
WebMILE: Democratizing Network Representation Learning
at Scale

Yuntian He∗
The Ohio State University

he.1773@osu.edu

Yue Zhang∗
The Ohio State University

zhang.8016@osu.edu

Saket Gurukar
The Ohio State University

gurukar.1@osu.edu

Srinivasan Parthasarathy
The Ohio State University
srini@cse.ohio-state.edu

ABSTRACT
In recent years, we have seen the success of network representation
learning (NRL) methods in diverse domains ranging from com-
putational chemistry to drug discovery and from social network
analysis to bioinformatics algorithms. However, each such NRL
method is typically prototyped in a programming environment
familiar to the developer. Moreover, such methods rarely scale out
to large-scale networks or graphs. Such restrictions are problematic
to domain scientists or end-users who want to scale a particular
NRL method-of-interest on large graphs from their specific domain.

In this work, we present a novel system, WebMILE to democ-
ratize this process. WebMILE can scale an unsupervised network
embedding method written in the user’s preferred programming
language on large graphs. It provides an easy-to-use Graphical User
Interface (GUI) for the end-user. The user provides the necessary in-
put (embedding method file, graph, required packages information)
through a simple GUI, and WebMILE executes the input network
embedding method on the given input graph. WebMILE leverages
a pioneering multi-level method, MILE (alternatively DistMILE if
the user has access to a cluster), that can scale a network embed-
ding method on large graphs. The language agnosticity is achieved
through a simple Docker interface. In this demonstration, we will
showcase how a domain scientist or end-user can utilize WebMILE
to rapidly prototype and learn node embeddings of a large graph
in a flexible and efficient manner - ensuring the twin goals of high
productivity and high performance.

PVLDB Reference Format:
Yuntian He, Yue Zhang, Saket Gurukar, and Srinivasan Parthasarathy.
WebMILE: Democratizing Network Representation Learning
at Scale. PVLDB, 15(12): 3718 - 3721, 2022.
doi:10.14778/3554821.3554883

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/heyuntian/WebMILE.

∗First two authors contributed equally to this work.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 12 ISSN 2150-8097.
doi:10.14778/3554821.3554883

1 INTRODUCTION
Network representation learning (NRL) methods have been utilized
in several applications such as molecular property prediction [4],
simulation of complex physics [15], construction of disease asso-
ciation network [11] and discover anti-inflammatory agents for
COVID-19 [17]. The success of NRL methods has attracted multiple
domain scientists and end-users to develop novel network embed-
ding methods that perform well on their selected downstream tasks.
However, most NRL methods do not scale on large graphs [12].

Several works [3, 10, 18] have proposed solutions to address the
scalability bottleneck of NRL methods. However, these solutions
often trade off ease-of-use for optimization. For instance, Pytorch-
BigGraph limits end-users to utilize their proposed first-order prox-
imity preserving embedding method to learn node embeddings.
Graphscope [3] requires end-users to adopt Gremlin language for
scaling their embedding method on the large graph, while Marius
[18] requires users to write their proposed embeddingmethod using
a Marius configuration file in Pytorch. Such frameworks are promis-
ing and helpful to scale existing methods on large graphs, but they
place an additional burden on (or in some cases even restrict) the
end-users to execute the developer’s custom embedding method in
their setting (placing a productivity burden on the end-user).

In this work, we attempt to address the above-mentioned prob-
lem by proposing a novel system, WebMILE. WebMILE can execute
any custom unsupervised network embedding method on large
graphs in a short amount of time without compromising on the
quality of the learned embeddings (with respect to the original
implementation). WebMILE currently supports the execution of
custom network embedding methods written in three program-
ming languages (Python, R, and Java) although in principle it is
completely language agnostic and can support any programming
environment.

