SimDB in Action: Road Traffic Simulations Completely Inside
Array DBMS

https://wikience.github.io/simdb2022

Ramon Antonio Rodriges Zalipynis
HSE University
Moscow, Russia
rodriges@gis.land
arodriges@hse.ru

ABSTRACT

Array DBMSs operate on big N-d arrays. Cellular automata (CA)
work on a discrete lattice of cells, essentially on N-d arrays. CA
facilitate decision support as they realistically simulate complex
phenomena including road traffic, fire spread, and urban growth.
Array DBMSs can bring numerous benefits to the CA domain via a
“database approach”: powerful parallelization, out-of-the box array
operators, and interoperability to name a few. On the other hand, CA
expand the area of Array DBMS applications and open a wide range
of R&D opportunities. However, it is not straightforward to make an
Array DBMS to support CA simulation workloads. SIMDB enables
end-to-end CA simulations directly inside the CHRONOSDB array
DBMS via numerous new components and is the first effort to run
CA simulations entirely inside an Array DBMS. We also developed a
new desktop application specially designed to showcase SIMDB. The
application features interactive components to graphically reveal
the insights of SIMDB internals. Moreover, our application provides
a convenient GUI to comprehensively investigate how end-to-end
road traffic simulations run entirely inside an Array DBMS.

PVLDB Reference Format:

Ramon Antonio Rodriges Zalipynis. SimDB in Action: Road Traffic
Simulations Completely Inside Array DBMS. PVLDB, 15(12): 3742 - 3745,
2022.

doi:10.14778/3554821.3554889

1 INTRODUCTION

Array DBMSs are rather young systems which target N-d arrays.
Sophisticated storage, efficient processing, and interactive visual-
ization of N-d arrays make a far from complete range of problems
tackled by Array DBMSs [9]. This range is rapidly expanding due
to advances in fundamental Array DBMS principles and the growth
of volumes and diversity of N-d arrays. A contemporary survey
of Array DBMSs, array-oriented systems, array techniques, and
emerging R&D opportunities in the area is in [9].

Now, we complement a recent research paper that presents a
novel and rather unusual application for Array DBMSs: physical

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 15, No. 12 ISSN 2150-8097.
doi:10.14778/3554821.3554889

3742

world simulation [10]. In addition to naturally representing impor-
tant data types from numerous domains [2], N-d arrays are also at
the heart of data-driven and numerical simulations [1, 10].

Simulation capabilities are important for Array DBMSs. From a
scientific point of view, simulation scenarios pose a lot of challenges
and open new opportunities for making Array DBMSs more robust
and applicable to a wider range of problems. From the perspective of
amodeler, an Array DBMS can be thought of as a flexible framework
for coordinating end-to-end simulations with a “database approach™:
powerful array tools that support the whole simulation lifecycle.

Practitioners heavily utilize Cellular Automata (CA) to realisti-
cally simulate road traffic, fire spread, urban growth, land cover
change, and lava flow to name a few. Importantly, CA physical
environments are modeled by N-d arrays. Hence, we pioneered
the incorporation of simulation capabilities into an Array DBMS,
namely CHRONOSDB [7, 8], using Traffic Cellular Automata [10].

S1MDB is a collective name for all facilities required to run end-
to-end CA simulations in CHRONOSDB [10]. Previous literature
never describes end-to-end parallel CA simulations coupled with
DBMS-style simulation data management using an array-oriented
system [9]. In particular, SIMDB provides a unique combination of
numerous benefits for a CA modeler in a single system, ranging
from data preparation to simulation to animation.

Although CA and Array DBMSs have a common data model, CA
simulations pose sophisticated design challenges to Array DBMSs,
e.g., iterations & imperative rules are inherent to CA. We developed
a separate desktop application in C# with a powerful GUI to inter-
actively uncover the insights of how SIMDB solves the challenges
by the first native UDF language for Array DBMSs, proactive simu-
lation plans, novel convolution operator, and other components.

We focus on one of the most complex CA models: traffic cellu-
lar automata (TCA). The model simulates vehicle movement on
multiple lanes with road intersections controlled by traffic lights. Ve-
hicles have different lengths, moving directions, varying speed, can
change lanes, directions, and overtake each other. Due to space con-
straints, readers can find model details in our research paper [10].

