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ABSTRACT
The diversity and complexity of modern data management applica-

tions led to the extension of the relational paradigm with syntactic

and semantic support for User-Defined Functions (UDFs). Although

well-established in traditional DBMS settings, UDFs have become

even more central in many applications spanning data science, data

analytics, etc. Still, a critical limitation of UDFs, which to some

extent has turned data scientists towards NoSQL systems, is the

impedance mismatch between their evaluation and relational pro-

cessing.We present YeSQL, an SQL extensionwith rich UDF support

along with a pluggable architecture to easily integrate it with either

server-based or embedded database engines. We currently support

UDFs written in Python, which are fully integrated with relational

queries as scalar functions, aggregators, or table returning functions.

Key novel characteristics of YeSQL include easy implementation of

complex algorithms, tracing JIT compilation of Python UDFs, and

seamless integration with a database engine. Our demonstration

will showcase (a) the usability and expressiveness of our approach,

and (b) that our techniques of minimizing context switching be-

tween the relational engine and the Python VM are very effective

and achieve significant speedups in common, practical use cases.
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1 INTRODUCTION
Modern trends in data processing are characterized by a diversity

of data sources and complex processing tasks executed on large

volumes of data. This falls naturally within the scope of relational

databases, which are extremely powerful data processing and data

storage engines. Many such tasks, however, cannot be expressed

in SQL and require additional expressive power, achieved via User-

Defined Functions (UDFs) typically written in C++, Java, or Python,

which is the focus of this work.

Python UDFs are supported by most data processing systems,

but currently have several limitations on their usability and perfor-
mance. For example, MonetDB natively supports vectorized Python

UDFs using Numpy, but these require static definition of their re-

turned schema, as only table UDFs may return multiple rows. In

addition, known performance enhancements such as a Just-In-Time
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(JIT) compiler are not used. The functions run on PythonâĂŹs inter-

preter and in case Numpy does not support the desired functionality,

extra data structure transformations must be applied in order to pro-

ceed in CPython. Likewise, PostgreSQL also supports Python UDFs

without a a JIT compiler. UDFs can be stateful using a dictionary

that is passed as a parameter, but looking up the dictionary adds

overhead. The functions are not fully polymorphic; it is possible to

create a function that specifies its output based on the types of its

input but not based on the data, e.g., a table function that parses

and imports an external file. On the other hand, research proto-

types of data engines that support Python UDFs, such as Tuplex [5],

consider performance improvements (e.g., JIT compiler), but lack

usability features (e.g., stateful, parametric functions) that would

render these approaches more practical in real-world applications.

In this paper, we present YeSQL, an SQL extension and its imple-

mentation that provides more usable and more performant Python
UDFs, and can be integrated into both server-based and embedded

DBMSs. YeSQL enriches SQL with a functional syntax that uni-

fies the expression of relational and user-defined functionality and

optimizes the execution of both in a seamless fashion, assigning

processing tasks to the DBMS or the UDF host language VM accord-

ingly and employing efficient low-level implementation techniques.

Usability. YeSQL extends SQL with an alternative, equivalent

syntax that affords compact expressions of many relational queries

and also facilitates the uniform expression of complex compositions

of multiple UDFs and relational functions. This reduces significantly

the programmer’s time needed to compose a new algorithm or

pipeline. Key characteristics of the YeSQL language that enhance

usability include (a) stateful, parametric, and polymorphic UDFs, (b)

dynamically typed UDFs, (c) scalar and aggregate UDFs returning

arbitrary table forms, and (d) UDF pipelining.

Performance. YeSQL improves Python UDF performance by re-

ducing the main UDF-call bottlenecks: (i) data conversions and

copies when UDF input and output is translated from and to SQL

and (ii) overheads of running complex analysis on CPythonâĂŹs

interpreter (i.e., the default and most widely used implementation

of the Python language). It does this by employing (a) seamless

data exchange between the UDF and the DBMS, (b) JIT-compiled

UDFs, (c) UDF parallelization, (d) stateful UDFs, and (e) UDF fusion.