WebMILE design: Our goal with WebMILE is to help domain-
scientists either prototype a new method or use an existing method
without worrying about scalability issues associated with learn-
ing and tuning on large graphs. An additional goal is to facilitate
productivity in a programming environment familiar to them. Web-
MILE in its current avatar is a simple web application (familiar to
scientific and social scientists). The current graphic user interface
(GUI) helps the end-user navigate the flow of WebMILE with ease.
The web application can be deployed locally on the user’s server
and as a result, the user’s graph data does not have to leave his/her
device – thereby maintaining the privacy of data. The GUI accepts

3718

https://doi.org/10.14778/3554821.3554883
https://github.com/heyuntian/WebMILE
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3554821.3554883
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Coarsening

… …

Refining
Base embedding ℰ

Input graph 𝒢

𝒢

𝒢

ℰ

Final embedding ℰ

Figure 1: MILE architecture

the necessary code files and the names of the packages required to
execute the custom network embedding method.

The next design decision is related to creating WebMILE pro-
gramming language agnostic. The original principles underlying
the development of our multi-level framework - MILE and its
distributed variant - DistMILE, ensured that the base embedding
method could be completely language agnostic. Specifically, MILE
[12], consists of three phases. Given an input graph, in the first
phase, it repeatedly coarsens the graph into smaller graphs such that
the global structure of the graph is preserved. Next, MILE executes
the given network-embedding method on the coarsest graph. In the
last phase, MILE learns a graph neural network based refinement
model that can learn the embeddings of the input graph from the
embeddings of the coarsest graph. DistMILE parallelizes the first
and last phases leaving the base embedding phase untouched. In
WebMILE we fold these ideas into a Docker environment1, ensuring
that the execution of a user’s network embedding is seamless.

The above design enables WebMILE to learn node embeddings
of large graphs in a programming language and network embedding
method agnostic manner.

WebMILE demonstration: We propose a demonstration of
WebMILE to data scientists and end-users with different back-
grounds to showcase the efficacy of the proposed system on large
graphs. We plan to demonstrate:

(1) WebMILE’s simple setup: We plan to first show how to
install the WebMILE web application on a local device. We
will also provide the installation instructions and how to
start the web server.

(2) Training on a range of real-world graphs: Next, we plan
to show how to use the WebMILE application to (1) scale
a custom network embedding method on a large graph,
and (2) incorporate WebMILE with embedding scripts in
different programming languages and of different network
embedding methodologies.

(3) Demonstrate the flexibility of WebMILE: Across multi-
ple commonly leveraged machine learning and data science
programming environments through both pre-programmed
and on-the-fly embedding technique design, prototyping
and deployment in the wild.

2 DEFINITIONS AND PRELIMINARIES
In this section, we briefly present the required definitions and nota-
tions and provide a brief overview of MILE.
1Docker’s platform-as-a-service tool installs relevant packages to execute code.

Step 1

Graph

Parameters

Step 2

Web Server

Step 3 Step 5

Step 7 Step 6

Step 4
MILE

Embedding

Website

Figure 2: WebMILE training pipeline

Network representation learning [6]: Let 𝐺 = (𝑉 , 𝐸) be a
graph where |𝑉 | number of nodes and |𝐸 | number of edges and
let 𝑑 be the embedding dimension, then a network representation
learning method learns a d-dimensional representation of the nodes
such that similarity in graph space approximates closeness in d-
dimensional space.

Several network representation learning methods have been pro-
posed recently. Readers are encouraged to refer to the following
surveys for additional details [7, 19]. Most of these methods, how-
ever, cannot operate or consume more resources (compute, time) on
large graphs. MILE [12] can scale existing network representation
learning methods on large graphs in an agnostic manner without
compromising on the quality of learned node embeddings.

MILE consists of three phases. Figure 1 shows MILE architecture.
(1) Coarsening phase: Given a input graph𝐺 (or𝐺0), MILE re-

peated coarsens it into series of smaller graphs𝐺1,𝐺2, ...𝐺𝑚

such that |𝑉0 | > |𝑉1 | > ... > |𝑉𝑚 | and |𝐸0 | > |𝐸1 | > ... >

|𝐸𝑚 |. MILE uses a hybrid matching scheme for coarsen-
ing. The scheme relies on normalized heavy edge matching
(NHEM) [9] and structured equivalence matching [12] tech-
niques.

