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ABSTRACT
In the last few years, the natural language processing community
witnessed advances in neural representations of free texts with
transformer-based language models (LMs). Given the importance
of knowledge available in relational tables, recent research efforts
extend LMs by developing neural representations for tabular data.
In this tutorial, we present these proposals with two main goals.
First, we introduce to a database audience the potentials and the
limitations of current models. Second, we demonstrate the large
variety of data applications that benefit from the transformer archi-
tecture. The tutorial aims at encouraging database researchers to
engage and contribute to this new direction, and at empowering
practitioners with a new set of tools for applications involving text
and tabular data.
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1 INTRODUCTION
Several efforts are researching how to represent tabular data with
neural models for natural language processing (NLP) and data-
base (DB) applications. These models enable effective solutions
that go beyond the limits of traditional declarative specifications
built around first order logic and SQL. Examples include answering
queries expressed in natural language [16, 19, 31], performing nat-
ural language inference such as fact-checking [7, 18, 35], semantic
parsing [36, 37], retrieving relevant tables [20, 25, 33], understand-
ing table metadata [8, 11, 29], data integration [6, 22], data to text
generation [32] and data imputation [8, 17]. Since these applica-
tions involve both structured data and natural language, they are
built on new data representations and architectures that go beyond
the traditional DB approaches.

Neural Approaches. Transformer-based models, based on the
attention mechanism, have been successfully used to develop pre-
trained language models (LMs) such as BERT [9], and RoBERTa [24].
These LMs have revolutionized the NLP field with stunning results
in the target textual tasks such as sentiment analysis compared to
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traditional techniques [2, 3]. However, transformers have proven to
be able to go beyond text and have been used successfully as well on
visual [10] and audio [14] data. Following this trend, transformers
have started to gain popularity for developing representations for
tabular data.

This tutorial focuses on the core problem of rendering the trans-
former architecture ‘data structure aware’ and it relates design
choices and contributions to a large set of downstream tasks. The
attendees can learn about the different ways to use transformers
according to the target applications.

Example. When adopting a transformer-based approach, the
choices range from adopting existing pre-trained models, created
starting from millions of tables, to building solutions from scratch.
As an example of an architecture with transformers, consider Fig. 1.
Language models are created with the top pipeline (1). In BERT [9],
for example, a large corpus of documents is processed with self-
supervising tasks to create the model that is then used to build
text-centric applications. The creation of the model is expensive,
but the final model can be used by any practitioner with an online
Python notebook. Themost popular way to build an application is to
fine-tune such model with a small number of specific examples, e.g.,
classification of documents or sentiment analysis. This is depicted
in the bottom pipeline (2).

Moving from text to tabular data, a corpus of tables is used in
some approaches to create a pre-trainedmodel which “understands"
the tabular format (1). A target application can now use this model
to address a downstream task (2). Both in (1) and (2), the table is
first serialized and concatenated to its content to feed it as input
to the transformers. For example, in (1) the training data can be
a large corpus of tables extracted from Wikipedia. (2) is using the
pre-trained model to directly answer a query expressed in natural
language over a given table. The input of the examples is a table,
along with its header “Population in Million by Country” as context,
and the question about France population. The desired output is the
highlighted cell in the given table. When the pre-trained model does
not suffice for the task, it can be fine-tuned with few examples (2).
In some cases, the model is pre-trained from scratch (1) to exploit
new extensions on the typical transformer architecture to account
for the tabular structure, which is different and sometimes richer
than the traditional free text.

Outline. Our tutorial consists of three main parts. In the first
part, we formalize the problem by providing general definitions
and highlight the most common approaches to tackle the neural
representation of tabular data (Section 2.1). In the second part,
we describe and contrast the most recent works according to five
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Figure 1: The overall framework for developing and consuming neural representations for tabular data with a data sample.
Wikitables or WDC Table Corpus are typically used in (1). In this example, the table along with its header, the additional
question and the highlighted answer are used in (2) for a Question Answering downstream task. Both processes combine the
serialized table data with natural language text, namely context, such as titles, captions, and questions.

dimensions: datasets, data pre-processing, extensions to the trans-
former architecture, output characteristics, and usage (Sections 2.2
and 2.3). Finally, we discuss limitations of existing works and open
research problems tailored for a DB audience (Section 2.4).

