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ABSTRACT
As database vendors are increasingly moving towards the cloud
data service, i.e., databases as a service (DBaaS), cloud databases
have become prevalent. Compared with the early cloud-hosted
databases, the new generation of cloud databases, also known as
cloud-native databases, seek for higher elasticity and lower cost
by developing new techniques, e.g., compute-storage disaggrega-
tion and the log is the database. To better harness the power of
these cloud databases, it is important to study and compare the
pros and cons of their key techniques. In this tutorial, we offer a
comprehensive survey of cloud-native databases. Based on various
system architectures, we introduce a taxonomy for the state-of-the-
art cloud-native OLTP databases and OLAP databases, respectively.
We then take a deep dive into their key techniques regarding storage
management, transaction processing, analytical processing, data
replication, serverless computing, database recovery, and security.
Finally, we discuss the research challenges and opportunities.
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1 INTRODUCTION
Background. Nowadays, cloud databases [2, 3, 5–7, 22] are in-
creasingly proliferating as the database vendors are moving toward
cloud data services. A recent Gartner report predicts [19] that the
revenue from the cloud DBMS will account for 50% of total DBMS
market revenue by the end of 2022, indicating that cloud databases
play a crucial role in the next generation of data management sys-
tems. In the early stage of cloud data services, customers can choose
the offered data service by the cloud vendors (i.e., databases as a
service (DBaaS)), then pay for the on-demand resource fee based
on the service level agreement (SLA) [8, 15, 16, 27, 30]. However,
those providers regard the deployed databases as a general kind of
software without any underlying optimizations.
Cloud-Native Databases. To further improve the elasticity and
save the resources, cloud data service providers propose the cloud-
native databases. The foremost innovation is the disaggregation
of compute and storage architecture [22, 24], which decouples the
storage from the compute nodes, then connects the compute nodes
to shared storage through a high-speed network. On the one hand,
the disaggregation architecture enables to expand the compute and
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storage resources independently, thereby bringing more elasticity
for the customers. On the other hand, providers can support better
multi-tenancy and alleviate the write amplification problem by
writing the data into a unified and disaggregated log storage (i.e.,
the log is the database). However, as the compute and storage
are disaggregated, many techniques are proposed to improve the
performance, e.g., local caching [25], shared memory pool [5, 29],
computation pushdown [25, 26], etc.
Challenges.There are threemain challenges. (C1) Since the storage
is disaggregated, it is challenging to support efficient transaction
processing using a remote redo log, especially for the case that logs
have yet been replayed for the secondary read-only nodes. (C2)
Cloud databases need to reduce the network traffic by designing
caching strategies and computational pushdown on the storage
side. However, it is challenging to develop an efficient and effective
method due to the computation limitation and cost of the storage
side. (C3) Several cloud databases have supported serverless comput-
ing that can dynamically schedule resources for users’ workloads
with pre-defined rules, but it is still challenging for them to adap-
tively schedule the resources for the workloads in a fine-grained
granularity [20]. To better harness the power of cloud databases, it
is important to study the pros and cons of their key techniques.
Tutorial Overview.We will provide a comprehensive tutorial on
cloud-native databases. The intended length of the tutorial is 1.5
hours. The tutorial consists of six sections as follows.
(1) Introduction (5 min). This section starts with an introduction
to the motivation and challenges of cloud databases.
(2) Cloud OLTP Architectures (20 min). This section introduces
three types of cloud OLTP disaggregation architectures.
(3) Cloud OLTP Techniques (30 min). This section introduces
cloud-native OLTP techniques, including transaction processing,
data replication, database node recovery, and storage management.
(4) Cloud OLAP Architectures (10 min). This section introduces
two types of disaggregation architectures of cloud OLAP databases.
(5) Cloud OLAP Techniques (20 min). This section takes a deep
dive into the key techniques of cloud-native OLAP databases, includ-
ing query processing, storage management, serverless computing,
security, and machine learning.
(6) Challenges and Open Problems (5 mins). The final section
concludes the tutorial and discusses the research challenges and
open problems for cloud-native databases.

