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ABSTRACT
Due to the increasing variety of the current database landscape,
polyglot datamanagement has become a hot research topic in recent
years. The underlying idea is to combine the benefits of different
data stores behind a predefined set of common interfaces and thus
address use cases that individual stores cannot meet. This can be
accomplished using different approaches which vary greatly in
terms of capabilities, functionality, and architectural concepts. This
tutorial provides a detailed overview of the current state of research
in polyglot data management. We motivate its use by showing
the high diversity of existing data stores and discussing three use
cases in which individual stores are insufficient. Thereafter, we
present different taxonomies for classifying polyglot data systems
and give a detailed review of a number of selected systems. Finally,
we compare these systems based on their features and discuss open
challenges that still need to be addressed in future research.
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1 INTRODUCTION
Data is nowadays processed and managed in many different con-
texts with often completely different requirements (e.g., consis-
tency vs. scalability, real-time vs. batch, write heavy vs. read heavy
workloads, key-based access vs. analytical queries). As a logical
consequence, many new data management and (distributed) data
processing systems1 have been developed over the last two decades,
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1In the following we summarize both kinds of systems under the term data store.

and have established themselves alongside the still widely used
relational database management systems. Examples of such sys-
tems are key-value stores (e.g., Redis), document stores (e.g., Mon-
goDB), wide-column stores (e.g., Cassandra), graph databases (e.g.,
Neo4J), time-series databases (e.g., Influx), real-time databases (e.g.,
Firebase), array-databases (e.g., SciDB), full-text search engines
(e.g., Elasticsearch), and distributed computation frameworks (e.g.,
Apache Spark). All these systems have been designed with different
applications in mind and it is up to the users to decide which system
is best suited for their specific use cases. However, the sheer volume
of potential candidates and the everlasting evolution of use cases
poses several challenges to such a selection process:
• Confusing System Space: Even as an expert, it is hard to

keep an overview of all these systems and their respective
sweet spots and limitations (although some guidelines [9] are
available).

• Complex Trade-Offs: Complex applications may have sub-
components with contradictory requirements so that using a
single data store always ends up in a trade-off between them.

• In-Flux Requirements: As applications change and evolve,
so do their requirements. Thus, the initially selected data store
may not remain the best fitting one over time. However, those
changes are often not immediately visible to the users and may
therefore remain undetected for a long time.

The approach of polyglot data management [25] aims to solve
these problems by combining the benefits of several data stores (and
their underlying techniques) without adopting their drawbacks and
to hide the automatic coordination across these stores behind single
or multiple interfaces. This has several advantages:
• Unified Access: Users only need to acquire knowledge about

a few interfaces, which in the best case are also standardized.
• Transparent System Evolution: One can react internally –

preferably automatically – to changing requirements by mi-
grating data between data stores or even exchanging entire
stores without users being affected.

• Ease-of-Extensibility: Newly developed data stores can be
easily integrated into the existing polyglot data system, with-
out having to completely rebuild existing structures.
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Over the last decade, this basic idea has been implemented in
the form of various systems, such as HadoopDB [1], BigIntegra-
tor [34], PolyBase [6], Myria [31], FORWARD [23], BigDAWG [8],
RHEEM [2], CloudMdsQL [17], or ESTOCADA [3]. Although most
of these systems are based on themediator-wrapper architecture [7],
there are major differences between their implementations and lim-
itations. In this tutorial, we give an overview of the current state-
of-the-art in polyglot data management. We will (i) introduce key
terminology, taxonomies, and techniques, (ii) discuss the features,
advantages, and disadvantages of different existing systems, and
(iii) present open challenges.

2 TUTORIAL OUTLINE
This tutorial is split into six parts:
(1) Motivation & Use Cases. We introduce the underlying idea

of polyglot data management and motivate work in this area
by presenting three real-life use cases where individual data
management solutions are not capable of meeting all of the
given requirements.

(2) Terminology & Taxonomies. We introduce pivotal terms
and present various taxonomies according to which polyglot
data systems can be classified and compared.

(3) Overview Database Landscape. We give an overview of
the different classes of currently used data stores. In addition,
we delineate their respective advantages and disadvantages,
and discuss how their individual design characteristics are
linked to concrete functional and non-functional application
requirements.

(4) Basic Techniques & Concepts. We discuss several concepts
and techniques from distributed data management [24] and
data integration [7] that are reused in solutions for polyglot
data management, such as the mediator-wrapper architecture
and operators for distributed data computation.

(5) Current Systems. In the main part of this tutorial, we present
the key concepts of several existing polyglot data systems, such
as PolyBase [6] and RHEEM [2]. We provide an overview of
their respective architecture, functionality, and capabilities. We
also analyze their respective strengths and limitations, from
which we then derive potential use cases.

(6) Open Challenges. We close with a set of desiderata for poly-
glot data management, evaluate existing systems based on
these desiderata, and discuss open problems based on the re-
sults of this evaluation.

