Machine Programming;:
Turning Data into Programmer Productivity

Abdul Wasay Nesime Tatbul Justin Gottschlich
Intel Labs Intel Labs and MIT Merly Al
abdul. wasay@intel.com tatbul@csail. mit.edu justin.gottschlich@merly.ai
ABSTRACT a data systems audience, emphasizing avenues for cross-pollination

Machine programming is an emerging research area that improves
the software development life cycle from design through deploy-
ment. We present a tutorial on machine programming research
highlighting aspects relevant to the data systems community. We
divide this tutorial into three parts: We begin with an introduction
to machine programming introducing its three pillars: intention,
invention, and adaptation. Then, we provide an overview of the
data ecosystem central to all machine programming systems, high-
lighting challenges and novel opportunities relevant to the data
systems community. Finally, we describe recent advances in ma-
chine programming research and how these directions use various
data sets to improve the ease of creating and maintaining perfor-
mant software systems.

PVLDB Reference Format:

Abdul Wasay, Nesime Tatbul, and Justin Gottschlich. Machine
Programming: Turning Data into Programmer Productivity. PVLDB, 15(12):
3754-3757, 2022.

doi:10.14778/3554821.3554892

1 INTRODUCTION

Machine Programming. Programming (i.e., producing software
systems) is a cognitively demanding task that requires extensive
knowledge, experience, and a significant degree of creativity. This
complexity is evident by the fact that technology companies spend a
substantial portion of their operating cost to produce, maintain, and
deploy software systems [18]. Machine programming is an emerging
area of research that develops automated tools and techniques to re-
duce this cost — cognitive, computational, and monetary — of producing
and maintaining correct and efficient software systems while harness-
ing the full power of modern computing platforms [14]. Due to its
potential, machine programming is a fast-growing area of research
with participation by several research groups across industrial and
academic institutions [1, 6, 12, 14, 17, 19, 26, 30, 31, 33].

Tutorial Overview and Relevance. While machine programming
research spans several communities, including software engineer-
ing, programming languages, machine learning, and user interface
design, data is central to all machine programming systems. We
present a 90-minute tutorial on machine programming research for

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 15, No. 12 ISSN 2150-8097.
doi:10.14778/3554821.3554892

3754

between machine programming and data systems research.

(1) Machine Programming and its Three Pillars (20 min). We
begin with an introduction to machine programming, positioning
it with respect to other related areas such as program synthesis
and automated programming. We also introduce the three pillars
of machine programming - Intention, Invention, and Adaptation —
to provide a frame of reference for the rest of the discussion.

(2) Data in Machine Programming Systems (35 min). Next,
we provide an overview of the data ecosystem all machine pro-
gramming research heavily relies on, such as code and telemetry
data. First, we highlight the diversity and scale of data sources
and formats within this ecosystem. Then, we emphasize how some
of the core challenges in machine programming research directly
connect to how machine programming systems collect, store, rep-
resent, and analyze diverse, multi-dimensional data sources. We
then discuss open research challenges — data cleaning, integration,
and representation — amenable to novel data systems research.

(3) Advances in Machine Programming Systems (35 min).
Here, we examine emerging research directions in machine pro-
gramming systems that facilitate the design, development, and
deployment of various applications. While machine programming
systems span a diverse array of applications, we pick the most rele-
vant ones to a data systems audience. We first describe advances
in code intelligence and automated debugging tools aimed at in-
creasing the productivity of all programmers. Then, we describe
advances in machine programming systems that support the life
cycle of specific data-intensive applications, including cloud mi-
croservices, data science pipelines, and data flow applications.

Table 1 provides a representative (but not exhaustive) list of ma-
chine programming systems classified based on various dimensions
relevant to this tutorial, including data sources, machine program-
ming pillars, and application domains.

Audience. We design this tutorial for an audience with a data
management background (students, academics, researchers, and
industry practitioners). We will provide background knowledge on
relevant topics from machine learning and programming languages.