2 TUTORIAL OUTLINE
2.1 Cloud-Native OLTP Architectures
As shown in Figure 1 and Table 1, we classify the architectures of
cloud-native OLTP databases into three categories as follows:
(1) Disaggregated Compute-Storage OLTP Architecture. This
category of databases adopts a disaggregation architecture that
separates the compute nodes and storage nodes. Particularly, the
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Figure 1: Architectures of Cloud-Native OLTP Databases

Table 1: A Classification of Cloud-Native OLTP Databases based on the Architecture

OLTP Architecture Computation Buffer Storage

Disaggregated Compute-Storage One RW Primary Node +
Multiple RO Secondary Nodes Local Cache for each Compute Node Aggregated Log & Page Storage

Disaggregated Compute-Log-Storage One RW Primary Node +
Multiple RO Secondary Nodes Local Cache for each Compute Node Disaggregated Log & Page Storage

Disaggregated Compute-Buffer-Storage One RW Primary Node +
Multiple RO Secondary Nodes Local Cache + Shared Remote Buffer Disaggregated Log & Page Storage

Table 2: A Classification of Cloud-Native OLAPArchitectures

OLAP Architecture Computation Storage
Disaggregated

Compute-Storage
Multiple Clusters with

Worker Nodes
Local Cache+
Cloud Storage

Disaggregated
Compute-Memory-Storage

Multiple Worker Nodes
with Shuffle Layer

Memory Pool+
Cloud Storage

logs are treated as the first-citizen storage to achieve high availabil-
ity and consistency. A representative is Aurora [22], which is the
first commercial cloud database that implements the disaggregated
architecture. To reduce the I/O overhead caused by checkpointing,
dirty page writing, and data synchronization, it offloads the redo
processing to the storage tier.
(2) Disaggregated Compute-Log-Storage OLTP Architecture.
This type of databases proposes a disaggregation architecture that
separates the compute nodes, log service, and storage nodes. Com-
pared with the first category, it achieves availability and durabil-
ity by decoupling the log service from the storage. For instance,
Socrates [2] adopts a four-tier abstraction of disaggregation ar-
chitecture, which separates the storage into two parts: the XLog
Service for log storage and Page Servers for page storage. The
XLog Service persists write requests to logs, and the Page Servers
are in charge of serving the read requests.
(3) Disaggregated Compute-Buffer-Storage OLTP Architec-
ture. This category of databases [5, 29] develops a disaggregation
architecture that separates the compute nodes, storage nodes, and
the buffer. A shared remote buffer pool is used to serve as a uni-
fied data interface, thus compute nodes can read the pages from
the same buffer area, which will reduce the duplicate data read
from the same requests of different compute nodes and achieve
high read throughput. For instance, PolarDB Serverless [5] adopts
a shared buffer of all compute nodes. It utilizes various techniques,

e.g., RDMA technology, cache invalidation, global latches, and read
views to ensure data consistency and query performance of shared
buffer area in the cloud.

2.2 Key Techniques of Cloud OLTP Databases
Table 3 summarizes four types of cloud-native techniques.
(1) Transaction Processing. We present three types of OLTP
techniques. The first type is (i) Write Log, read from redo log [22]
which uses logs for OLTP. The second type is (ii) Write log, read
from page server[7] which uses logs and pages for OLTP. The third
type is (iii) Write log, read from the shared memory[2, 5] which
supports OLTP based on a disaggregated compute-memory-storage
architecture.
(2) Data ReplicationWe introduce three types of techniques for
data replication in the cloud. Namely, (i) Quorum-based log replica-
tion [22, 23]; (ii) Paxos-based log replication [5]; and (iii) Log-page-
separated replication [7].
(3) Database Node Recovery. We study two types of cloud-based
techniques for node recovery: (i) ARIES-based recovery methods
and (ii) Non-Redo recovery methods, which skips the Redo phase
based on the mechanism of the log is the database.
(4) Storage Management. We introduce three types of cloud stor-
age management for OLTP. Namely, (i) Coupled log-page stor-
age [22], (ii) Decoupled log-page storage [7], and (iii) Decoupled
log-buffer-page storage [2, 5].

2.3 Cloud-Native OLAP Architectures
As shown in Table 2 and Figure 2, we classify the architectures of
cloud-native OLAP databases into two categories as follows:
(1) Disaggregated Compute-Storage OLAP Architecture. This
category of databases adopt a disaggregated compute-storage ar-
chitecture. The entire data is stored in shared storage, and hot
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Table 3: An Overview of Key Techniques of Cloud-Native OLTP Databases

Technique Type Main Approaches Cloud Databases Read Perf. Write Perf. Elasticity Latency Cost

Transaction Processing
Write Log, Read from Redo Log Aurora[22] Medium High High Low Medium
Write Log, Read from Page Server Taurus[7] Medium High Excellent Medium Medium

Write Log, Read from Shared Memory PolarDB[5] Excellent Excellent Excellent Low High

Data Replications
Quorum-based Log Replication Aurora[22, 23] High Medium High Medium Medium
Paxos-based Log Replication PolarDB[5] High High High High High

Log-Page-Separated Replication Taurus[7] Medium High High Medium Medium

Database Node Recovery ARIES-based Recovery Socrates[2] - - High Low Medium
Non-Redo Recovery Aurora[22] - - High Medium High

