
Demonstration of Collaborative and Interactive Workflow-Based
Data Analytics in Texera

Xiaozhen Liu, Zuozhi Wang, Shengquan Ni, Sadeem Alsudais, Yicong Huang, Avinash Kumar, and
Chen Li

Department of Computer Science, UC Irvine, CA 92697, USA
{xiaozl3,zuozhiw,shengqun,salsudai,yicongh1,avinask1,chenli}@ics.uci.edu

ABSTRACT
Collaborative data analytics is becoming increasingly important
due to the higher complexity of data science, more diverse skills
from different disciplines, more common asynchronous schedules
of team members, and the global trend of working remotely. In this
demo we will show how Texera supports this emerging computing
paradigm to achieve high productivity among collaborators with
various backgrounds. Based on our active joint projects on the
system, we use a scenario of social media analysis to show how a
data science task can be conducted on a user friendly yet powerful
platform by a multi-disciplinary team including domain scientists
with limited coding skills and experiencedmachine learning experts.
We will present how to do collaborative editing of a workflow and
collaborative execution of the workflow in Texera. We will focus on
data-centric features such as synchronization of operator schemas
among the users during the construction phase, and monitoring
and controlling the shared runtime during the execution phase.

PVLDB Reference Format:
Xiaozhen Liu, Zuozhi Wang, Shengquan Ni, Sadeem Alsudais, Yicong
Huang, Avinash Kumar, and Chen Li. Demonstration of Collaborative and
Interactive Workflow-Based Data Analytics in Texera. PVLDB, 15(12): 3738
- 3741, 2022.
doi:10.14778/3554821.3554888

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/Texera/texera.

1 INTRODUCTION
Recently online collaboration and sharing services such as Google
Docs, Lucid Chart, and Overleaf are becoming increasingly popular
and important. These services allow people to collaboratively con-
tribute to tasks, such as documents, drawings, and Latex articles.
A similar emerging computing paradigm is collaborative data ana-
lytics, which allows people to jointly conduct a data-analysis job.
Similar to the aforementioned services, this computing paradigm
provides two unique benefits. First, it allows a big data-analysis
project to be divided into small pieces, which can be done by dif-
ferent team members. Second, it allows collaborators to contribute

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 12 ISSN 2150-8097.
doi:10.14778/3554821.3554888

either concurrently or asynchronously based on their own sched-
ules, possibly in different time zones. These benefits become even
more attractive due to the new norm of working remotely caused
by the unprecedented COVID-19 pandemic.

Texera is an open source system we have been developing since
2016 to support collaborative data analytics at scale. We are par-
ticularly interested in the scenarios where the collaborators are
from multiple disciplines with different backgrounds, and the ana-
lytics is machine learning (ML)-centric, as such tasks are becoming
increasingly common and important. To allow data analytics by
people without a strong IT background (e.g., no programming skills
required), Texera provides a GUI-based interface for users to for-
mulate a task as a DAG of operators [7].

In this demo we will use a scenario of social media analysis
by an interdisciplinary team of researchers to show how Texera
supports collaborative data analytics. It is based on more than seven
collaborations our team is involved in with experts in areas such
as public health, machine learning, and big data systems. We will
describe how Texera supports shared editing and shared execution
of a workflow. Compared to collaborative services such as Google
Docs and Overleaf, one unique collaborative feature specific to data
analysis is how operator schemas are recomputed and propagated
to collaborators when one user is editing one operator (Section 3.1).
Another is how to allow multiple users to share the execution
phase of a workflow (Section 3.2), such as supporting multiple users
to simultaneously view progressive execution results, control the
execution by pausing or resuming the workflow, and independently
inspect the workflow’s internal state. We will focus on how these
data-oriented features are supported in Texera.
Related Work: Table 1 illustrates the main differences between
Texera and related systems. Workflow-based systems such as Al-
teryx [1], Knime [3], and RapidMiner [6] require users to download
their software and apply update patches periodically. This “pre-
cloud” architecture makes these systems hard to support real-time
collaboration, since each developer mainly uses their local software.
For example, a cheat sheet provided by Knime [4] shows the high
complexity to do collaboration. Cloud-based collaborative services
such as Google Colab and DeepNote are mainly targeting Python
developers using Jupyter Notebook, and they are not suitable for
domain scientists with limited programming skills. Einblick [2] em-
phasizes interactivity and real-time collaborative editing of work-
flows. To our best knowledge, there is no published work describing
collaboration-related features in the system. Compared to these
systems, Texera is unique as its backend engine called “Amber” not
only supports parallel computing on clusters, but also provides