The latter combines multiple UDFs into one, thereby reducing data

conversions, copies, and context switches between different exe-

cution environments. Moreover, it allows different UDFs to run in

the same execution trace, reaping the benefits of tracing JIT. YeSQL

uses PyPy [1] as its tracing JIT compiler and CFFI [4] to interact

with the C language. The latter’s support of both CPython and

PyPy enables execution of UDFs in C with either one transparently.

Note that the YeSQL performance enhancements are orthogonal to
the YeSQL syntax mentioned earlier; that is, YeSQL boosts Python

UDFs either in YeSQL queries and/or in regular SQL queries.
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Figure 1: Performance of a scalar UDF on a string column

For a sneak preview of the performance benefits of YeSQL, we

present an example comparison of a UDF running on PostgreSQL

with PL/Python, MonetDB/NumPy, SQLite, a popular commer-

cial distributed column-store DBMS (denoted dbX), Tuplex [5],

Spark/PySpark, Pandas, and YeSQL extensions to MonetDB and

SQLite with CPython and PyPy. In this comparison, we used real es-

tate data from Zillow and implemented a Python scalar UDF which

gets a column with the description of an apartment (example value:

’2 bds, 1.0 ba, 856 sqft’) and 7 million rows. The UDF extracts and

returns an integer representing the number of bedrooms. Figure 1

shows that JIT-compiled YeSQL implementations allow MonetDB

and SQLite to run 6x to 68x faster than the other candidates.

Deployment. YeSQL is designed to enable data scientists develop

and run general-purpose algorithms in SQL seamlessly. It is cur-

rently used in production by OpenAIRE (openaire.eu), a technical

infrastructure co-designed and co-developed in the context of a

consortium of 65 European universities, research centers, and other

institutions, offering services that were invoked 42M times last

year in the context of 1M visits. OpenAIRE data scientists use

YeSQL daily to harvest research output from >1000 connected data

providers and classify, text mine Open Access publications, and

extract links to funders, software, citations, datasets, bioentities,

and other information. To date, 129M publications, 2M datasets,

85K research software artifacts, and 1.5M research projects from 23

different national and international funders have been harvested

using over 150 YeSQL UDFs. To the best of our knowledge, YeSQL

has also been used by data scientists in other domains as well, such

as geospatial ontologies, text mining and information extraction,

data cleaning and exploration, and medical machine learning [2].

Based on the above, we believe that YeSQL is a significant step

forward in the direction of enhancing the usability and improv-

ing the performance of user-defined functionality inside DBMSs.

Its design and implementation can serve as good starting points

for future data processing environments. A full description of the

YeSQL design and implementation, and extensive experiments, can

be found in [2]. In this paper, we focus on the key points of YeSQL

and the proposed demonstration scenarios.

2 DEMONSTRABLE FEATURES
2.1 Architecture and Integration
Architecture. YeSQL can be integrated with either a server-based

DBMS (e.g., MonetDB) or an embedded DBMS (via SQLITE API).

Figure 2a shows the core components of YeSQL architecture.

We distinguish two user roles. Application users (e.g., data ana-

lysts, data scientists) submit their queries or workflows to the Appli-

cation front-end, which in turn propagates them to the Connection

and Function Manager. UDF developers create their user-defined

functions (gray boxes in Figure 2a) and YeSQL registers them in the

DBMS. Naturally, the same person may act in either user role.

The Connection and Function Manager (CFM) receives YeSQL

queries, transforms them into SQL, and pass them to the DBMS

for execution. SQL queries using standard SQL syntax simply pass

through. When integrated with a server-based DBMS, CFM first

compiles the UDFs so that they are accessible by the DBMSâĂŹs

UDF manager as an in-process embedded library, and then it sub-

mits their declarations directly to the DBMS to run on-demand.

When integrated with an embedded DBMS, it submits the UDFs

using the Python CFFI wrapper. In this case, the UDFs are executed

in the same process with the CFM layer and the DBMS as well.