Related Tutorials. Several related tutorials have focused on ap-
plication of machine learning to automate various components of
database systems [22, 24, 25, 39]. We, however, explore research
aimed at improving programmer productivity in designing, develop-
ing, and deploying correct and performant computer systems. We
consolidate research from various communities under this umbrella
(i.e., machine programming) and highlight novel opportunities for
data systems researchers.

https://doi.org/10.14778/3554821.3554892
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3554821.3554892

Table 1: We classify machine programming systems across several dimensions including data sources and learning mechanisms.

MP System Data Source(s) Learning Type MP Pillar(s) Stage Application Domain
CoPilot [5] Code + documentation Self-supervised Intention + Invention = Development General
ControlFlag [17] Code repository Self-supervised Intention Development General
Ithemal [27] Code + perf. profile Supervised Intention + Invention = Development General
AutoPerf [1] Telemetry data Self-supervised Adaptation Development General
Optdebug [16] Provenance Unsupervised Intention + Adaptation = Debugging DataFlow Systems
Dagger [33] Provenance Unsupervised Adaptation Debugging DataFlow Systems
pgsim [40] Telemetry data Supervised Adaptation Debugging Cloud Microservices
Sage [11] Telemetry data Unsupervised Adaptation Debugging Cloud Microservices
Snorkel [31] Knowledge Bases Semi-supervised Invention Design Data Science Pipelines
Holoclean [32] Training data Self-supervised Invention Debugging Data Science Pipelines

MACHINE PROGRAMMING AND ITS THREE
PILLARS

Machine Programming: What and Why. The pipeline that pro-
duces correct and efficient software has several stages, including
design, development, debugging, optimization, deployment, and
redesign. Machine programming research designs automated tools
and techniques to improve the ease across all these stages of the
software development pipeline. The eventual aim is to enable ev-
eryone to create correct and performant software systems [14].
Machine programming borrows techniques from machine learn-
ing, programming languages, and formal methods. Compared to
other research directions such as program synthesis or automated
programming that focus on a single stage, machine programming
takes a holistic view of the software life cycle. This view enables us
to explore a rich set of research directions in this tutorial.

Three Pillars. We introduce the three pillars of machine program-
ming - Intention, Invention, and Adaptation - as a framework to
think about existing and emerging systems.

(i) Intention. Those systems that make it easy for users to express
what they want a software system to do without substantial pro-
gramming effort fall under the Intention pillar. These include sys-
tems with visual and natural language interfaces, those that enable
programming through examples, and ones with modular interfaces.

(ii) Invention. After a user specifies their intent, the pillar of In-
vention is concerned with systems that reduce the overhead of
producing software systems that execute that intention correctly
and as efficiently as possible. These include code generation and
synthesis systems, auto-complete systems, and systems that catch
correctness and performance bugs.

(iii) Adaptation. Finally, software systems do not operate in a vac-
uum and need to interact with various contexts such as application
workloads, hardware configurations, and data sets. These context
variables keep evolving, and software systems need to keep up to
maintain correctness and efficiency. We classify systems that enable
this flexibility under the Adaptation pillar. These include systems
that help with performance regression testing, automated scaling,
and management of deployed software.

3755

3 DATA IN MACHINE PROGRAMMING

All machine programming systems heavily rely on data to uncover
patterns, train models, and build formal logic. This data comes
from various sources (e.g., code repositories, documentation, and
telemetry data) and can have multiple formats (e.g., unstructured,
textual, and time series).

Code Repositories. Public code repositories, such as Github, pro-
vide access to several billions of lines of code in hundreds of pro-
gramming languages along with metadata such as documentation
and revision history [38]. While these repositories contain a wealth
of information to power machine programming systems, they suffer
from two significant challenges: (i) They have a high proportion
of duplicate projects, and (ii) it is increasingly hard to gauge the
quality of code [2]. Recent research addresses these challenges by
curating and cleaning data. For instance, CodeNet by IBM provides
access to code snippets in 50 programming languages and vari-
ous quality metrics [30]. Other similar sanitized data sets include
POJ-104 and Google Code Jam [4, 37].

Benchmarks. Another active area of research is to establish bench-
marks for the emerging use cases of machine programming. One
popular benchmark is CodeXGLUE, which comes with data sets
and machine learning models corresponding to several tasks such
as code search, auto-complete, and translation. CodeXGLUE also
hosts a leaderboard to rank various models for every task. Death-
StarBench is another benchmark suite geared at cloud applications.
It provides five microservices configurations that range from social
media to drone coordination [12].

