
DORIAN in action: Assisted Design of Data Science Pipelines

Sergey Redyuk
TU Berlin

sergey.redyuk@tu-berlin.de

Zoi Kaoudi
TU Berlin

zoi.kaoudi@tu-berlin.de

Sebastian Schelter
University of Amsterdam

s.schelter@uva.nl

Volker Markl
TU Berlin

volker.markl@tu-berlin.de

ABSTRACT

Existing automated machine learning solutions and intelligent dis-

covery assistants are popular tools that facilitate the end-user with

the design of data science (DS) pipelines. However, they yield lim-

ited applicability for a wide range of real-world use cases and appli-

cation domains due to (a) the limited support of DS tasks; (b) a small,

static set of available operators; and (c) restriction to evaluation

processes with quantifiable loss functions. We demonstrate DORIAN,

a human-in-the-loop approach for the assisted design of data science

pipelines that supports a large and growing set of DS tasks, opera-

tors, and arbitrary user-defined evaluation processes. Based on the

user query, i.e., a dataset and a DS task, DORIAN computes a ranked

list of candidate pipelines that the end-user can choose from, alter,

execute and evaluate. It stores executed pipelines in an experiment

database and utilizes similarity-based search to identify relevant

previously-run pipelines from the experiment database. DORIAN

also takes user interaction into account to improve suggestions

over time. We show how users can interact with DORIAN to create

and compare DS pipelines on various real-world DS tasks without

the need for writing any code.

PVLDB Reference Format:

Sergey Redyuk, Zoi Kaoudi, Sebastian Schelter, and Volker Markl. DORIAN

in action: Assisted Design of Data Science Pipelines. PVLDB, 15(12): 3714 -

3717, 2022.

doi:10.14778/3554821.3554882

1 INTRODUCTION

To facilitate users with the overwhelming task of designing data

science (DS) pipelines, automated machine learning (AutoML) solu-

tions [6, 12] are commonly used in specific tasks, such as supervised

classification. They usually navigate a search space of ML models

and hyperparameters and execute these pipelines to determine the

best one. Another approach that provides guidance for pipeline

design includes intelligent discovery assistants (IDA). These fo-

cus on scenarios where end-users are kept in-the-loop and utilize

meta-features, knowledge- or case- bases [1, 3, 5, 8, 9, 11].

Both families of solutions, however, rarely address domain-specific

tasks and the challenges faced in creative experimentation. First,

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 12 ISSN 2150-8097.
doi:10.14778/3554821.3554882

certain domains introduce domain-specific techniques (e.g., marker

gene identification in genomics and single-cell analysis) which

are not readily available in existing AutoML and IDA tools. Sec-

ond, modern DS pipelines can get extremely complex, containing a

wide range of operators from different domains. If current AutoML

tools were to support all these operators, their search space would

explode requiring extensive resources and time to find optimal

pipelines. Third, it is prevalent in many applications that domain

experts cannot quantify or automate the pipeline evaluation, and

hence, the selection among pipeline candidates. Instead, they manu-

ally inspect the results of different pipeline variants, compare them,

and decide which one is best. Such an evaluation process does not

include a well-specified, quantifiable metric (e.g., AUC ROC score)

and thus, is out of scope for AutoML and IDA solutions.

We address the aforementioned challenges and demonstrate

DORIAN1, a human-in-the-loop approach for the assisted design of

DS pipelines. Our goal is the support of a broad range of applica-

tion domains (i.e., arbitrary DS tasks, operators, and evaluation

processes) that go beyond the state-of-the-art solutions in three as-

pects: (a) user-input is essential and fully automated solutions [4, 10]

might be inapplicable; (b) a small, static set of supported operators

and common łbest practicesž are not powerful enough for partic-

ular domain-specific tasks; and (c) adaptation to new operators is

performed fast, with little to no overhead for the end-user.

Given a dataset and a DS task (e.g., classification), DORIAN com-

putes a ranked list of pipeline candidates that the end-user can

choose to execute or modify. To achieve this, it uses a dynami-

cally updated experiment database to store all previously executed

experiments from different teams and domains. DORIAN is also com-

posed of a recommendation engine that utilizes the experiment

database and incorporates user interactions to improve individual

suggestions over time. The benefits of DORIAN are numerous: (a)

The recommendation engine is online (i.e., it does not have delays in

the incorporation of new user input) and extensible by the end-users:

When an end-user adds a new operator or a DS task, it becomes

available to other users immediately after the validation. (b) DORIAN

treats pipeline suggestion as a search problem as opposed to the

expensive łgenerate-train-evaluatež loop of AutoML solutions. This

allows us to benefit from the advancements in the data manage-

ment field and employ efficient search over data, pipelines, and

previous user interaction. (c) It brings reasonable explainability to

the pipeline selection process via its ranking.