3738

https://doi.org/10.14778/3554821.3554888
https://github.com/Texera/texera
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3554821.3554888
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Table 1: A comparison of related data analytics systems

System
Task
Formulation Architecture Main Target Users

Shared
Editing

Shared
Execution

Distributed
Engine

Execution
Pausing

Version
Control

Open
Source

Alteryx GUI-based
workflows

Software
installation

Non-IT people and
Python developers No No No No Yes No

Knime,
RapidMiner

GUI-based
workflows

Software
installation

Non-IT people and
Python developers No No No No Yes Yes

Google Colab Jupyter
Notebook Cloud service Python developers No No No Yes Yes No

DeepNote Jupyter
Notebook Cloud service Python developers Yes Yes No Yes Yes No

Einblick GUI-based
workflows Cloud service Non-IT people and

Python developers Yes No No No No No

Texera
GUI-based
workflows Cloud service

Non-IT people and
Python developers Yes Yes Yes Yes Yes Yes

powerful debugging features such as pausing, resuming, and con-
ditional breakpoints during the execution of a workflow [5, 8]. By
supporting GUI-based workflows and allowing user-defined func-
tions (UDF) in languages such as Python, Texera can be used by
both domain scientists and experienced Python developers.

2 TEXERA SYSTEM OVERVIEW
Figure 1 shows Texera’s architecture related to collaboration fea-
tures. The system includes Amber as the backend engine, a web
server, and a frontend for users to construct and execute workflows
using the web UI. The Amber engine allows various kinds of run-
time debugging interactions. It is capable of processing interaction
requests with a sub-second latency even on a large cluster of ma-
chines, which greatly facilitates an interactive user experience. The
web server consists of two modules. The shared editing manager
allows multiple users to co-edit a workflow in real-time within
the same editing session. The synchronization manager is respon-
sible for handling edits from users, resolving potential conflicts,
and propagating changes to other users to ensure all users have
the same view of the workflow. The workflow analyzer supports
workflow validation and schema propagation, which are used for
error checking and auto-complete on the web UI.

Web UI
User 1

Web Server

Web UI
User 2

Web UI
User n

 Distributed Workflow Execution Engine (Amber)

Synchronization
Manager

Workflow Analyzer

Shared Editing Manager

State Manager

Result Manager

Shared Execution Manager

Figure 1: Texera architecture to support collaboration

After the workflow execution is started, the Web UIs of the
collaborators connect to the shared execution manager and join the
same session. The state manager monitors the state changes from

the Amber engine and pushes the updates to the web UIs. The result
manager keeps the progressive results. Users can submit interaction
requests, such as pausing/resuming workflow and investigating the
workflow state to the Amber engine through the shared execution
manager. Details about these components will be explained shortly.

3 DEMONSTRATION SCENARIO

Labeled
Instances

(CSV)

ML Training
(UDF)

Feature
Selection

(Projection)

Inference
(UDF)