Incomplete and Synthetic Code + Natural Language. Online
programming forums such as Stack Overflow and LeetCode are
another rich source of data containing not just code but also other
features like natural language explanation and peer ranking in-
formation. Recent evidence shows how data in various formats
can help to improve the accuracy and scope of various machine
programming tasks [28, 29].

Telemetry Data. Software and hardware telemetry data is becom-
ing increasingly important for various machine learning systems.
For instance, automatic performance regression systems (such as
AutoPerf and OptDebug [1, 16]) or automatic cloud management
systems (such as Sage and Sinan [11, 13]) make extensive use of

telemetry data for anomaly detection as well as root cause localiza-
tion in deployed software systems.

Open Research Directions. These various sources of data intro-
duce specific challenges, e.g., (i) how to clean and integrate multi-
dimensional data from heterogeneous sources and formats while
ensuring high data quality in an open-source and decentralized data
ecosystem, (ii) what code representations to use for a given task
and how to efficiently store and manage those representations, and
(iii) there is the question of standardizing benchmarks for various
machine programming tasks.

4 ADVANCES IN MACHINE PROGRAMMING
SYSTEMS

General-Purpose MP Systems. First, we describe general-purpose
machine programming research aimed at improving the life cycle
of any software system.

(i) Easy Programmatic Interfaces. Research in this direction makes it
easy for a user to specify their intention through intuitive interfaces
without requiring substantial programming effort: Programming-
by-example approaches can synthesize functions based on a few
samples of their input-output behavior [8]. Plotcodder is a recent
research system that automatically generates visualization code
based on the data set to be visualized [7]. Additionally, various
systems enable program synthesis and data exploration through
touch-based, visual, and even augmented reality interfaces [20, 35].

(ii) Code Intelligence. This category of systems leverages artificial
intelligence to make it easy to produce code by automating vari-
ous tasks such as code search, code completion, and code-to-code
translation [26]. In the code search domain, various systems map
between natural language utterances and either domain-specific
or general-purpose computer languages: Concode is a system that
maps natural language to code within an existing program [21].
Code2Seq goes in the opposite direction generating natural lan-
guage names for functions based on their code [3]. Similarly, there
is work on predicting documentation from structured code [19].
In the code completion regime, Pythia is a state-of-the-art system
that learns how to complete python code by learning directly from
open-source repositories [36]. On the other hand, ControlFlag uses
self-supervision to extract patterns within a code repository. Con-
trolFlag can then use these patterns to flag incorrect patterns and
suggest corrections [17]. Research in code search and code com-
pletion regime come together in Co-Pilot, a widely-used industrial
system designed by Github [5]. Finally, recent advances in deep
learning have enabled highly accurate code-to-code translation that
in the past relied on hand-coded pattern matching [34].

(ii) Debugging. Complimentary to code intelligence research is the
direction to automate the process of debugging an existing software
system for both correctness and performance. ControlFlag and
Hoppity are recent systems that employ deep learning approaches
to debug correctness bugs through anomaly detection [10, 17]. In
the performance debugging regime, Ithemal is a system that predicts
the performance (in the form of CPU clock cycles) of code snippets
without running them [27]. AutoPerf is another system in this area
that helps localize performance bugs that may surface between any
two versions of a deployed software system [1].

3756

MP Systems for Data-intensive Applications. In this part, we fo-
cus on machine programming systems designed for data-intensive
application areas, where data, in addition to code, determines cor-
rectness and performance.

(i) Data Flow Systems. Data Flow applications (such as those that
use Hadoop, Map Reduce, or Spark) are a complex mix of both
code and data. In data flow applications, a bug can be attributed to
errors in data processing or program logic [16]. There is research
to make it memory- and compute-efficient to track provenance in
such applications [23]. Systems like Dagger, BigDebug, and TagSniff
enable interactive debugging of this data provenance to localize
bugs [9, 15, 23, 33]. Finally, Optdebug is a recent system that allows
for an efficient combined data flow and logic debugging [16].