YeSQL inherits the typical UDF classification into scalar, aggre-

gate, and table functions. The Python CFFI wrapper is the layer

that crosses the boundaries between Python and the database en-

gine. With a server-based DBMS, it seamlessly calls the Python

UDFs linking the shared library where they are included. With an

embedded DBMS, the Python CFFI wrapper submits the UDFs as

callback functions and assures the seamless data exchange between

the database engine and the Python UDF. SQLITE API natively

supports extended-SQL functionality through C UDFs.

Integration. YeSQL works as a modular addition to a DBMS and it

is compatible with all popular operating systems. For a server-based

DBMS, we leverage the DBMS’s execution model. For example,

in MonetDB that has a vectorized execution model, the data is

passed via CFFI with one function call as array pointers. With an

embedded database, we exploit SQLITE API’s internal streaming

architecture and in particular, the Python generators, a powerful
language pattern that allows co-routines via a yield statement. A

Python program can be written as if it is in control of iteration (e.g.,

iterate over an external data source), yet yield values on demand,

with control transferred to the database for each produced value.

Implementation. The YeSQL codebase is 66K lines of Python and

C++, including 18.5K lines for the code definitions of 150+ Python

UDFs currently supported.

2.2 Functionality Overview
YeSQL handles data-related tasks within an extended relational

model. To support diverse data sources, YeSQL operators automati-

cally adapt their schema and data types to the incoming data. YeSQL

extends standard SQL with additional syntax and Python UDFs that

use pre-existing Python libraries (e.g., numpy, nltk) via import,
thus inheriting features that are commonly used by data scientists.

Demo Scenario 1. The keystone principle of YeSQL is to enable

data scientist develop and run algorithms in SQL seamlessly. Our

demo script includes the step-by-step implementation of an example

algorithm: Given a table with all NSF project grant identifiers (7-

digit strings), we need to pre-process and text mine the fulltext of

a corpus of publications to identify which publications are funded

by NSF and create a link to the specific project. Using YeSQL a

simplified version of this algorithm can be expressed as follows:

select var(`pos`,(select toregex(term) from positives));

select texts.id, projects.id
from (select id, textwindow(keywords(text),10, 1, 5, '\d{7}')
from (sample 100 file 'publications.json') as input_pubs) as texts,
projects
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where texts.middle = projects.grantid and
regexprmatches($pos, lower(texts.prev||" "||texts.next));

The first query uses a table named ‘positives‘. This table contains

terms that are often used by the authors when they acknowledge a

NSF project (e.g., “funded by NSF”, “this work is supported”). Using

an aggregate UDF (toregex(term)) these terms are transformed into

a regular expression. Function ‘var‘ stores the regular expression in

a variable named ‘pos‘. This variable is stored in Python’s execution

context and it is accessible by the stateful UDFs.

The second query creates a (virtual) table from a JSON file that

stores publications data (file ’publications.json’) and samples

100 random lines from the file (sample 100). Its returned schema

depends on the stored data. In this case, it returns 2 columns

named ‘id‘ and ‘text‘. It processes each text with scalar function

keywords (keywords(text)) which removes punctuation marks us-

ing a precompiled pattern. It runs a scrolling window over the text

(textwindow(keywords(text),10, 1, 5, ’\d{7}’)). This function

returns 3 columns and one row per each existence of a seven digit

string (NSF project ids) in its input text. The first column ‘prev‘ con-

sists of 10 tokens before the seven digit match, the second column

‘middle‘ contains the match, and the third column ‘next‘ consists

of 5 tokens after the match. Using standard join, the result of the

above subqueries is joined against the projects table on ‘middle‘

and ‘grantid‘ fields to find occurrences of project grant identifiers

in the input texts. Next, the context around the match (columns

‘prev‘ and ‘next‘) is matched against variable ‘pos‘ using regular ex-

pression matching to return the grant id occurrences with positive

words nearby. Texts input, sampling, text processing and pattern

matching is implemented in Python and executed by a Python VM

(CPython or PyPy). Joins and filtering is implemented and executed

by the DBMS’s query execution engine. Note, that with a few ad-

ditional rules (e.g., terms positioning) to capture corner-cases but

with the same easy-to-follow syntax, such a query achieves over

99.5% accuracy in OpenAIRE, a real-world application.