In this demo, we showcase DORIAN via an intuitive and easy-to-

use graphical user interface (GUI). Attendees will be able to design

1The original acronym stands for a tool forReproducibity, Inspection, andAutomatioN
of Data-Oriented experiments.

3714

https://doi.org/10.14778/3554821.3554882
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3554821.3554882

pipelines for a set of 11 predefined real-world tasks and datasets. In

particular, they will be able to: (i) choose among different pipelines,

(ii) modify existing pipelines, (iii) execute pipelines, and (iv) visu-

ally inspect and compare pairs of pipelines. The purpose of the

demo is twofold: first, to highlight that novice users can effortlessly

construct DS pipelines in a few steps with zero code, and second, to

show that domain experts can easily plug their own operators and

use their own objective criteria which are instantaneously picked

up and used by the recommendation engine.

2 SYSTEM OVERVIEW

DORIAN tackles the problem of assisted design of DS pipelines: Given

a dataset and a DS task, together with a user-defined evaluation

process of choice (e.g., AUC ROC score or any custom-made evalu-

ation) and a time budget, output the best set of pipeline candidates

according to the evaluation process.

The core challenges that DORIAN tackles are: (i) how to effectively

support a large and growing set of operators included in the sug-

gested pipelines, DS tasks, and arbitrary evaluation processes that

potentially lack quantifiable loss functions; and (ii) how to provide

interactive suggestions to the end-user (a response under 1 second is

considered real-time user interaction [7]) while incorporating new

user input without delays. Figure 1 shows an overview of DORIAN.

On the left side we illustrate the user interaction, while on the right

side we see the internal of the system. The user interaction starts

with a user query (i.e., a dataset, task and optionally evaluation

process and predefined DS pipeline) 1 . DORIAN then outputs the

first set of ranked pipeline candidates (initial recommendation) 2 .

As part of the User Interaction Cycle, the user can (𝑖) edit the cho-

sen candidate by adding, removing, or altering operators in the

pipeline; (𝑖𝑖) discard the candidate as irrelevant based on the do-

main knowledge or personal preference; (𝑖𝑖𝑖) submit the pipeline

for execution to generate the output data. After users receive the

results 4 , they can choose to modify their pipeline again or go back

to another pipeline candidate and request new suggestions. This

process is iterative. DORIAN can be populated with DS pipelines

found in publicly available sources, such as Kaggle or OpenML 0 .

To achieve this, DORIAN comprises four main components: the

DS Pipeline Extractor, the Experiment Database (ExpDB), the Recom-

mendation Engine and the Execution engine (Figure 1, gray boxes).

DS Pipeline Extractor. It parses the source code of a DS pipeline

into an Abstract Syntax Tree (AST) and extracts a succinct but

informative graph out of the AST. To achieve this, the DS pipeline

extractor utilizes graph rewrite rules in addition to a knowledge

graph. The latter adds semantics to the DS pipelines which is crucial

for providing useful recommendations to the end-users.

Experiment Database. ExpDB acts as a centralized data man-

agement component for storing information from all previous DS

experiments across teams and domains or collected from other pub-

licly available experiment databases, e.g., OpenML and Kaggle. This

component provides the following novel aspects: (𝑖) an extensible

intermediate representation for executed pipelines that allows for

new user-defined operators and tasks, (𝑖𝑖) efficient search over the

constantly growing database of past experiments that enables inter-

active suggestions, and (𝑖𝑖𝑖) storing a succinct representation of the

datasets instead of the raw files. Information about the experiments

Dataset

DS Task

Evaluation/?

Pipeline/?

Backend

Execution Engine

Recommendation Engine

Objectives for initial

recommendation

Objectives for incremental

recommendation

Experiment Database

Data footprints DS pipelines Interaction table

DS Pipeline Extractor0

1

Query

2

Ranked

pipelines

3

Selected

pipeline

4

Results

Meta-information about user

decisions (pairwise comparison)

DS  

source code

Frontend

Source code Knowledge graph

DS pipelines

Candidate pipelines

Multi-objective sorting

Figure 1: Framework overview

(e.g., dataset ID, pipeline ID, evaluation metric) and user interaction

(e.g., selected, executed, discarded, compared pipeline candidates) is

also stored in the Interaction Table inside the Experiment Database.