(ii) Cloud Microservices. The microservices model, where applica-
tions are deployed as loosely-coupled services, is increasingly being
adopted by various applications, including social networks, web
search, and drone coordination [12]. Different systems help to de-
sign and debug these complex applications. pgsim is one such sys-
tem that uses statistics gathered from telemetry data to simulate
the performance of a deployed microservice [40]. These models are
used for testing and debugging purposes. Recent research combines
profiling data sets with deep learning models to enable various
tasks to improve debugging and deployment. For instance, Seer
helps localize services or a set of services likely to result in a quality-
of-service violation and suggests ways to remedy it [13]. Sage is
another system that allows designers to generate alternative designs
for a given microservice deployment and evaluate them [11].

(iii) Data Science Pipelines. Various research directions make it easy
to create and repair data sets for data science and machine learning
pipelines. For instance, Snorkel is one such system that automates
the process of labeling data by allowing data scientists to specify
labeling rules and then apply them to unlabeled data [31]. Holo-
cleans is a system that builds probabilistic models of the data set,
then uses these models to discover and correct errors (duplication
or missing data) [32].

5 PRESENTERS

Abdul Wasay is a Research Scientist at the Machine Programming
Group at Intel Labs. His research is at the intersection of systems
and machine learning. He designs machine programming systems
to enable better understanding of AI and cloud applications. His
research appears in leading systems and machine learning venues
such as SIGMOD, MLSys, and ICLR. He completed his Ph.D. in
Computer Science from Harvard University. Wasay has also de-
signed and taught several courses at Harvard University and Ashesi
University (Ghana) to a diverse group of students.

Nesime Tatbul is a Senior Research Scientist at Intel Labs and MIT.
She leads the Intel-MIT university collaboration program on data
systems and artificial intelligence. Previously, she served on the CS
faculty of ETH Zurich, after receiving a Ph.D. degree from Brown
University. Her current research focuses on learned systems, time
series analytics, and observability data management. She is one of
the co-authors of “The Three Pillars of Machine Programming” [14],
which provides the foundational vision behind this tutorial.

Justin Gottschlich is the Founder, CEO & Chief Scientist of Merly.ai,

a company aimed at automating software development using state-
of-the-art machine programming systems. Previously, Justin was
a Principal Al Scientist and the Founder & Director of Machine
Programming Research at Intel Labs. He co-founded the ACM SIG-
PLAN Machine Programming Symposium (MAPS) and serves as
its Steering Committee Chair. He currently serves on the 2020 NSF
Expeditions “Understanding the World Through Code”. Justin re-
ceived his PhD in Computer Engineering from the University of
Colorado-Boulder in 2011 and has 40+ peer-reviewed publications,
50+ issued patents, with 100+ patents pending.

REFERENCES

(1]

[9

=

[10

[11]

[12

[13]

[14

[15]

[16]

Mejbah Alam, Justin Gottschlich, Nesime Tatbul, Javier S Turek, Tim Mattson,
and Abdullah Muzahid. 2019. A Zero-Positive Learning Approach for Diagnosing
Software Performance Regressions. In Advances in Neural Information Processing
Systems.

Miltiadis Allamanis. 2019. The adverse effects of code duplication in machine
learning models of code. In Proceedings of the 2019 ACM SIGPLAN International
Symposium on New Ideas, New Paradigms, and Reflections on Programming and
Software.

Uri Alon, Omer Levy, and Eran Yahav. 2019. code2seq: Generating Sequences
from Structured Representations of Code. In International Conference on Learning
Representations.

Tal Ben-Nun, Alice Shoshana Jakobovits, and Torsten Hoefler. 2018. Neural Code
Comprehension: A Learnable Representation of Code Semantics. (2018).

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde
de Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large language models trained on code.
arXiv preprint arXiv:2107.03374 (2021).

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde
de Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large language models trained on code.
arXiv preprint arXiv:2107.03374 (2021).

Xinyun Chen, Linyuan Gong, Alvin Cheung, and Dawn Song. 2021. PlotCoder:
Hierarchical Decoding for Synthesizing Visualization Code in Programmatic
Context. In Proceedings of the 59th Annual Meeting of the Association for Compu-
tational Linguistics.