(2) Base embedding phase: In this phase, MILE executes a
network embedding method on the coarsest graph 𝐺𝑚 and
learns the nodes embeddings E𝑚 of𝑉𝑚 nodes. Note that, in
this phase, any network embedding method can be utilized
– method agnostic.

(3) Refinement phase: In this last phase, MILE learns a graph
convolutional network-based refinement model. The model
takes input the node embeddings of graph𝐺𝑖 , adjacencyma-
trix of 𝐺𝑖−1 and the coarse graph mapping between 𝐺𝑖 and
𝐺𝑖−1. The refinement model then predicts the embeddings
of a graph 𝐺𝑖−1 by incorporating the node embeddings of
Graph 𝐺𝑖 and graph structure of𝐺𝑖−1. We initialize 𝑖 to𝑚
and then repeatedly predict the node embeddings till we
learn the node embeddings of graph 𝐺0 (or 𝐺).

3 WEBMILE ARCHITECTURE
Figure 2 depicts the pipeline of the WebMILE. At the high level, the
pipeline consists of three stages: i) users upload all the required files

3719

Figure 3: WebMILE web interface

and parameters through the GUI, ii) the webserver then provides
all the necessary files and parameters to MILE system and after the
MILE execution is finished, iii) the webserver returns the learned
embeddings to the users.

At a granular level, the pipeline can be explained as follows: the
domain-scientist or end-user visits the web application ofWebMILE
through a web browser (Step 1). The user is then provided with a
GUI shown in Figure 3. Here, the user provides the input graph, the
coarsen level, and the embedding dimension of node embedding.We
currently support the graph in edge list and metis format [9]. The
coarsen level corresponds to the number of times, we coarsen the
graph. In our experiments, we observed that increasing the coarsen
level results in faster learning of node embeddings, however, higher
coarsen levels often result in a reduction in embedding quality.
Internally we automate an initial recommendation of coarsen level
(based on some initial statistics of the graph that the user wishes
to process). The end-user can modulate this value as desired. The
end-user then provides the language of the custom embedding
script, the custom embedding script file, and the required package
file. WebMILE currently supports three programming languages
(Python, Java, and R). In the case of python and R, the required
package file is expected to be a single text file and each line in
the text file should contain a single package name. For Java, the
required package file should be the jar file. The user will then
enter the execution command and provide the job parameters for
executing the embeddingmethod. If the user does not have a custom
embedding function, the user can select one of the existing network
embedding functions: Deepwalk [13], Node2vec [5], LINE [16],
NetMF [14] and GraRep [2]. Clicking on "Run MILE" button will
start the execution.

In step 3, we first test the correctness of the input on the web-
server. The web-server then creates a docker container and installs
the requested software packages. The creation of docker container
allows us to execute the model in isolation and avoid package
conflicts among different users. After the container creation, we
execute MILE on the input graph (step 4). In the base embedding
phase of MILE, we utilize the provided custom embedding script

to learn node embeddings of the coarsest graph and then utilize
the refinement phase of MILE to learn the node embeddings. Once
the node embeddings of input graph are learned, we return the
embeddings file to the end-user which they can the leverage for
downstream analysis.

4 DEMONSTRATION SCENARIOS
Our end-to-end demonstration will i) get the audience familiar with
how to set up the WebMILE on a machine and ii) showcase how to
use WebMILE to execute customized network embedding methods
on large graphs in different scenarios.

4.1 Deployment of WebMILE
WebMILE can be hosted on a wide range of platforms. One can
deployWebMILE on a publicly accessible server that will enable the
audience to use it in an easier way. However, such an arrangement
will force the end-user to share their data. The end-users might not
want to share their data publicly due to privacy concerns. In this
case, WebMILE can also be deployed locally so that all data will
remain on their own devices.