ExpDB is responsible for finding pipeline candidates and passing

them to the recommendation engine. It does this in two ways: In

the first interaction cycle, it finds pipelines that were previously

executed on datasets similar to the input dataset. In the susequent

interaction cycles and after the user has chosen at least one pipeline,

it retrieves pipelines similar to the selected ones. In addition, ExpDB

records all pipeline runs and user interactions to further improve

its suggestions. It achieves these based on three main elements: (a)

fixed-size numeric data footprints that contain a subset of meta-

features from [4] extracted from the input dataset and used for the

KDD-tree based similarity search of previously used datasets, (b) a

graph-based representation of the data science pipelines that allows

to use the graph-edit distance as a discrete similarity measure for

similarity search based on the BK-trees, and (c) the relational repre-

sentation of user interactions that is indexed for efficient selection.

Recommendation Engine. It selects and ranks pipeline candi-

dates for a given user query in real-time and updates suggestions as

new information regarding the user decisions (i.e., choices) becomes

available. We distinguish two types of suggestions: the initial rec-

ommendation and the suggestions for incremental improvements.

As both types of suggestions exhibit multiple requirements for

ranking, we frame the recommendation of pipelines with the prob-

lem of multi-objective sorting. The Recommendation Engine first

receives from ExpDB a set of pipeline candidates that were previ-

ously executed on a similar dataset and filters out the ones that do

not perform the user-specified DS task 𝑇 . It ranks the candidates

based on relevance to the user query and the performance metric (if

available), giving preference to high variety of suggested candidates

as well as to previous user interaction. To specify the łrelevancež,

the Recommendation Engine uses a set of default ranking objec-

tives, such as predictive performance, similarity of pipelines, etc.

Pipeline candidates are then ordered based on the specified list of

ranking objectives (e.g., łunseen pipelines firstž, łpipelines with

higher average predictive performance firstž, łpipelines with higher

performance on similar data firstž) that is exposed to the end-user

and can be tailored to each user query and evolve over time.

3715

0.0

0.5

1.0

RO
C

AU
C

sc
or

e μ=0.90 μ=0.98 μ=0.99 μ=0.99 μ=0.97

Automated

 μ=0.81 μ=0.92

Human-in-the-loop

DABL autosklearn
5 min.

autosklearn
1 hour

DORIAN
oracle user

DORIAN
simulated user

1 sec
5 sec

1 min
5 min

1 hour

Ex
ec

ut
io

n
ti

m
e

 μ=1.3s

 μ=5min
 μ=1h

 μ=8s
 μ=28s

RapidMiner
Auto Model

DORIAN
real user

 μ=40min
 μ=2.3min

Figure 2: Evaluation of DORIAN against six baselines

Execution Engine. It is an abstraction of the computational en-

vironment. In this demonstration, we use the Python3.9 runtime

with the common data science toolkit installed (the sklearn, pandas,

keras libraries). It temporarily stores the results of pipeline candi-

dates that the end-user chose to execute in order to support their

pairwise comparison in retrospective.

Note that the evaluation processes are not limited to standard

ML performance metrics such as accuracy or ROC AUC score. In

the case when well-specified quantifiable evaluation metrics do

not exist, the end-user can manually compare the output data of

any given pair of executed candidates in order to identify a łbetterž

candidate w.r.t. the chosen evaluation process. Recording the end-

user decisions regarding the pairwise candidate comparison in

the Experiment Database allows for improving the ranking of the

pipeline candidates over time. DORIAN suggests new candidates

until the user finds a suitable pipeline.

Results. To evaluate the quality of DORIAN’s pipeline recommenda-

tion, we use 63 verified datasets from the OpenML-CC18 benchmark

suite [2] as user queries and 3900 OpenML pipelines to populate the

experiment database. We apply a leave-one-out scheme where the

experiments related to all but one datasets are kept in the ExpDB,

1 dataset with the underlying experiments specifies a previously

unseen user query. As baselines, we use: (i) the DABL2 library for

baseline pipeline generation that applies a static set of pipeline

synthesis rules, (ii) auto-sklearn [4] as an AutoML solution using

two variants: one with total execution budget of 5min and another

with the total execution budget set to 1h, (iii) RapidMiner Auto

Model3 as an IDA solution, and (iv) a synthetic łoraclež baseline that

imitates end-users that know the optimal path to the best perform-

ing pipeline candidate. For DORIAN, we run two variants - one with

real users as part of a preliminary user study and another with sim-

ulated user behavior that is modeled analogous to the breadth-first

search: all candidates that are suggested during the first iteration

are selected and executed in the direct order without discarding

or skipping, and then their incremental updates are selected and

executed in the direct order as well.