Storage
Management

Coupled Log-Page Storage Aurora[22] Medium - High Low Medium
Decoupled Log-Page Storage Taurus[7] Medium - Excellent Medium Medium

Decoupled Log-Buffer-Page Storage Socrates[2] High - Excellent Low High
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Figure 2: Architectures of Cloud-Native OLAP Databases

data is cached in the compute nodes on local SSDs. For instance,
Snowflake [6, 24] owns an architecture with three layers: (1) the
cloud service layer is in charge of the management of metadata,
Virtual Warehouses (VWs), queries, transactions, and security. (2)

the middle layer leverages VWs with EC2 instances to process the
queries; (3) the storage layer uses the Amazon S3 to persist data.
(2) Disaggregated Compute-Memory-Storage OLAP Architec-
ture. This category of databases adopts a disaggregated compute-
memory-storage architecture with high elasticity. A representative
is BigQuery [14] which is built on the Dremel query engine. It in-
troduces a shared memory tier to accelerate the shuffle processing
of the distributed joins, which significantly reduces the latency by
avoid writing and reading the intermediate results from disks.

2.4 Key Techniques of Cloud OLAP Databases
Table 4 summarizes five types of OLAP-oriented techniques.
(1) Query Processing. We introduce three types of query pro-
cessing. The first type is (i) Columnar scan with shuffle mem-
ory pool [14]. The second type is (ii) Columnar scan with push-
down [17, 24, 26], which aims to push the computation into the
storage side, e.g., Amazon S3. The third type is (iii) Columnar scan
with caching and pushdown [25].
(2) Storage Management. There are two types of storage manage-
ment for cloud-native OLAP databases. The first type is (i) Local
caching with a shared storage service [6, 17], and the second type
is (ii) Unified memory pool with a storage system [14]. We will also
introduce the semi-structured data management [6, 14, 28].
(3) Serverless Computing.We introduce two types of serverless
computing in cloud databases. The first type is (i) Serverless with
functions as a service [18], where queries are adaptively executed
based on the cloud function services. The second type is (ii) Server-
less with the elastic query engine [4], which enables to perform the
queries by dynamically provisioning the query engine.
(4) Security.We present two types of data protection techniques:
(i) Software-based data protection [6] and (ii) Hardware-based data
protection, e.g., enclave in Intel SGX [1].
(5) Machine Learning.We will look at emerging cloud database
techniques for machine learning, such as Sagemaker [13]. Moreover,
we will introduce how cloud databases can benefit from machine
learning techniques [10, 11, 21].

2.5 Challenges and Open Problems
Multiple Write Architecture. Existing cloud databases only sup-
port one write and multiple reads. Thus, it calls for cloud-native
multiple write techniques that can scale out write capabilities.
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Table 4: An Overview of Key Techniques of Cloud-Native OLAP Databases

Technique Type Main Approaches Cloud Databases Throughput Elasticity Scalability Cost

Query Processing

Columnar Scan with Pushdown Snowflake[24], Redshift[17] High High High Medium
Columnar Scan with Caching and Pushdown FlexPushdownDB[25] High Medium Medium Medium
Columnar Scan with Shuffle Memory Tier BigQuery[14] Excellent Excellent High High

Storage Management Local SSD Caching with Cloud Storage Snowflake[6], Redshift[17] High High Excellent Medium
Unified Memory Pool with Cloud Storage BigQuery[14] Excellent Excellent High High

Serverless
Computing

Serverless with Functions as a Service Starling[18] High Excellent Excellent Medium
Serverless with Elastic Query Engine Athena[4] Excellent High High High

Security Software-based Data Protection Snowflake[24] High High High Low
Hardware Data Protection (High Security) Azure[1] Low Low Low High

Machine Learning SQL-based ML Pipeline in the Cloud Sagemaker [13] High High High High

Fine-grained Serverless. Existing elastic databases only support
provisioning the resources for a query with coarse-grained server-
less (e.g., query engine) but they suffer from the high latency of
elastic scaling. It is challenging to support fine-grained serverless
to efficiently schedule the resources for the incoming queries.
Cloud-Native HTAP Database. Existing cloud-native databases
are either OLTP-oriented systems or OLAP-oriented systems, and
there are no cloud-native HTAP systems [9, 12]. The main challenge
is how to judiciously schedule the resources for OLTP and OLAP
workloads with SLA-aware optimization.
Multi-Cloud Database. To provide cloud data services with high
availability, e.g., zero downtime, it calls for multi-cloud databases
that can harness the capability of multi-cloud deployment. It is
challenging to effectively determine the strategy of data placement
and to efficiently migrate the data among the multiple clouds.
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