In our desktop application, we provide a graphical and engaging
road network constructor, interactive maps, and statistical charts.
We designed the app for high user interaction. We invite the users
to undertake an end-to-end TCA simulation with SIMDB. We start
from initializing input simulation arrays, studying and running
simulation UDFs. We then interactively explore simulation plans,
debug UDFs, and compute statistics using a convenient desktop
GUIL We also visualize and animate input/output arrays.

2 SIMDB OVERVIEW

Now, we briefly describe SIMDB, a deep modification of CHRONOSDB,
our recent array DBMS [7, 8]. It might seem that Array DBMSs
can readily run CA simulations. However, certain simulation pecu-
liarities make CA simulations impossible in current Array DBMSs.
S1MDB solves key design challenges to enable end-to-end CA simu-
lations completely inside an Array DBMS for the first time [10].

2.1 Generic Convolution Operator

DEsIGN CHALLENGE 1. How to support arbitrary cellular automata
local transition rules in Array DBMSs?

A CA rule looks like a well-known convolution operator [11].
However, a CA rule is much more complex: it is a procedure that
(1) is applied for each cell of several input arrays, (2) checks for
constraints, (3) may update several cells within the neighborhood.

To support arbitrary CA rules, we introduced a new convolution
operator for Array DBMSs. Users provide the logic as UDFs in a
high-level language, currently in Java. SIMDB iterates over arrays,
forms readonly input and writable output windows, all equipped
with helper functions, e.g. rotate by 90° (adjusts the local coordinate
system to use the same code for different vehicle types), fig. 1.

Unlike a traditional convolution, our operator feeds a convolu-
tion UDF several input windows and allows the UDF to modify
an arbitrary number of cells within multiple output windows. The
latter enables an operator to produce several output arrays.

public interface ConvolveWindow<T> {
enum Degrees {_0, _90, _180, _270}
int getArrayX(); // x & y of (@, @) in the array
int getArrayY(Q);
int xWindowSize(); int yWindowSize();
int xSubarraySize(); int ySubarraySize();
T rotate(Degrees degrees);
Random random(); // random number generator
void move(int currentX, int currentY);

Figure 1: An Interface for the Convolution Window.

2.2 Native UDF Language for Array DBMSs

DESIGN CHALLENGE 2. How to efficiently (natively) support iter-
ations directly inside an Array DBMS?

Iterations are inherent to physical simulations. Perhaps one may
code iterations in Python/C++ UDFs. However, such UDFs are
black-boxes that Array DBMSs cannot optimize [5]. Existing query
languages are unable to express iterations. Running iterations query
by query requires a query output to be completely materialized
before the next query. In addition, holistic optimizations for several
iterations ahead are unavailable as the overall picture is unclear.

We introduced the first native Array DBMS language for UDFs.
SiMDB uses strict formal definitions of array operations [7] and
compiler techniques (e.g., loop unrolling) to build and execute sim-
ulation plans for several iteration steps ahead (proactive simulation
plans). This lets SIMDB avoid redundant materializations and reduce
scheduling overheads; e.g., “scheduled on workers” tasks can be
executed without communicating with the coordinator, fig. 3.

S1MDB UDFs are easy to code: they consist of commands with a
syntax similar to command line tools: familiar to most users, fig. 2.

cp tca.speed $speed ¢ [newline] cp tca.length $length
val {window} "-xWindowSize 11 -yWindowSize 11"
foreach {step} -from 0 -to 100 ¢ begin
calc tca.lane:in $speed:in $length:in tca.temperature:in \
--overwrite $speed_move:out $length_move:out \
-ot Int16 {window} -classfile "TCA java" \
-method_name moveForwardPhase

calc tca.lane:in $speed_lights:in $length_lights:in \
--overwrite $speed:out $length:out \
-ot Int16 {window} -classfile "TCA java" \
-method_name lightsPhase

append $speed speedh ¢ append $length lenh ¢ end

Figure 2: Part of the TCA simulation UDF (see section 3.3)

DEsIGN CHALLENGE 3. How to correctly execute a native UDF
for Array DBMSs to generate a proactive simulation plan?