Data

Geo-
location

Filter

Pre-
processor

(UDF)
Tweets

Sink

Keyword
Filter

Model

Figure 2: A workflow for ML-based tweet analysis

In this section, wewill use an example to demonstrate the various
features in Texera that enable a collaborative experience throughout
the lifecycle of a workflow. Consider a cross-disciplinary research
project involving multiple members. Alice is a machine learning
expert in Pennsylvania and Bob is a social scientist in California.
Additionally, Emily is Alice’s colleague in New York who is particu-
larly skilled at debugging ML models. They want to work together
and use ML to analyze tweets to study the relationship between
gun violence incidents and public opinions about law enforcement.
They construct a workflow shown in Figure 2. (We use a simpli-
fied workflow for illustration purposes.) The workflow consists
of three parts: 1) data cleaning, 2) ML model training, and 3) ML
model inference. Given labeled training data, the workflow trains
an ensemble ML model based on selected features. The workflow
cleans the large collection of tweets and extracts a subset related to
specific gun violence incidents and law enforcement. The workflow
applies the trained ML model on these tweets to produce statistics
and visualizations about people’s opinions. The workflow requires
both technical skills and domain knowledge to construct, execute,
and debug, and the collaborators will take advantage of Texera’s
collaboration environment throughout the process.

3739

3.1 Collaborative Workflow Construction
In the workflow-construction phase, Alice and Bob co-edit the
workflow on their browsers in real-time.
Shared workflow editing. After Bob creates an initial workflow,
he invites Alice as a collaborator, and they can edit the work-
flow concurrently. For example, Bob has a vague idea about what
should be done to extract relevant tweets. In particular, some pre-
processing steps (e.g., removing duplicates and adding geo-location
information) are necessary, a geo-location-based filter should be
applied to narrow the search space to specific incidents, and key-
words related to law enforcement should be applied to identify
relevant tweets. These advanced operations cannot be done using
existing native operators in the system, and they can only be imple-
mented as UDF operators in Python. Unfortunately, Bob has limited
knowledge to write Python code. Here Alice offers help to write
the UDF operators, while Bob can work on other operators, e.g.,
setting the properties of the downstream filter operator. Similarly,
for ML model training, Bob uses his domain knowledge to edit the
feature-selection operator, while Alice works on the training UDF
operator. Both collaborators can concurrently edit the workflow
and see what each other is doing. They can also co-edit the same
operator, as Texera automatically resolves editing conflicts.

(1) Operator Change
(4) New Operator Schemas

Synchronization Manager

(3) New Operator
Schemas

Workflow Analyzer

(2) Updated
 Workflow

Shared Editing Manager

Alice's Screen Bob's Screen

Figure 3: Real-time schema synchronization. On Alice’s
screen, she is working on the operator in the blue box, and
can see Bob working on another operator in the pink box.
For Bob, he also sees the operator he is working on in the
blue box, and can see Alice’s operator in the pink box.

Real-time schema synchronization.To enable a real-time shared-
editing experience, it is critical for collaborators to be always “on
the same page” in terms of the visible workflows in their frontends.
To do so, whenever a user edits part of the workflow, this change
should be immediately reflected in the frontends of other collabo-
rators. For example, while Alice is working on the UDF, she adds a
new column geo-state (Figure 3, upper left). Not only does Alice’s
frontend update its downstream operators’ input schemas, Bob will
also immediately notice in his filter operator that there is a new
column as an auto-complete option (Figure 3, upper right).

Figure 3 shows how Texera supports real-time schema synchro-
nization among the collaborators. The synchronization manager

monitors editing changes from all users in the session. In step (1),
Alice edits the UDF operator, and its output schema is updated
with a new column geo-state. The change is sent to the synchro-
nization manager, which propagates the change to Bob’s web UI
to keep both UIs synchronized. This is not shown on the figure
for brevity. Next in step (3), the synchronization manager invokes
the workflow analyzer with the updated workflow. In step (4), the
workflow analyzer computes the updated schemas. In step (5), the
new schemas of the operators are sent to all the collaborators, and
each web UI updates its auto-complete options accordingly.

3.2 Collaborative Workflow Execution
After constructing the workflow together, Alice and Bob need to
test the workflow and debug possible errors before applying it on
the whole large dataset. Texera’s built-in collaborative execution
capabilities ensure a unified experience for the members.
Shared monitoring of progressive execution. After Bob hits
the “Run” button, both collaborators see the workflow execution in
real-time. Not only can they see runtime statistics of each operator
(i.e., processing speed and number of processed tuples), they can
also see progressive visualization. For instance, for the ML training
operator, it is very natural to see the training progress visually. Tex-
era allows seeing the training statistics graph updated periodically.
For example, Alice and Bob can see plots on accuracy and loss over
epochs, and the plots are updated dynamically so that collaborators
can monitor the progress and make decisions in real-time.