Figure 2 depicts the results. We report the average predictive

performance and the total execution time (human-in-the-loop base-

lines include the delays for user interaction). DORIAN performs sim-

ilarly to its automated counterparts while being faster and extensible.

DORIAN with a simulated user represents a trade-off that performs

2https://amueller.github.io/dabl/dev/, DABL library, accessed: 24.03.2022
3https://docs.rapidminer.com/latest/studio/guided/auto-model/index.html, Rapid-
Miner Auto Model, accessed: 24.03.2022

better than the simple baseline and reaches predictive performance

comparable to the AutoML solutions fast. On average, the total

execution time of DORIAN is one order of magnitude faster than the

automated auto-sklearn 5min and auto-sklearn 1h baselines.

DORIAN (operated by a real user) exceeds the average perfor-

mance of RapidMiner and reaches predictive performance close to

that of automated tools, i.e., its ROCAUC is 0.92while auto-sklearn

5 min scored 0.95. RapidMiner underperforms due to the fixed set

of applied ML models and their hyperparameters, and the lack

of preprocessing mechanisms except for feature selection. The to-

tal time of our approach includes many iterations of suggestions,

where a single iteration takes under 0.5s (and the computation of

data footprints take under 3s) which adheres to the standards of

interactive user experience. Importantly, DORIAN works under re-

laxed assumptions that do not restrict the support of any DS tasks

or operators compared to other baselines.

3 DEMONSTRATION

In the following, we describe the core user interaction scenario and

the functionality of the demonstrated user interface (UI, Figure 3).

The audience will have a set of eleven real datasets and tasks to

choose from. The domains of the data range from thyroid disease

prediction to the analysis of internet advertisements. All available

datasets fit the demonstration scenario presented below.

Scenario.We imagine Alice who is a domain expert without formal

education in data science. They work on the topic of biological

response prediction from the chemical properties of molecules and

require a pipeline to predict the biological response on implanta-

tion of a medical device based on the chemical structure of the

materials used for manufacturing. The data at hand represent 1776

molecular descriptors (i.e., calculated properties that capture some

of the characteristics of the molecule - for example size, shape,

or elemental constitution) and a binary signal that describes if a

particular molecule was seen to elicit a response.

The audience will be able to play a role of Alice and perform the

following steps (see Figure 3): specify the user query 1 , review

suggested pipelines 2 , select and alter the candidate of interest 3 ,

execute and compare the selected pipeline candidates pair-wise 4 .

1 User Query. Initially, Alice specifies a query, i.e., uploads an input

dataset and chooses the task from a drop-down list. Optionally, they

provide as inputs: (𝑖) the specification of a quantifiable performance

evaluation process, if it exists (e.g., 5-fold cross-validation and AUC

ROC score), and (𝑖𝑖) an initial DS pipeline to work with if they

would like suggestions for improvements.

2 Candidate Review. DORIAN provides a ranked list of pipelines

sorted based on a default set of ranking objectives. Recommen-

dations appear incrementally in several iterations, thus, the feed

provides the capability to review the history of suggestions. The

end-user can select one of the candidates for detailed review.

3 Candidate Selection and Alteration. Alice selects a pipeline can-

didate for manual alteration and can use it as a source pipeline

for incremental improvements or discard it. Specifically, they can

modify the hyperparameters of the provided operators, replace any

operator with an alternative of similar type, remove an operator,

add an existing one or create their own by using the code editor.

Alice can request new suggestions based on the selected candidate.

3716

https://amueller.github.io/dabl/dev/
https://docs.rapidminer.com/latest/studio/guided/auto-model/index.html

User query

The detailed view for altering,
executing, discarding a candidate

Ranking
Objectives

The recommendation feed
for candidate review

Figure 3: DORIAN’s Web-based User Interface

4 Candidate Execution and Pairwise Comparison. When Alice finds

attractive pipeline candidates, they can choose to execute them

and receive the results for candidate comparison. A pairwise com-

parison window (not shown in Figure 3) allows to compare the

pipeline structure and its output side-by-side against the alter-

native candidate. The choice between two candidates affects the

recommendations in the next recommendation round.