Although the UDF looks small in fig. 2, it is challenging to execute.
For example, during loop unrolling, the same array name appears
100 times: e.g., the last calc command deletes current $speed array
and creates a new array with the same name. We must be able to
keep and address all arrays (deleted and new) and write/read all of
them simultaneously when we build and execute a simulation plan.

SiMDB maintains several versions of an array with the same
name during runtime. SIMDB refers to an array by its name and
version, operating on deleted and new arrays. A UDF acquires locks
for an array name to (1) control the state of arrays (exists, deleted,
newer version created, etc.), (2) prevent other UDFs from modifying
arrays with the same name. Array versioning and locks are trans-
parent to users, but required deep modifications to CHRONOSDB.

2.3 Simulation Scheduling

A proactive simulation plan is a DAG similar to a CHRONOSDB
execution plan [7]. However, SIMDB treats such plans differently:
(1) the unit of schedule is a subgraph, not a vertice or the whole
DAG to reduce scheduling overheads, (2) cluster nodes receive sub-
graphs and merge them with the plan they have so far into a single
large plan to continue smooth execution. The nodes exchange array
partitions; the coordinator node is not involved, fig. 3. SIMDB incre-
mentally builds simulation plans to control the memory footprint.

0 1 2 current
% | | simulation
> I step

&

Sl NS Amerge
scheduled on next unit to to be
workers schedule generated

Figure 3: Proactive Simulation Plan.

3743

3 SIMDB INTERACTIVE GUI

We guide users through a step-by-step, end-to-end CA simulation
(TCA) by SIMDB in its interactive GUI, fig. 4. We also showcase the
benefits of using SIMDB for CA simulations, e.g. interoperability,
UDF debugging, and visualization. In this way, we also answer the
question why SIMDB is an excellent choice for this workload.

A constructor (section 3.1) lets users create a road network which
is converted to input arrays and initialized with UDFs (section 3.2).
A native Array DBMS UDF is used to generate simulation plans
(section 3.4). It can call Java UDFs (section 3.3). SIMDB can animate
arrays on an interactive map and is interoperable (section 3.9).

The goal of a TCA simulation is to derive road traffic statistics
(section 3.7) from history arrays (section 3.3) for decision support.
S1MDB facilitates simulations with its powerful capabilities.

To make user sessions with the SIMDB GUI more engaging and
flexible, users can start from any step (sections 3.1 to 3.9): we pre-
pared ready-to-use examples for each simulation step beforehand.

I (e N U]0) H—

Road network . Input Compute statistics
constructor it UDFs Arrays III
| Native UDF | 1
1 |
Convolve lé H => HTTP, WMTS | Java [... Simulation
L~
Exec ,t Output

statistics
i N 2 Simulation
SimDB native UDF X
Plan (parts) engine _Arrays Interactive Map
Java |aus| Java n| n
—— 909 l I visualize, =y - .,
Convolution UDFs = animate

Figure 4: StMDB End-to-End Simulation Overview.

3.1 Road Network Constructor

Users start by creating the input array (or choosing an example
array) that represents a road map (a 2-d array): tca. lane, fig. 2.

To better understand the SIMDB internals, we provide a graphical
road network constructor. To make it more engaging and interactive,
users can draw on a real-world map. Traditionally, the road network
of Manhattan, New York is used for a traffic CA model, so the map
will automatically focus on this area by default.

Users can draw vertical and horizontal rectangles (polygons)
that represent roads. The only constraint is that they should be
orthogonal to each other (the case for non-orthogonal roads is
left for future work). Once the map is ready, it is rasterized to an
array. The number of lanes for the road will be proportional to the
polygon width/height. Traffic lights will be placed automatically in
accordance with the model definition.

3.2 Initializing the Simulation

The user continues by initializing other input arrays (using UDFs):
initial vehicles’ speeds (tca.speed) and lengths (tca.length) and
watching results on an interactive map (section 3.6). We created
a sample (editable) Java UDF to scatter vehicles randomly on the
lanes, accounting for their lengths and avoiding road intersections.
We model a vehicle by one cell having its rear bumper.

The initialization takes place in two phases. First, we must decide
whether a cell will be occupied by a vehicle or not. Second, we must
assign a length and a speed to each vehicle.

