD, and also

1https://www.statista.com/statistics/272014/global-social-networks-ranked-by-
number-of-users/
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Table 1: Classification of existing DSD works.

Graph
type

Original DSD problem Variants of original DSD problemExact solutions Approx. solutions

Undirected
graphs

Unweighted case [15, 25, 34]
Weighted case [20]

2-approximation [10, 15, 25]
2(1+𝜖)-approximation [5]

(1 + 𝜖)-approximation [16, 54]
DS maintenance [5, 8, 23, 36, 54]

Clique-density-based DSD [25, 47, 53–55, 57]
Pattern-density-based DSD [25]

Densest 𝑘-subgraph [4, 7, 9, 11, 16, 50]
Size-bounded DSD [2]

Top-𝑘 overlapping DSD [21, 22, 28]
Maximum total density DSD [6]

Density-friendly graph decomposition [20, 56]
Locally DSD [42, 51]

DS deconstruction [14]
Top-𝑘 DSD maintenance [49]

Directed
graphs

Unweighted case [15, 39, 40, 44, 45]
Weighted case [45]

𝑂 (log𝑛)-approximation[39]
2-approximation[15, 44, 45]
2(1+𝜖)-approximation[5]

(1 + 𝜖)-approximation [43, 54]
DS maintenance [5, 45, 54]

Densest at least 𝑘1, 𝑘2 subgraph [40]

Others Uncertain graphs [60]
Bipartite graphs [1, 35, 47]

Multilayer graphs [29, 30, 37]
Uncertain graphs [48]

Dense connected subgraphs [58]

★ The “original DSD problem” means that given an undirected/directed graph, return the subgraph with the largest corresponding
edge-density.
★ Note: 𝑛 is the number of vertices in the graph; 𝑘 , 𝑘1, and 𝑘2 are integers; 𝜖 > 0 is a real value; the approximation ratio is defined as the
ratio of the density of the DS over that of the subgraph returned.

discuss the key challenges of DSD. Subsequently, we classify exist-
ing DSD solutions according to the problem definitions and solu-
tions, as shown in Table 1, which covers around 50 research papers
published in many well-known venues (e.g., SIGMOD, PVLDB, and
TODS), and then review the representative solutions thoroughly.
We will also analyze and compare the specific problems and so-
lutions on undirected graphs, directed graphs, and other graphs,
respectively. Finally, we will offer a list of promising future research
directions of DSD, which can provide researchers with some good
starting points to work in this research area.

2 TUTORIAL OUTLINE
This tutorial is tailored for typical VLDB attendees who are expected
to be aware of the broad area of databases but may or may not be
actively working on graphs and networks. This will be a 1.5 hours
tutorial. Below is the outline of the tutorial.
2.1 Introduction, Applications, and Challenges

(20 minutes)
This part aims to provide the necessary background to the audience.
It will consist of an introduction to the research field to highlight
the popularity and applications of densest subgraph discovery. We
will first introduce the definitions of graph density [25, 34, 39, 40,
44, 45, 53, 57], discuss the interesting applications of DSD over real
big graphs, and finally present the key challenges of DSD.

Specifically, we will first review the DSD definitions on different
kinds of graphs, and then highlight a wide spectrum of specific real
applications that can benefit from the solutions of DSD in various
areas, such as network science [17, 35], biological analysis [27, 52],
graph databases [19, 38, 59], system optimization [31–33], and fraud
detection [35].

Subsequently, we will present the two key challenges of DSD:
(1) how to develop efficient DSD solutions? and (2) how to perform
effective DSD such that it can well satisfy different requirements on
different graphs. The first challenge stems from the fact that the ex-
act solutions of DSD problems are often with high time complexity,
which poses a great challenge for achieving higher efficiency with a
good approximation. To facilitate efficient densest subgraph discov-
ery, the following techniques are often adopted in the literature: (1)
following the prune-and-verify framework (e.g., [25, 44, 45]) to lo-
cate the densest subgraph in some small-scale cohesive subgraphs;

(2) proposing approximation algorithms (e.g., [5, 15, 25, 44, 45, 55])
that sacrifice some accuracy for achieving higher efficiency; and (3)
developing distributed algorithms to search in a parallel manner. In
addition, building index structures or doing some pre-processing
(e.g., [14]) can also accelerate the DSD process. For the second
challenge, researchers often introduce new variants of DSD and so-
lutions, by borrowing insights from the original DSD problem and
also considering the characteristics of these graphs (e.g., multiple
layers of the graph) with application requirements (e.g., threshold
on the number of vertices).

2.2 DSD on Undirected Graphs (25 minutes)
This part mainly reviews the DSD solutions on undirected graphs:
• Exact solutions for the original DSD problem.We will first
introduce the linear programming form of the DSD problem [34]
and the flow network model [41]. Subsequently, we will present
the exact solutions based on min-cut of flow-networks [25, 34]
and linear programming [15, 34]. Finally, we will discuss the time
complexity of the exact algorithms and the pruning strategies [25]
to improve efficiency.
• Approximation solutions for the original DSD problem.We
will first introduce the concepts of the approximation algorithm and
the approximation ratio. Then the solutions with different approxi-
mation ratios will be extensively reviewed, including the (2(1 + 𝜖)-
approximation algorithm [5], 2-approximation algorithms [15, 25],
and (1 + 𝜖)-approximation algorithm [54]). Afterwards, we will
discuss how to maintain the DS on dynamic graphs. Finally, we will
compare these solutions in terms of accuracy and efficiency.
• Variants of the original DSD problem. Table 1 shows various
variants of DSD on undirected graphs.Wewill first introduce clique-
density-based DS [25, 47, 53–55, 57], where the clique-density was
extended from edge-density and triangle-density [53] is a special
case of clique-density. We will also show that by replacing a 𝑘-
cliques with a arbitrary pattern graph, we can obtain the pattern-
density [25]. Next, we will extensively discuss the algorithms for
computing the DS’s based on clique-density and pattern-density.