For local deployment, we will demonstrate howWebMILE can be
easily set up by installing Docker and several Python packages. Our
graphical user interface is built over a Python-based open-sourced
web framework Django [1]. In WebMILE system, our modules for
graph coarsening and embedding refinement mostly utilize four
Python packages, namely, NumPy, SciPy, Scikit-learn, and Ten-
sorFlow. The audience can trivially build a Python interpreter in
seconds. In addition to this, Docker is necessary for our framework
to run the audience’s embedding script in a customized language-
agnostic environment.

4.2 Training on Large Graphs
After introducing the simplicity and generalizability of WebMILE’s
deployment, we will demonstrate how to scale the audience’s em-
bedding script over large networks. Specifically, the audience will
be shown the following scenarios:

Run WebMILE over large datasets: We will first demonstrate
how WebMILE can scale the user’s customized embedding model
over a large dataset. Initially, the user can upload a file of graph
data in many common formats such as metis and edge lists. Then
the user can specify the parameters of WebMILE and the base
embedding model through our graphical interface. To tune the
parameters of WebMILE, the user can modify the coarsen level and
the dimensionality of embedding. Additionally, the user can tune its
customized embedding model by adding arguments in a text box of
the execution command. After setting up the data and parameters,
WebMILE can return an embedding array in a text file.

To demonstrate the efficacy of WebMILE, we will select one
of several real-world datasets (audience choice) and evaluate our
framework on either a classification or link prediction task. Our
preliminary results show that the system can accelerate the network
embedding without compromising the quality. The audience can
conduct similar experiments with their specific embedding methods
and downstream tasks after our demonstration.

Figure 4 shows the experiments of MILE on the Yelp dataset
consisting of 8 million nodes, 40 million edges, and the nodes

3720

(a) Micro-F1 (b) Running Time

Figure 4: Running MILE on Yelp dataset.

have 22 classes. We see that network embedding methods such as
Node2vec [5], NetMF [14] and GraRep [2] cannot operate on Yelp
dataset. While Deepwalk [13] and LINE [16] can operate on yelp
but consumes a significant amount of time. From Figure 4, we see
that MILE reduces the running time of DeepWalk from 53 hours
to 2 hours with coarsening level 22, while reducing the Micro-F1
score just by 1% (from 0.643 to 0.634).

Language and methodology agnostic embedding: We also
plan to demonstrate how WebMILE can perform graph embedding
in a language and methodology agnostic manner. The user will
upload the embedding script with a dependency list before running
WebMILE. Then our system can utilize Docker to build an envi-
ronment for execution. Details about incorporating an embedding
script with WebMILE will be available in our open-source codes. In
our demonstration, we will showcase how to run WebMILE with
embedding scripts in different languages and using both on-the-fly
interactive development and pre-programmed settings.

4.3 Demonstrate the Flexibility of WebMILE
We plan to demonstrate how to utilize WebMILE across multiple
machine learning and data science programming environments
that are commonly leveraged by domain-scientist and end-users.
Here, we will utilize popular pre-programmed network embedding
methods in WebMILE and show how to learn the node embeddings
of the input graph using those embedding methods.

5 POTENTIAL IMPACT
The adoption of network representation learning methods on large
graphs in diverse domains is often limited by the lack of easy-to-use
optimized solutions. WebMILE democratizes this process allowing
users to flexibly use their custom network representation learn-
ing method or adapting a pre-programmed one in a programming
language agnostic fashion. Existing optimized solutions require
the domain-scientist to either significantly refactor their proposed
network embedding method in a format suitable with respect to the
optimized solution or require domain-scientist to utilize the opti-
mized solution’s embedding method to learn node embeddings. Our
proposed system,WebMILE, addresses these problems by proposing
an easy-to-use web application that can learn the node embeddings
of large graphs efficiently. We believe our proposed system will

accelerate the adoption of network representation learning meth-
ods in multiple domains, and facilitate rapid prototyping of new
methods that require learning of node embeddings on large graphs.
We are currently working on improving the simplistic interface to
enhance usability in resource-constrained environments (training
on the edge). We are also currently extending the infrastructure to
take advantage of additional parallelization optimizations as dis-
cussed in DistMILE [8] as this will allow users to train their custom
network embedding methods on even larger graphs in a shorter
amount of time.