The purpose of this demo scenario is to illustrate the key features

and novel contributions of YeSQL:

Rich support for polymorphic Python UDFs. file and sample are

polymorphic table functions; their output is indistinguishable from a

regular table as far as the rest of the query is concerned. textwindow

is a row function; it runs once per row of the input table, although

it may produce multiple rows (and multiple columns, per its output

schema). toregex is an aggregate function; it provides alternatives
to standard SQL aggregation, i.e., collapsing multiple rows into one.

UDF fusion. Here, textwindow runs directly on the output of func-

tion keywords, and the same happens with the sample and file

functions. In such cases, YeSQL creates at runtime a new function

that fuses the two UDFs in an effort to minimize context switch-

ing and data conversion. Moreover, running on a tracing JIT (i.e.,

PyPy) exposing longer sequences of instructions enables better

optimization of the UDF execution itself. Having more than one

UDF running in sequence is a common scenario. In this example

with text processing there could be many preprocessing steps (e.g.,

stopword removal, stemming, tokenization, pattern matching, etc.)

implemented as UDFs running one after another.

Syntax inversion. YeSQL offers syntactic support for the compo-

sition of UDFs in a functional language style. The query fragment:

“sample 100 file ’publications.json’” first reads the file contain-

ing the publications and then gets a random sample with 100 rows.

2.3 Performance Enhancements
The performance enhancements in YeSQL aim at avoiding the

impedance mismatch between the relational (SQL) evaluation and

the procedural (Python) execution. This mismatch causes two ma-

jor overheads: (a) context switching overhead, one facility needs

to invoke the other through various levels of indirection, and

(b) data conversion overhead, data is represented differently in

the two environments and need to be wrapped/unwrapped and

encoded/decoded. To remove these overheads, we employ five

techniques: tracing JIT compilation, seamless integration with the

DBMS, UDF fusion, parallelism, and support for stateful UDFs.

Tracing JIT. JIT compilation boost performance of programs by

compiling parts of a program to machine code at runtime. In con-

trast to method-based JIT compilers that translate one method at

a time, tracing JIT uses frequently executed loops (“hot loops”) as

their unit of compilation. This has an excellent fit to UDFs, as they

execute frequent complex calculations iteratively through the tu-

ples of a table. YeSQL employs the PyPy dynamic JIT compiler. The

YeSQL query compilation meshes well with PyPy compilation and

can be viewed as a pre-optimization step, in much the same way as

loop unrolling or inlining enable several optimizations in a tradi-

tional static compiler. By fusing UDFs and exposing larger chunks

of Python code, YeSQL allows PyPy to perform better compilation.

PyPy also facilitates the integration with a DBMS. For example,

in MonetDB that supports vectorized UDFs, the pointer to the

whole column is passed with one function call, minimizing multiple

function calls overhead via CFFI. And since PyPy enables its own

vectorization [3] these conversions are transparent to the user. The

UDF that the user writes runs per tuple but it is optimized by the

tracing JIT. The example below shows the low level implementation

of a scalar UDF in MonetDB that counts string length:

def lenstr_wrapped(input,insize,result): | def lenstr(val):
for i in range(insize): | return len(val)
result[i] = lenstr(ffi.string(input[i])) |

return 1 |

Function lenstr_wrapped is embedded and called by the DBMS. This

is also a wrapper that makes the appropriate conversions using

CFFI before and/or after calling the UDF. The results are assigned

to the preallocated result array which is a cdata object. lenstr is the
UDF that the data scientist actually implements.

CFFI wrapper works a little differently with an embedded DB.

It submits the UDF as a function callback with the appropriate

conversions and the function is called by the database.

Seamless integration with the DBMS. In YeSQL, UDFs are wrapped
using embedded CFFI and PyPy. At UDF execution, the data is

transferred to CFFI as pointers to cdata objects without any data

copies. Integers and float columns are used directly by PyPy. For

string columns, we have three options: (a) ffi.string transforms

the string to a format that is understandable by PyPy, (b) ffi.buffer
returns a Python memoryview (i.e., an array of characters) without

copying the string; and (c) direct pass, which passes directly the

pointer to the C string enabling low level optimizations.