Xinyun Chen, Dawn Song, and Yuandong Tian. 2021. Latent Execution for Neural
Program Synthesis. In Advances in Neural Information Processing Systems.
Bertty Contreras-Rojas, Jorge-Arnulfo Quiané-Ruiz, Zoi Kaoudi, and Saravanan
Thirumuruganathan. 2019. Tagsniff: Simplified big data debugging for dataflow
jobs. In Proceedings of the ACM Symposium on Cloud Computing.

Elizabeth Dinella, Hanjun Dai, Ziyang Li, Mayur Naik, Le Song, and Ke Wang.
2020. Hoppity: Learning Graph Transoformations to Detect and Fix Bugs in
Programs. In International Conference on Learning Representations.

Yu Gan, Mingyu Liang, Sundar Dev, David Lo, and Christina Delimitrou. 2021.
Sage: practical and scalable ml-driven performance debugging in microservices.
In Proceedings of the 26th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems.

Yu Gan, Yangi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayan Katarki,
Ariana Bruno, Justin Hu, Brian Ritchken, Brendon Jackson, et al. 2019. An
open-source benchmark suite for microservices and their hardware-software
implications for cloud & edge systems. In Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming Languages
and Operating Systems.

Yu Gan, Yanqgi Zhang, Kelvin Hu, Dailun Cheng, Yuan He, Meghna Pancholi, and
Christina Delimitrou. 2019. Seer: Leveraging big data to navigate the complexity
of performance debugging in cloud microservices. In Proceedings of the twenty-
fourth international conference on architectural support for programming languages
and operating systems.

Justin Gottschlich, Armando Solar-Lezama, Nesime Tatbul, Michael Carbin, Mar-
tin Rinard, Regina Barzilay, Saman Amarasinghe, Joshua B Tenenbaum, and
Tim Mattson. 2018. The three pillars of machine programming. In Proceed-
ings of the 2nd ACM SIGPLAN International Workshop on Machine Learning and
Programming Languages.

Muhammad Ali Gulzar, Matteo Interlandi, Seunghyun Yoo, Sai Deep Tetali, Tyson
Condie, Todd Millstein, and Miryung Kim. 2016. Bigdebug: Debugging primitives
for interactive big data processing in spark. In 2016 IEEE/ACM 38th International
Conference on Software Engineering (ICSE).

Muhammad Ali Gulzar and Miryung Kim. 2021. OptDebug: Fault-Inducing Oper-
ation Isolation for Dataflow Applications. In Proceedings of the ACM Symposium
on Cloud Computing.

3757

(17]

(18]

[19]

[27]

(28]

[29]

(31]

(32]

(33]

(35]

[36]

Niranjan Hasabnis and Justin Gottschlich. 2021. ControlFlag: a self-supervised
idiosyncratic pattern detection system for software control structures. In Proceed-
ings of the 5th ACM SIGPLAN International Symposium on Machine Programming.
Caryn Hubbard. [n.d.]. A Transparent Look Inside Our Process For Creating
Buffer’s Annual Budget. https://buffer.com/resources/creating-startup-budget/.
(Accessed on 03/25/2022).

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc
Brockschmidt. 2019. Codesearchnet challenge: Evaluating the state of semantic
code search. arXiv preprint arXiv:1909.09436 (2019).

Stratos Idreos, Olga Papaemmanouil, and Surajit Chaudhuri. 2015. Overview of
Data Exploration Techniques. In Proceedings of the 2015 ACM SIGMOD Interna-
tional Conference on Management of Data.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. 2018.
Mapping language to code in programmatic context. (2018).

Alekh Jindal and Matteo Interlandi. 2021. Machine Learning for Cloud Data
Systems: the Promise, the Progress, and the Path Forward. Proc. VLDB Endow.
(2021).

Avinash Kumar, Zuozhi Wang, Shengquan Ni, and Chen Li. 2020. Amber: a
debuggable dataflow system based on the actor model. Proceedings of the VLDB
Endowment (2020).