3 GOALS AND OBJECTIVES
This section provides details about the tutorial parts.

3.1 Part 1: Motivation & Uses Cases
We first motivate polyglot data management based on three real-
world use cases, each covering a different type of application:

E-Commerce and Customer Management: An online store
provides users with products using text descriptions, ratings, short
films, and pictures, with a high availability requirement to serve
purchasing services constantly. The different components require
different levels of consistency (e.g., while product ratings tolerate
low consistency in favor of partition tolerance and high availability,

payments require high consistency). The high read throughput
created by users requires a read-friendly distribution scheme. In
addition to the typical OLTP traffic, analytical tasks (data mining
& OLAP) are required to compute product recommendations and
calculate annual business numbers.

Agent-Based Simulation:Amobility simulation for cities needs
to process different kinds of agents (e.g., citizens or cars) which
move in a spatial environment or along road networks, and whose
decisions are affected by stationary objects, events, and other agents.
Thus, it combines data about different agent types with graph and
grid data, and requires complex data operations, such as routing
or spatial filtering. Depending on the selected time-scale and spa-
tial extension, the simulation produces an extensive set of diverse
simulation results and thus a high write throughput. In addition,
to display aggregated indicators and visualize moving agents on a
map, data objects are streamed through the system at runtime.

Healthcare Data Management: A hospital needs to store and
query detailed information on patients, laboratory, and radiology
results, as well as doctors’ and nurses’ notes regarding observations
and treatments. Thus, medical data (e.g., MIMIC II [19]) ranges from
structured and unstructured data (patient data, lab results) to images
and waveform data (CT and MRI images, electrocardiograms). The
analysis of images and waveform data requires complex operations
such as Fourier-Transformations (e.g., to find regions containing
abnormal tissues). In addition, text search and graph algorithms
are required (e.g., to find similar examination reports or analyze
correlations between symptoms). To keep patients in an intensive
care unit under continuous surveillance, real-time monitoring is
essential. In case of emergencies, it is necessary that vital data, e.g.,
blood types, are available at any time.

3.2 Part 2: Terminology & Taxonomies
Like federated databases [24] (and in contrast to multi-model data
stores [20]), polyglot data systems provide a unified access on mul-
tiple data stores. However, in contrast to federated databases, they
are designed to deal with data-store-heterogeneity on technical
(e.g., architecture) and conceptual levels (e.g., data model, query
language). Despite this common ground, the term polyglot data
management has often been used with different meanings. To get a
clear overview of potential interpretations, we present three tax-
onomies that assign existing systems to clear classes.

The first taxonomy distinguishes them based on the number of
query interfaces they provide:
• Multistores provide access through a single query language.
• Polystores allow users to submit queries in different languages

(e.g., the native languages of the individual stores).
The second taxonomy takes the internal architecture of these

systems into account. Here we distinguish between:
• Loosely-coupled systems correspond to a loose network of

already existing and often independently managed data stores
where the mediator has read rights, but no rights to write data
or reconfigure the individual stores. In general, they bear a
strong resemblance to virtual integration systems.

• Tightly-coupled systems were often designed from the begin-
ning as one overall system. Themediator has write permissions
on the individual stores and is therefore also able to migrate
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data between them. In this setting, the individual stores are
typically not autonomous, so that the mediator is able to adapt
their configurations to its own requirements.

• Hybrid systems are those in which some stores are tightly
coupled and others are loosely coupled.

Both taxonomies are used to classify existing systems in Table 1.
The last taxonomy, not included in Table 1 due to space limitations,
classifies these systems based on the degrees of (i) heterogeneity,
(ii) autonomy, (iii) transparency, (iv) flexibility, and (v) opti-
mality they support [28].

3.3 Part 3: Overview Database Landscape
Since the emergence of various application areas with unique re-
quirements has led to the development of many highly specialized
systems, the current data management landscape is more diverse
and heterogeneous than ever before. The focus of these individual
systems can vary wildly: While some abandon consistency and
querying power in favor of schema-freeness and scalability, others
handle specific data types (e.g., spatio-temporal), data models (e.g.,
graphs), or combine transactional with analytic processing (HTAP).
This potpourri of different systems provides the possibility to adapt
data management to the requirements of the own application. How-
ever, it also complicates the selection of a suitable system, since
an overview of advantages and disadvantages of these systems is
hard to procure due to their sheer mass. In addition, there are – as
our examples in Section 3.1 show – numerous use cases in which
requirements of different subareas are combined and thus none of
these systems can be used in these use cases standalone.

In this part of the tutorial, we give an overview of the current
data management landscape, including different classes of data
stores (NoSQL, real-time, etc.) and data processing frameworks
(e.g., Hadoop, Spark, Flink). Moreover, we present the strengths and
weaknesses of the different classes of NoSQL data stores regarding
different user requirements (functional and non-functional) [9].