Figure 4 (I) shows how Texera supports shared execution mon-
itoring. The Amber engine monitors the state of the workflow,
collects statistics from operators, and periodically pushes the latest
state updates to the state manager, which broadcasts the updates to
all web UIs in the execution session. Amber supports progressive
computation of the workflow. Each operator performs incremental
computation on its input data and pushes the incremental output
results downstream. In Figure 4 (I), the sink operators periodically
push the newly generated result incrementally (instead of the full
snapshot) to the result manager. The result manager broadcasts the
incremental results to each web UI, which displays the new result
and updates the visualization. The execution results could be poten-
tially too large and cannot fit in one machine. To solve the problem,
the sink operators push incremental results to a distributed result
storage, and notifies the result manager the updated metadata such
as number of tuples. The result manager keeps a reference to the
result storage. When the user checks the results, the result manager
asynchronously queries the storage to fetch the data.
Shared execution control. In Texera, each collaborator with write
access has the privilege to pause and resume the execution, and the
action will immediately be visible to other users. For instance, after
monitoring the training graph for a while, Alice notices that the
accuracies have not improved. So she pauses the execution, and
Bob immediately sees on his browser that the training is paused.

Figure 4 (II) shows how Texera supports shared execution control.
In step (1), Alice sends a Pause request to the Amber engine through
the shared execution manager. After all operators are paused, Am-
ber sends a Paused notification to the state manager in step (2). The
state manager updates the current state, and broadcasts the updated
state to all the web UIs in step (3). Then every collaborator sees the

3740

State Update

Result Manager

Amber Engine

State Manager

Web UI
Alice

Incremental Result State Update

Web UI
Bob

Incremental Result

(I)

Shared Execution Manager

(3) State Update

State Manager

(2) "Paused" Notification

Amber Engine

Web UI
Alice

Web UI
Bob

(II)

(1) Pause Request

State Manager

Amber Engine

(2) State

Web UI
Bob

(III)

Web UI
Alice

(1) Read-state
 Request

(3) State

Result Manager

Amber Engine

State Manager

Web UI
Alice

Web UI
Emily

(IV)

Web UI
Bob

(2) Result Snapshot (2) State Snapshot

(1) Joins

Figure 4: Collaborative execution in Texera. (I) The web
server periodically pushes workflow status updates and new
incremental results to all web UIs. (II)When a user pauses the
workflow, the workflow state of all web UIs are updated. (III)
A response to a request of investigating a state is sent back
to the request initiator only. (IV) When a new user joins the
execution session, the web server sends the state snapshot
and result snapshot to bring the new user up-to-date.

workflow’s execution state changed to “Paused.” They can inspect
and change the workflow, and resume or rerun the workflow using
the new logic. If any editing conflict happens, it will be resolved
before the execution resumes.
Independent runtime inspection. Texera allows the collabo-
rators to view details of the paused workflow. For instance, the
ensemble’s loss is the sum of each model’s loss. Alice takes advan-
tage of Python UDF’s “evaluate expression” capability to see each
sub-model’s loss. She notices that one model involving the “user
followers count” feature is the culprit since it has an abnormally
high loss. She then asks Bob to reconsider each feature. The two
collaborators can independently inspect the current workflow state
without affecting each other. Alice continues verifying the metric
details and her UDF script. Meanwhile, Bob analyzes a few result
tuples of the feature selection operator to make improvements. In
general, when a user pauses the workflow, every collaborator can
see the effect of the workflow execution being paused. When differ-
ent users investigate the internal state of operators, each of them
has their independent view of the shared workflow state.