2 OUTLINE OF THE TUTORIAL
The tutorial follows the following outline.

2.1 Neural Data Representation
We start by providing an overview of the main use cases exploiting
language models with transformers. We also provide a summary
on the vanilla transformer-based language model since many of
the efforts discussed in Section 2.3 present extensions to that archi-
tecture. We then introduce the analogy with tabular data by giving
a general problem definition and a high-level overview of a gener-
alized solution. Finally, we show examples of different tasks where
the use of those representations proved to achieve state-of-the-art
accuracy results for applications involving tabular data and text.
For one task, we also demonstrate a live demo with a pre-trained
model in an online Python environment1. This part covers:

(1) Transformer-based Language Models (LMs): summary and
examples of existing models such as BERT [9].

(2) Neural Representation of Tabular Data: Problem Definition
and Generalized Solution.

(3) Applications and Target Tasks:
• Natural Language Inference: fact-checking, text entail-

ment.
• QuestionAnswering (withHugging Face TAPAS demo).
• Semantic Parsing: Text-to-SQL.
• Table Retrieval.
• Table Metadata Prediction: detecting column types,

relations, header cells; entity resolution and linking,
column name prediction.

• Data Imputation: cell population.
Take-away: attendees become familiar with Transformers archi-

tecture and typical existing language models. They also get a feel of
the versatility of neural representations for tabular data in multiple
data-centric applications.
1https://huggingface.co/google/tapas-base-finetuned-wtq

2.2 Characterization of the Methods
In the second part, we detail the dimensions to describe and catego-
rize the different proposals. We focus our tutorial on the extensions
to the original transformer architecture for developing representa-
tions of relational tables. While several solutions have contributed
to the transformer original architecture to better represent tabular
data, the alternative innovations to model and consume the encoded
data are scattered over the process. We aim at bringing clarity in
this space by providing an overview with a set of dimensions that
let us highlight the main ideas and trends spanning the different
proposals. We use five dimensions summarized below. More details
on the proposed dimensions can be found in our survey paper [4].

(1) Training Datasets: comparative summary of characteristics
of datasets used for learning the table data representations
along with some representative samples. Four datasets are
typically exclusively used for pre-training, e.g., WikiTa-
bles [5], WDC Web Table Corpus [21]. The majority of
the datasets include extra manual annotations to enable
their usage for fine-tuning or evaluation. Examples of such
datasets include TabFact [7], WikiSQL [39], FEVEROUS [1]
and SPIDER [38].

(2) Input Processing: textual and tabular pre-processing steps
of the training data prior to feeding it to the neural network.
• Data Retrieval and Filtering: to meet the limits of trans-

former based architectures or to reduce noisy repre-
sentations.

• Table Serialization: linearizing the table to feed it as
input to the neural network.

• Context and Table Concatenation: the context can con-
sist of table metadata, table descriptions, captions, and
questions whose answer can be found in the corre-
sponding table. The type and amount of context de-
pend on the target application.

(3) Model Architecture and Training: differentmodel customiza-
tions are performed on typical LMs to accommodate tabular
data. These can be grouped as changes or extensions on the
input/output layers or on the internals of the model: Rows
and Columns specific Encodings, Table Structure Aware
Representation, Selection of Base LM Model, Direction of
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Attention, Pre-training Objectives, Addition of CLS Layers,
and Fine-tuning Objectives.

(4) Output Model Representation: different granularity of rep-
resentations of table content.

(5) Fine-tuning Representations for Downstream Tasks.

Take-away: Following this second part, the audience can grasp the
characteristics of the different existing solutions and classify upcoming
ones along the same dimensions for easier comparison.

2.3 Latest Works in the Field
After detailing the dimensions in Section 2.2, we analyze the latest
research efforts in the field based on those dimensions. We briefly
discuss how 20 surveyed works [7, 8, 11–13, 15–17, 20, 23, 25, 29–
31, 33–37] address the five dimensions following the framework in
Fig. 1.