Extensibility. DORIAN is extensible to new operators, evaluation

processes and even ranking objectives. To demonstrate this exten-

sibility the audience will be able to do the following: (1) They can

add new operators by using the code editor and annotating the DS

task; (2) They can design DS pipelines that do not have quantifi-

able evaluation metrics by choosing łpairwise comparisonž as the

evaluation process - this allows them to view two pipelines and

their corresponding results side-by-side and make a binary decision

which candidate performs better; (3) They can update the number

of objectives and their order to fine-tune the recommendation feed

to their needs. For example, by prioritizing łpreviously unseenž

over łbetter-performingž pipelines, the audience will be able to see

new pipelines that DORIAN did not suggest before.

User Experience. We expect the audience to be able to easily nav-

igate DORIAN’s user-friendly interactive GUI and quickly construct

their first DS pipelines. We have confirmed that with a preliminary

user study we have conducted using a group of 6 PhD candidates

with varying levels of expertise in data science. Based on the study,

users perceive the tool as useful in scenarios where they want to

explore new DS operators or pipeline candidates that might be rel-

evant to their query and in scenarios where they want to receive a

pool of potentially relevant pipeline candidates fast, without writing

code. Furthermore, they appreciated the łdrill-downž exploration

opportunity and the chance to quickly get the overview of pipeline

candidates that they did not necessarily know before. All end-users

found pipelines that had competitive predictive performance to

other baselines (see Figure 2) within few minutes.

ACKNOWLEDGMENTS

This work was funded by the HEIBRiDS graduate school, with

the support of the German Ministry for Education and Research

as BIFOLD - Berlin Institute for the Foundations of Learning and

Data (01IS18025A and 01IS18037A), the Software Campus Program

(01IS17052), and Ahold Delhaize. All content represents the opinion

of the authors, which is not necessarily shared or endorsed by their

respective employers and/or sponsors.

REFERENCES
[1] B. Bilalli, A. Abelló, T. Aluja-Banet, and R. Wrembel. 2018. Intelligent assistance

for data pre-processing. Computer Standards & Interfaces 57 (2018), 101ś109.
[2] Bernd Bischl et al. 2021. OpenML Benchmarking Suites. In 35th Conference on

Neural Information Processing Systems Datasets and Benchmarks Track (Round 2).
[3] I. Drori et al. 2018. AlphaD3M: Machine learning pipeline synthesis. In AutoML

Workshop at ICML.
[4] M. Feurer et al. 2019. Auto-sklearn: efficient and robust automated machine

learning. In Automated Machine Learning. Springer, Cham, 113ś134.
[5] Y. Gil et al. 2018. P4ML: A phased performance-based pipeline planner for

automated machine learning. In ICML’18 AutoML Workshop.
[6] Xin He, Kaiyong Zhao, and Xiaowen Chu. 2021. AutoML: A survey of the

state-of-the-art. Knowledge-Based Systems 212 (2021), 106622.
[7] Robert B. Miller. 1968. Response Time in Man-Computer Conversational Trans-

actions. In Proceedings of the December 9-11, 1968, Fall Joint Computer Conference,
Part I (San Francisco, California) (AFIPS ’68 (Fall, part I)). ACM, New York, NY,
USA, 267ś277. https://doi.org/10.1145/1476589.1476628

[8] P. Nguyen, M. Hilario, and A. Kalousis. 2014. Using Meta-Mining to Support
Data Mining Workflow Planning and Optimization. J. Artif. Int. Res. 51, 1 (Sept.
2014), 605ś644.

[9] R.S. Olson and J.H. Moore. 2016. TPOT: A tree-based pipeline optimization tool
for automating machine learning. In ICML’16 AutoML Workshop. JMLR, 66ś74.

[10] Z. Shang et al. 2019. Democratizing Data Science through Interactive Curation
of ML Pipelines. In SIGMOD’19 (Amsterdam, Netherlands). ACM, 1171ś1188.
https://doi.org/10.1145/3299869.3319863

[11] M.D. Wever, F. Mohr, and E. Hüllermeier. 2018. Ml-plan for unlimited-length
machine learning pipelines. In ICML’18 AutoML Workshop.

[12] Q. Yao et al. 2018. Taking human out of learning applications: A survey on
automated machine learning. arXiv preprint arXiv:1810.13306 (2018).

3717

https://doi.org/10.1145/1476589.1476628
https://doi.org/10.1145/3299869.3319863