Figure 5 presents a UDF for assigning a speed. The condition
checks whether we are at a cell with a West-East or a South-North

3744

public void setSpeed(ConvolveWindows w) {
double val = w.input(Q).get(0, 0);
Double output = null;
if (val == 1 || val == 0) {
output = (double) w.input(@).random().nextInt(4);
} else {
if (val == 4) { // traffic lights
int rnd = w.output(@).random().nextInt(2);
output = (double) (200 + rnd + 1);
3

3
w.output(@).set(output, @, 0);
3

Figure 5: A UDF for Assigning a Speed for a Vehicle.

moving vehicle. If the condition is true, a random speed is assigned.
Otherwise, we additionally check whether we are at a cell with
traffic lights to assign the remaining number of ticks.

3.3 Exploring Native Array DBMS UDFs

The user can use sample UDFs for TCA simulation. Let us describe
the main UDF, fig. 2. Note that SIMDB supports command nesting.

To keep input arrays intact, we start by copying them to interim
$speed & $length arrays which are subject to optimizations, e.g.
they mostly reside in RAM. The loop will be executed 100 times.

The calc command runs the new convolution operator with a
Java UDF: a *. java file with the specified method name. SIMDB
compiles the file to bytecode for faster execution. calc accepts/pro-
duces an arbitrary number of input/output arrays. Quantiles :in
and :out distinguish between the in/out arrays as their number is
not fixed. The —overwrite flag forces calc to delete, if they exist,
and recreate output arrays with the same name.

An iteration ends by appending new 2-d arrays $speed & $length
to 3-d history arrays speedh & lenh along the virtual time axis. To
run a UDF, just click the respective button in the GUL

3.4 Investigating Proactive Simulation Plans

We invite users to investigate plan visualizations interactively to
better understand S1MDB plan scheduling and execution. SIMDB
exposes its plans in the open Graph Modeling Language [3]. SIMDB
lays out vertices in 2-d to avoid clutter, assigns colors, and annotates
them with extensive statistics: task assignment, network I/O, dataset
info, etc. Just type explain before a UDF to get its plan. Users can
zoom, pan the plan, summarize statistics, filter, highlight tasks and
dependencies in Gephi, a free graph visualizer [3], fig. 6.

Graph X 7

02
o

Dragging ({Configure)

[(0, 0) Pspeed 3

|'J &"|T| s | dib | = I |A. A &

Figure 6: Exploring Simulation Plans.

3.5 Debugging TCA UDFs

To get a clear idea of the new convolution operator and TCA rules,
we encourage users to debug, step-by-step, TCA UDFs in Java

used for calc commands, e.g. moveForwardPhase (in Intelli] IDEA).

S1MDB runs any Java files, but we put TCA. java in a module visible
to the IDE. For a time step and a vehicle, the user can leverage the
power of IDE to explore UDFs and operator windows rendering
themselves as ascir tables (nearby vehicles’ speed/length/location,
traffic lights) and track TCA decisions, fig. 7.

public void moveForwardPhase(ConvolveWlindows windo
InputConvolveWindow lane
InputConvolveWindow speed = windows.input(inde

View Text vehicle's position
IR @

windows.input(index:

speed=3
[N A
I 21 L
(-

Figure 7: Convolution Window: $speed array

3.6 Interactive Array Visualization

Visualization is essential for data understanding. SIMDB provides

array images via the open, popular, standard WMTS protocol [13].

StMDB WMTS supports N-d arrays, so the GUI queries SIMDB to
hyperslab speedhli:i, lat, lon] (or lenh) for simulation step i and
displays it on a built-in interactive map, fig. 8. A time slider makes it
easy to tune i. The user can add/remove other arrays (e.g. tca. lane)
to/from the map, pan, zoom & adjust their color palettes.

u [| 1
o — RN S

n I. \/
I. -... .I. .I | | | | | .-

Figure 8: A Part of speedh Interactive Map.

3.7 Computing Simulation Statistics

SiMDB serves all phases of the simulations within the single system:
even computing statistics. We invite users to derive simulation
statistics by sample queries and interactively explore results using
the map. As an example, we take typical TCA statistics: Mean Traffic
Density (the mean number of vehicles passed through a cell) and
Space-Mean Speed (the mean vehicle speed for a cell) [4, 12].