Guoliang Li, Xuanhe Zhou, and Lei Cao. 2021. Al Meets Database: AI4DB and
DB4AL In SIGMOD °21: International Conference on Management of Data, Virtual
Event, China, June 20-25, 2021. ACM, 2859-2866.

Guoliang Li, Xuanhe Zhou, and Lei Cao. 2021. Machine Learning for Databases.
Proc. VLDB Endow. (2021).

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio
Blanco, Colin B. Clement, Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Lidong
Zhou, Linjun Shou, Long Zhou, Michele Tufano, Ming Gong, Ming Zhou, Nan
Duan, Neel Sundaresan, Shao Kun Deng, Shengyu Fu, and Shujie Liu. 2021.
CodeXGLUE: A Machine Learning Benchmark Dataset for Code Understanding
and Generation. CoRR abs/2102.04664 (2021).

Charith Mendis, Alex Renda, Saman Amarasinghe, and Michael Carbin. 2019.
Ithemal: Accurate, portable and fast basic block throughput estimation using
deep neural networks. In International Conference on machine learning.

Alon Mishne, Sharon Shoham, and Eran Yahav. 2012. Typestate-based seman-
tic code search over partial programs. In Proceedings of the ACM international
conference on Object oriented programming systems languages and applications.
Hila Peleg, Sharon Shoham, Eran Yahav, and Hongseok Yang. 2013. Symbolic
automata for static specification mining. In International Static Analysis Sympo-
sium.

Ruchir Puri, David S Kung, Geert Janssen, Wei Zhang, Giacomo Domeniconi,
Vladimir Zolotov, Julian Dolby, Jie Chen, Mihir Choudhury, Lindsey Decker, et al.
2021. CodeNet: A Large-Scale Al for Code Dataset for Learning a Diversity of
Coding Tasks. (2021).

Alexander Ratner, Stephen H Bach, Henry Ehrenberg, Jason Fries, Sen Wu,
and Christopher Ré. 2020. Snorkel: Rapid training data creation with weak
supervision. The VLDB Journal (2020).

Theodoros Rekatsinas, Xu Chu, Thab F Ilyas, and Christopher Ré. 2017. Holoclean:
Holistic data repairs with probabilistic inference. The VLDB Journal (2017).

El Kindi Rezig, Ashrita Brahmaroutu, Nesime Tatbul, Mourad Ouzzani, Nan
Tang, Timothy Mattson, Samuel Madden, and Michael Stonebraker. 2020. De-
bugging large-scale data science pipelines using dagger. Proceedings of the VLDB
Endowment (2020).

Baptiste Roziere, Marie-Anne Lachaux, Lowik Chanussot, and Guillaume Lample.
2020. Unsupervised translation of programming languages. Advances in Neural
Information Processing Systems (2020).

Rishabh Singh and Armando Solar-Lezama. 2012. SPT: Storyboard Programming
Tool. In Computer Aided Verification - 24th International Conference, CAV 2012,
Berkeley, CA, USA, July 7-13, 2012 Proceedings.

Alexey Svyatkovskiy, Ying Zhao, Shengyu Fu, and Neel Sundaresan. 2019. Pythia:
Al-assisted code completion system. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining.

Farhan Ullah, Hamad Naeem, Sohail Jabbar, Shehzad Khalid, Muhammad Ahsan
Latif, Fadi Al-Turjman, and Leonardo Mostarda. 2019. Cyber security threats
detection in internet of things using deep learning approach. IEEE Access (2019).
Martin Vechev, Eran Yahav, et al. 2016. Programming with “big code”. Foundations
and Trends in Programming Languages (2016).

Abdul Wasay, Subarna Chatterjee, and Stratos Idreos. 2021. Deep Learning: Sys-
tems and Responsibility. In SIGMOD °21: International Conference on Management
of Data, Virtual Event, China, June 20-25, 2021.

Yanqi Zhang, Yu Gan, and Christina Delimitrou. 2019. qSim: Enabling Accurate
and Scalable Simulation for Interactive Microservices. In Proceedings of the 2019
IEEE International Symposium on Performance Analysis of Systems and Software
(ISPASS) (Madison, WI).

https://buffer.com/resources/creating-startup-budget/