After that, we will introduce the DSD problem with size bound,
including densest 𝑘-subgraph [4, 7, 9, 11, 13, 46, 50] with 𝑘 vertices
and size-bounded DS [2] with at least 𝑘 vertices. Meanwhile, we
will show the approximation solutions for these problems. After-
ward, DS’s with overlapping constraints will be introduced, such as
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top-𝑘 overlapping DS [21, 22, 28] and maximum summary density
DS limited overlap [6]. Finally, other variants and corresponding
solutions, including top-𝑘 DSD and its maintenance [49], locally
DSD [51], density-friendly graph decomposition [20, 56], DS de-
construction [14] will also be briefly introduced.

In addition, we will extensively analyze and compare these DSD
solutions from different angles, such as time complexity, space
complexity, input parameters, approximation ratio, and application
scenarios. Note that for ease of illustration, some toy examples will
be used when introducing the problems and solutions.

2.3 DSD on Directed Graphs (10 minutes)
This part mainly reviews the DSD solutions on directed graphs:
• Exact solutions for the original DSD problem.We will first
introduce the definition of graph density on directed graphs. Then
we will present solutions of exact algorithms of the DSD problem on
directed graphs [15, 39, 40, 44, 45]. Finally, wewill compare the exact
algorithms of the original DSD problems on undirected and directed
graphs in terms of the main ideas and algorithm complexities.
• Approximation solutions for the original DSD problem.
We will first present the solutions with different approximation
ratios for the DSD problem on directed graphs, including the log𝑛-
approximation algorithm [39], 2(1+𝜖)-approximation algorithm [5],
2-approximation algorithms [15, 44, 45], and (1+ 𝜖)-approximation
algorithms [43, 54]. After that, we will introduce the maintenance
algorithm of the DS on dynamic directed graphs [5, 45, 54].

In addition, a variant of the DSD problem on directed graphs [40]
will be introduced. Besides, we will also comprehensively analyze
and compare the DSD solutions on directed graphs.

2.4 DSD on Other Graphs (20 minutes)
This part mainly reviews the works of DSD variants on bipartite
graphs, multilayer graphs, uncertain graphs, and dual networks.
• DSD on bipartite graphs. We will first introduce the definition
of bipartite graphs and its density. Based on these concepts, we
will present the DSD problem on bipartite graphs [1], and a more
general case called (𝑝, 𝑞)-biclique-based DS [35, 47]. Afterwards,
we will discuss both exact and approximation DSD solutions.
•DSD onmultilayer graphs.Wewill first introduce the definition
of multilayer graphs. Then we will introduce the density definition
on multi-layer graphs, namely common density [37], which is ex-
tended from edge-density, and multi-layer density [29, 30], which
is an improved version of the common density. After that, we will
present the algorithms to solve these two problems respectively.
• DSD on uncertain graphs.We will first introduce the definition
of uncertain graphs. Subsequently, we will introduce the density
definitions on uncertain graphs, namely expected density [60] and
robust density [48]. Finally, we will review both exact and approxi-
mation solutions to the DSD problem on uncertain graphs.

2.5 Future Research Directions (15 minutes)
We will discuss a list of promising future research directions on the
topic of DSD. Here, we just show three directions for lack of space.
• DSD on heterogeneous graphs. As summarized in Table 1, the
original DSD problems on undirected and directed graphs have
been extended for bipartite graphs, multilayer graphs, uncertain
graphs, and dual graphs, which actually can be considered as special
cases of the heterogeneous graph that often involves vertices and
edges with multiple types. The heterogeneous graphs are prevalent

in various domains such as knowledge graphs, bibliographic net-
works, and biological networks. Thus, a promising future research
direction is to derive a unified density definition for a general het-
erogeneous graph, such that the density definitions for the above
special graphs are its special cases. To do this, we may re-define
the density by using some well-known concepts on heterogeneous
graphs like motif. Afterwards, the corresponding DSD problem on
heterogeneous graphs may be solved by extending the existing
solutions.
• Efficient DSD algorithms. Here are some research directions:

(1) Parallel algorithms. Parallel algorithms (e.g., [5]) usually use
distributed computing platforms or multi-core computing
resources to accelerate computation. Thus, an interesting
future research direction is to study the parallel exact algo-
rithms for the DSD problem.

(2) Fast approximation algorithms. Although there are some
approximation solutions to the DSD problem, they may
still suffer from the low efficiency issue, since real-world
graphs are often with huge sizes, calling for faster approxi-
mation algorithms with better balance between the quality
of results and computational efficiency.

•Application-driven variants of DSD. As aforementioned, there
are many variants of the DSD problem, but most of them were not
customized for some specific application scenarios. Consequently,
an interesting future research direction is to study the application-
driven variants of the DSD problem, by carefully considering the
requirements of real-life scenarios. For example, the DSD solutions
can be used for detecting network communities [17]. However,
in a geo-social network, a community often contains a group of
users that are not only linked densely, but also have close physical
distance. Thus, it would be interesting to study how to incorporate
the distance into the DSD problem.

In summary, after the tutorial, attendees will be familiar with:
(1) The typical applications and key challenges of DSD;
(2) The representative DSD solutions on undirected graphs,

directed graphs, and other graphs;
(3) The representative variants of DSD problem and solutions

over different kinds of graphs;
(4) A list of promising future research directions on DSD.
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