UDF Fusion. When more than one UDF run in sequence and can

be fused, the fusion takes place at the level of CFFI wrapper function.
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(a) YeSQL: Architecture options

(b) Main factors in boosting Python UDF execution (c) Interactive interface for dynamic tuning of mining algorithms

Figure 2: YeSQL Architecture, performance enhancements, and example application front-end

A new wrapper function is created just-in-time and pipelines the

UDFs. This has two benefits: (a) the CFFI conversions are eliminated,

and (b) since the UDFs are called by the DBMS if not fused they run

on a different trace. By fusing them, we expose longer sequences

of instructions so more optimization is enabled by the tracing JIT.

YeSQL supports fusion of scalar, aggregate and table functions [2].

Parallelism. The performance of Python UDFs running in parallel

is limited by the Python Global Interpreter Lock (a.k.a. GIL). GIL is

a mutex (or a lock) allowing only a single thread to hold the control

of the Python interpreter. GIL is also enabled during the creation

of a Python Object (i.e., this happens when the database data are

translated to be used by a Python UDF). However, in PyPy, the

creation of a Python object is faster as less memory is required to

create and store a PyObject. In CFFI, GIL is released lazily, i.e., the

thread doing the call to C just marks GIL as released by setting a

global variable, with no synchronization.

Stateful UDFs. Additionally, stateful UDFs may enable some spe-

cific optimizations (e.g. precompile a pattern instead of compiling

it once per each row). When running UDFs on an embedded DBMS

the UDFs are by default stateful (i.e., they can access any state is

defined outside them). When running on a vectorized UDF like in

MonetDB, the state is also available during the processing of differ-

ent rows since the whole column is passed to the CFFI wrapper.

Demo Scenario 2. We will demonstrate the effectiveness of each

of these techniques using a query with four UDFs over the Zillow

dataset. The query will first run as a spawned process as tuple-at-a-

time (this resembles an out-of-the-box execution on PostgreSQL

with PL/Python). Next, we will try the boosting techniques one at a

time, as follows: (a) vectorized execution using embedded NumPy,

(b) tracing JIT-compilation, (c) parallelism, (d) UDF fusion on JIT,

and (e) stateful UDF execution. Figure 2b presents a performance

breakdown illustrating the extent that each technique contributes

to performance. We will also show that although any of these tech-

niques in isolation helps boosting UDF execution, applying them

all and in a specific order increases the optimization opportunities.

3 OUR PRESENTATION
Our presentation script is designed for expert and novice users,

with or without experience in expressing complex algorithms as

UDFs. We will showcase YeSQL with representative, data science

pipelines over three datasets: zillow, flights, and text-mining.

Use Cases. Our presentation starts with the two demo scenarios

presented earlier to showcase YeSQL usability and performance.

For usability, we will also present step-by-step algorithm imple-

mentation with YeSQL, inspired by our experience with OpenAIRE.

For performance, we will also examine: Python UDFs in embedded

SQLite and MonetDB with embedded Python UDFs. In both setups,

the UDFs will be executed with CPython’s interpreter and PyPy’s

JIT compiler. Canned examples as the one in Figure 1 will be avail-

able for testing on YeSQL, Tuplex, MonetDB, PostgreSQL, SQLLite,

and dbX, covering aspects such as varying data sizes and paral-

lelization, UDF fusion, parallelism, scalability, and resource usage.

User interaction. For off-script presentation, the audience will
try existing UDFs or create and execute their own Python UDFs on

real data. We will enable interaction with YeSQL either directly via

a terminal (which implements useful features like autocomplete,

help, history and more) or via a GUI that enables YeSQL query exe-

cution and UDF submission. YeSQL with its dynamic nature allows

the development of interactive interfaces for the implementation

and dynamic tuning of algorithms using polymorphic functions.

Figure 2c shows an example of such an interface that provides a

possible implementation of ’NSF’ mining. The back-end translates

the user’s input directly into a YeSQL query (shown in the terminal

snippet) and executes it using the predefined polymorphic UDFs.
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