Most works opt for pre-training ((1) in Fig. 1) followed by fine-
tuning and consuming the representations to tackle downstream
tasks ((2) in Fig. 1). A few exceptions either fine-tune existing LMs
or use them as part of their features set [11, 20, 29]. For developing
tabular representations, most of the works aim at supporting signifi-
cantly large datasets, up to millions of tuples, by combiningmultiple
datasets for more accurate generalized representations. The steps in
the Input Processing part (first module for both (1) and (2) in Fig. 1)
are typically set without exploring and comparing the different
possible variations except for a few cases where authors evaluate
different settings such as row vs. column serialization and context
followed by serialized table vs. table appended by context [7, 32].

The component that makes the major difference among the sur-
veyed works is Transformer-based Model through the customization
and extensions on the vanilla transformer (second module in (1) in
Fig. 1). The main objective of the customization is to preserve the
2-dimensional tabular data characteristics while linearizing it into
1-dimensional space as the free text one. While these extensions
can be grouped based on the level they are applied on, i.e. input,
internal and output levels, their application details remain more
or less unique. For instance, at the input level, to account for the
position of the cells, Herzig et al. add extra dimensions to the em-
bedding vector to account for cell, row, and column positions [16],
while Wang et al. uses a bi-dimensional coordinate tree [34]. At
the internal level, modifications concern the attention mechanism
to further emphasize the tabular structure. For example, Yin et al.
use vertical self-attention layers [36] while Eisenschlos et al. em-
ploy sparse attention to efficiently attend to rows and columns [12].
At the output level, the extensions are tailored for the intended
downstream tasks and they are manifested mostly by the addition
of classification layers.

TheOutputModel Representation (thirdmodule in (1) in Fig. 1) has
different granularity depending on the intended downstream task,
i.e., cell, row, column or table representations. For instance, Herzig
et al. generate cell representations for the QA task, Wang et al. use
table representations to facilitate table retrieval (TR) task, and Liu
et al. utilize token embeddings for semantic parsing. These represen-
tations are then either fine-tuned using labeled downstream tasks
datasets [25] or utilized as features of training data points [11].

Take-away: After attending the third part of the tutorial, the au-
dience can match a target application to the most effective solution.

They also have a good understanding of the main technical challenges
from a data perspective.

2.4 Open Challenges & Conclusion
While there has been progress in developing and consuming tabular
data representations, several challenges remain unaddressed. We
discuss these directions with the audience to show where the DB
community can have the greatest impact for this problem. Similar
to other efforts, the challenges of interpretability, the need of more
significant error analysis, and model efficiency are also applicable
for the case of developing and consuming neural representations
for relational data. Some systems expose a justification of their
model output [12, 16, 25, 31, 35], but the majority does not, and
model usage remains a black box. More specifically to relational
data, complex queries remain difficult to handle especially when
they involve joining tables. Last but not least, in contrast to what
has been done for LMs for text [26], there is a lack in terms of
benchmarking data representations. A new family of data-driven
basic tests should be designed to measure the consistency of the
data representation.

3 TUTORIAL: TYPE, AUDIENCE, DIVERSITY,
ETHICS AND PREREQUISITES

This tutorial covers the latest developments in the neural representa-
tion for relational data and their application. Unlike the tutorial [19]
of Katsogiannis-Meimarakis and Koutrika that focuses specifically
on solutions that address the semantic parsing task, i.e., converting
text to query, we cover a wider scope of data-centric tasks addressed
thanks to the versatility of transformers and language models. It
is of interest to researchers looking to integrate knowledge from
structured data, namely tables, in addition to unstructured data
into the different mentioned downstream tasks. The tutorial is not
only for practitioners working on applications with the English
language, thanks to the the multilingual LMs that are utilized as
basis to develop the representations for relational data. For more
details about the characterization of the transformer-based models
for neural representation of database tables, we refer the readers to
our survey paper [4].

The use of large-scale Transformers requires a lot of compu-
tations and GPUs/TPUs for training, which contributes to global
warming [27, 28]. We stress this orthogonal issue and possible ap-
proaches to mitigate it in the tutorial. The datasets used do not
include private data.

Prior knowledge of machine learning is not mandatory as we
deliver an introductory overview of the transformer architecture
in the first part (Section 2.1).
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