The task is not as straightforward as it might look. This is because
vehicles with length of more than 1 cell occupy only a single cell in
an array. Hence, to correctly compute the statistics, arrays must be
preprocessed by specialized UDFs on-the-fly.

3745

3.8 Interactive Simulation Animation

SiMDB animates history arrays, so users can watch modeling at
work: how vehicles move along the roads, queue at traffic lights,
turn at road intersections, change speed, and overtake each other.

Users can tune the animation speed (the time interval of switch-
ing frames) via a slider: from 0 (no animation) to 5 seconds. To
start animation, just set the slider to a non-zero position. Frame
fi = speedhl[i:i, lat, lon] or lenh array. Frames are displayed on the
interactive map, the switch between f; and f;4+1 happens smoothly.

Animation plays f; mod 100 for j = 0, 0. When the animation is
in progress, users can rewind to any frame by the time slider, turn
on/off arrays, pan, zoom in/out, and go fullscreen.

3.9 Experiencing Interoperability

S1MDB storage layer is built on top of raw files in standard formats.
Simulation arrays are in GeoTIFF format and readily accessible to
other software. Example 1. (1) run 1s speedh (or lenh) to view
array list for each time step. SIMDB is also an HTTP-server: there
is an http link next to each array, (2) use any link to download an
array: a full-fledged, georeferenced GeoTTFF file, (3) open the file in
a popular and free QGIS [6], zoom it, create palettes, overlay with
other layers, explore cell values and metadata. Example 2. QGIS
is also a WMTS client, so add SIMDB as a WMTS layer to view an
array on a QGIS map without manually downloading its partitions.

Q Project —QGIS - o X
Project Edit View Layer Settings Plugins Vector Raster Database Web Mesh Progessing Help
DEEEE: O%sPR: PPA LOOR & E¥I=-Pa-0-
LL AV AN %= @ > 2> 0
5% © 600
La EL)
Tharissa ol | n N u
~ v ¥ _T_0000_0000
0
w1
2
B I I I I I
Type to locate (Ctrl+K) ordin 392546,5685955 ¥ 2113077 - @ gni 100% |3 at 0.0° I v Render ®EPSG:32632 @
Figure 9: A SIMDB Array in Quantum GIS.

(1]
[2]
[3]
[4]

[5]

Venkatramani Balaji, Alistair Adcroft, and Zhi Liang. 2019. Gridspec: A standard
for the description of grids used in Earth System models. In arXiv.

ArcGIS book. 2022. https://learn.arcgis.com/en/arcgis-imagery-book/

GML. 2022. https://gephi.org/users/supported-graph-formats/.

Sven Maerivoet and Bart De Moor. 2005. Cellular automata models of road traffic.
Physics reports 419, 1 (2005), 1-64.

Parmita Mehta et al. 2017. Comparative evaluation of big-data systems on
scientific image analytics workloads. PVLDB 10, 11 (2017), 1226-1237.
Quantum GIS. 2022. https://www.qgis.org/.

Ramon Antonio Rodriges Zalipynis. 2018. ChronosDB: Distributed, File Based,
Geospatial Array DBMS. PVLDB 11, 10 (2018), 1247-1261.

Ramon Antonio Rodriges Zalipynis. 2019. ChronosDB in Action: Manage, Process,
and Visualize Big Geospatial Arrays in the Cloud. In SIGMOD. 1985-1988.
Ramon Antonio Rodriges Zalipynis. 2021. Array DBMS: Past, Present, and (Near)
Future. PVLDB 14, 12 (2021), 3186-3189.

Ramon Antonio Rodriges Zalipynis. 2021. Convergence of Array DBMS and
Cellular Automata: A Road Traffic Simulation Case. In SIGMOD. 2399-2403.
Ramon Antonio Rodriges Zalipynis et al. 2018. Array DBMS and Satellite Imagery:
Towards Big Raster Data in the Cloud (LNCS), Vol. 10716. 267-279.

Ozan K Tonguz et al. 2009. Modeling urban traffic: a cellular automata approach.
IEEE Communications Magazine 47, 5 (2009), 142-150.

WMTS. 2022. https://www.opengeospatial.org/standards/wmts.

[7]