3.4 Part 4: Basic Techniques & Concepts
The idea of polyglot data management is usually implemented us-
ing the mediator-wrapper architecture, which is well-known from
virtual data integration systems [7]. Thus, the schemas of the in-
dividual data stores are typically mapped to a (virtual) mediated
schema, e.g., via tuple-generating dependencies [29] or views [15].
These mappings are used to decompose user queries into several
subqueries, each forwarded to another data store, and to combine
their results to a single (consistent) set of query answers. The result
of such a query rewriting is one or more query execution plans
(QEPs), each following predefined optimization goals and deter-
mining the most efficient join-order to integrate the relevant data
of the respective stores. When building the QEPs, the mediator
must decide where to execute the individual operators based on
the store-specific location of the processed data, also known as the
operator-placement problem [27]. Since this problem is NP-hard, the
optimal placement needs to be approximated [18].

In this part of the tutorial, we present basic knowledge on (i) the
mediator-wrapper architecture, (ii) schema mapping languages,
(iii) operators that allow an efficient combination of data across
stores, such as bind and skew-aware joins [13], (iv) typical cost

Table 1: Existing systems for polyglot data management. The
selected representatives are in bold.

multistore polystore

loosly-coupled

PolyBase [6] Myria [31]
BigIntegrator [34]
FORWARD [23]
Apache Drill (Calcite) [4]
QoX [26]
QUEPA [22]
Odyssey [14]

tightly-coupled
RHEEM [2] ESTOCADA [3]
MuSQLE [11] Polypheny-DB [30]
HadoopDB [1]

hybrid
CloudMdsQL [17] BigDAWG [8]
SparkSQL [5]

models used for optimization, and (v) several heuristics to solve the
operator-placement problem during query planning.

3.5 Part 5: Current Systems
Polyglot data management is a subject of intense research, and
various systems have been developed in recent years. Table 1 lists
some popular systems classified based on the first two taxonomies
we have introduced in Section 3.2. In this part, we give a deeper
insight into the architecture and functionality of some of these
systems. The selected systems implement highly diverse concepts
and cover different categories from Table 1. These systems are:
• PolyBase: a loosely-coupled multistore that allows the inte-

gration of unstructured (HDFS) data from Hadoop clusters
with relational and NoSQL data by using SQL [6]. PolyBase is
now an integral part of MS SQL Server2.

• RHEEM (now Apache Wayang3): a tightly-coupled multi-
store that utilizes ML techniques to learn costs for data ship-
ping operators from already existing execution logs [2, 16, 18].

• ESTOCADA: a tightly coupled polystore that automatically
distributes data across multiple non-autonomous data stores
(relational and NoSQL) to optimize query performance [3].

• CloudMdsQL: a hybrid multistore whose query interface uses
a nesting approach to combine several native query languages
within a single one [17].

• BigDAWG: A hybrid polystore with support for several data
models (including their respective query languages) that is
able to migrate data between individual stores [8].

After describing the individual systems, we assess for which use
cases they are particularly well suited and for which rather less.

3.6 Part 6: Open Challenges
In the final part of the tutorial, we describe a set of properties desir-
able for polyglot data systems and illustrate them using the three
use cases from Section 3.1. This includes (i) preserving the non-
functional capabilities (e.g., scalability) of each underlying store
despite unified access across multiple stores, (ii) support of ad-hoc
data manipulation through a global interface, (iii) automatic
2https://docs.microsoft.com/en-us/sql/relational-databases/polybase/ (29.06.2022)
3https://wayang.apache.org/ (29.06.2022)
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detection of changes in system requirements or workloads, and
corresponding adjustments of cross-store data distribution (per-
manent data migration between stores) and store-specific reconfig-
urations, (iv) efficient cross-system query planning and execu-
tion including cost-efficient data shipping and optimal operator
placement under consideration of functional and non-functional
system properties, (v) the ability to process data in real-time in a
polyglot setup, and (vi)multi-model schema management.

Thereafter, we compare the systems of Section 3.5 based on
these characteristics and highlight common deficits. Finally, we
summarize the current status of polyglot data management and
discuss the open challenges we have identified in this tutorial.

4 RELATIONSHIP TO PRIOR TUTORIALS
The tutorial has not been given before. The only past tutorial ad-
dressing a similar subject was held by Lu et al. 2018 [21]. However,
while we discuss polyglot data management from the perspective
of several functional and non-functional properties, Lu et al. con-
sider it in comparison to multi-model databases and thus focus on
the collective use of different data models. Moreover, we present
basic knowledge that has not been covered by Lu et al., such as
the operator-placement problem and cross-system join operators.
Finally, we present five systems in more detail (see Section 3.5). Of
these, two were barely (BigDAWG) or not at all (CloudMdsQL) ad-
dressed by Lu et al. In addition and like polyglot data management
in general, the other three systems (PolyBase, RHEEM, ESTOCADA)
have been further developed in the meantime, and thus contain
many novel aspects of interest to the audience.

5 PRESENTER BACKGROUND
Our team has a solid background in data management through
more than 20 years of research at the University of Hamburg, the
Hamburg University of Applied Science, and the University of Old-
enburg. We address the problems of polyglot data management in
both research and practice, both in the multi-agent system MARS4
and in the area of web technologies in the Backend-as-a-Service
company Baqend5. Our knowledge on NoSQL, real-time, stream,
and polyglot data management has been published in several sur-
veys [9, 12], tutorials [32], and books [10, 33].
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