ACKNOWLEDGMENTS
This material is supported by the National Science Foundation (NSF)
under grants OAC-2018627, CCF-2028944, and CNS-2112471. Any
opinions, findings, and conclusions in this material are those of the
author(s) and may not reflect the views of the respective funding
agency.

REFERENCES
[1] Django. https://www.djangoproject.com
[2] Shaosheng Cao, Wei Lu, and Qiongkai Xu. 2015. Grarep: Learning Graph Repre-

sentations with Global Structural Information. In Proceedings of the 24th ACM
International on Conference on Information and Knowledge Management. 891–900.

[3] Wenfei Fan et al. 2021. GraphScope: a unified engine for big graph processing.
VLDB (2021).

[4] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E
Dahl. 2017. Neural message passing for quantum chemistry. In International
Conference on Machine Learning. PMLR, 1263–1272.

[5] Aditya Grover and Jure Leskovec. 2016. Node2vec: Scalable Feature Learning for
Networks. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. 855–864.

[6] Saket Gurukar, Priyesh Vijayan, Aakash Srinivasan, Goonmeet Bajaj, Chen Cai,
Moniba Keymanesh, Saravana Kumar, Pranav Maneriker, Anasua Mitra, Vedang
Patel, et al. 2019. Network representation learning: Consolidation and renewed
bearing. arXiv preprint arXiv:1905.00987 (2019).

[7] William L Hamilton. 2020. Graph representation learning. Synthesis Lectures on
Artifical Intelligence and Machine Learning 14, 3 (2020), 1–159.

[8] Yuntian He, Saket Gurukar, Pouya Kousha, Hari Subramoni, Dhabaleswar K
Panda, and Srinivasan Parthasarathy. 2021. DistMILE: A Distributed Multi-Level
Framework for Scalable Graph Embedding. In HiPC. IEEE, 282–291.

[9] George Karypis and Vipin Kumar. 1997. METIS: A software package for parti-
tioning unstructured graphs, partitioning meshes, and computing fill-reducing
orderings of sparse matrices. (1997).

[10] Adam Lerer et al. 2019. Pytorch-biggraph: A large scale graph embedding system.
Proceedings of Machine Learning and Systems 1 (2019), 120–131.

[11] Michelle M Li, Kexin Huang, and Marinka Zitnik. 2021. Representation learning
for networks in biology and medicine: advancements, challenges, and opportu-
nities. arXiv preprint arXiv:2104.04883 (2021).

[12] Jiongqian Liang, Saket Gurukar, and Srinivasan Parthasarathy. 2021. MILE:
A Multi-Level Framework for Scalable Graph Embedding. Proceedings of the
International AAAI Conference on Web and Social Media 15, 1 (2021), 361–372.

[13] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online Learn-
ing of Social Representations. In Proceedings of the 20th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining. 701–710.

[14] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang. 2018.
Network Embedding as Matrix Factorization: Unifying DeepWalk, LINE, PTE,
and Node2vec. In Proceedings of the 11th ACM International Conference on Web
Search and Data Mining. 459–467.

[15] Jonathan Shlomi, Peter Battaglia, and Jean-Roch Vlimant. 2020. Graph neural
networks in particle physics. Machine Learning: Science and Technology (2020).

[16] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.
2015. Line: Large-scale information network embedding. In Proceedings of the
24th International Conference on World Wide Web. 1067–1077.

[17] Xiaoqi Wang et al. 2021. DeepR2cov: deep representation learning on hetero-
geneous drug networks to discover anti-inflammatory agents for COVID-19.
Briefings in Bioinformatics (2021).

[18] Anze Xie et al. 2021. Demo of marius: a system for large-scale graph embeddings.
VLDB (2021).

[19] Daokun Zhang, Jie Yin, Xingquan Zhu, and Chengqi Zhang. 2018. Network
representation learning: A survey. IEEE transactions on Big Data (2018).

3721

https://www.djangoproject.com