Figure 4 (III) shows how Texera supports independent runtime
inspection. In step (1), Alice sends a Read-state request to Amber
through the shared execution manager. The engine retrieves the
state from the target operator and notifies the state manager in
step (2). The state manager internally keeps a view state for each
user connected to the execution session. It updates the view state
of Alice, and sends the state response back to only Alice in step (3).

Adding a new collaborator. There is no limit on the number of
concurrent users in one workflow, so more collaborators can join
and share their expertises. After correcting the feature selection
and fixing a few bugs in the training script, the two collaborators
rerun the training, and find out that the model is still unsatisfac-
tory. They again pause the workflow. This time Alice invites her
colleague Emily to help. Emily is added as a new collaborator and
joins the debugging session. Now everything Alice and Bob see
are also available to Emily, including the workflow and the execu-
tion state. Emily can also inspect the training metrics in detail, and
evaluate expressions at exactly the same execution state as Alice
and Bob. Together with Emily, they fix a problem with the script.
They eventually train a good model, and apply it on the processed
inference data so that Bob can perform further analysis.

Figure 4 (IV) shows how Texera supports adding new collabora-
tors to a workflow execution session. The state manager maintains
the current state snapshot of the execution. Whenever the state
manager receives a state update from the Amber engine, the up-
date is applied to the current state snapshot. Similarly, the result
manager maintains the current result snapshot. When the result
manager receives new incremental results from Amber, it merges
the incremental update with the existing result to create a new
result snapshot. When a new user such as Emily joins the execution
session, the latest state snapshot and result snapshot are sent to
Emily’s web UI to bring her up-to-date with the current execution
progress. This architecture also allows an existing user to safely
leave the execution session and later reconnect to the execution.

3.3 Demonstration Plan
In the demonstration, we will provide a large twitter dataset and
several COVID-19 datasets. We will provide several pre-constructed
workflows over these datasets with various topics, such as social me-
dia analysis and COVID-19 data analysis. The audience can connect
to a hosted Texera cloud service to experience the aforementioned
collaborative features. Multiple users can construct and co-edit a
workflow in real-time using the collaborative editing features. The
audience can also run these workflows on a cluster, monitor the
execution state, and collaboratively interact with the execution.

ACKNOWLEDGMENTS
This work is supported by the National Science Foundation under
the awards III 1745673 and III 2107150.

REFERENCES
[1] Alteryx 2022. https://www.alteryx.com/. last accessed: 2022-07-13.
[2] Einblick 2022. https://www.einblick.ai/. last accessed: 2022-07-13.
[3] Knime 2022. https://www.knime.com/. last accessed: 2022-07-13.
[4] Knime: How to collabrate using Knime Server 2022. https://www.knime.com/

sites/default/files/2022-02/Knime%20Server%20How%20To.pdf. last accessed:
2022-07-13.

[5] Avinash Kumar, Zuozhi Wang, Shengquan Ni, and Chen Li. 2020. Amber: A
Debuggable Dataflow System Based on the Actor Model. Proc. VLDB Endow. 13, 5
(2020), 740–753.

[6] RapidMiner 2022. https://rapidminer.com/. last accessed: 2022-07-13.
[7] Zuozhi Wang, Flavio Bayer, Seungjin Lee, Kishore Narendran, Xuxi Pan, Qing

Tang, Jimmy Wang, and Chen Li. 2017. A Demonstration of TextDB: Declarative
and Scalable Text Analytics on Large Data Sets. In ICDE 2017. 1403–1404.

[8] Zuozhi Wang, Avinash Kumar, Shengquan Ni, and Chen Li. 2020. Demonstration
of Interactive Runtime Debugging of Distributed Dataflows in Texera. Proc. VLDB
Endow. 13, 12 (2020), 2953–2956.

3741

https://www.alteryx.com/
https://www.einblick.ai/
https://www.knime.com/
https://www.knime.com/sites/default/files/2022-02/Knime%20Server%20How%20To.pdf
https://www.knime.com/sites/default/files/2022-02/Knime%20Server%20How%20To.pdf
https://rapidminer.com/

