
Pipemizer: An Optimizer for Analytics Data Pipelines
Sunny Gakhar, Joyce Cahoon, Wangchao Le, Xiangnan Li, Kaushik Ravichandran, Hiren Patel, Marc

Friedman, Brandon Haynes, Shi Qiao, Alekh Jindal, Jyoti Leeka
∗

Microsoft, Keebo

pipemizer@microsoft.com

ABSTRACT
We demonstrate Pipemizer , an optimizer and recommender aimed

at improving the performance of queries or jobs in pipelines. These

job pipelines are ubiquitous in modern data analytics due to jobs

reading output files written by other jobs. Given that more than

650k jobs run on Microsoft’s SCOPE job service per day and about

70% have inter-job dependencies, identifying optimization opportu-

nities across query jobs is of considerable interest to both cluster

operators and users. Pipemizer addresses this need by providing rec-
ommendations to users, allowing users to understand their system,

and facilitating automated application of recommendations. Pipem-
izer introduces novel optimizations that include holistic pipeline-

aware statistics generation, inter-job operator push-up, and job split

& merge. This demonstration showcases optimizations and recom-

mendations generated by Pipemizer , enabling users to understand

and optimize job pipelines.

PVLDB Reference Format:
Sunny Gakhar, Joyce Cahoon, Wangchao Le, Xiangnan Li, Kaushik

Ravichandran, Hiren Patel, Marc Friedman, Brandon Haynes, Shi Qiao,

Alekh Jindal, Jyoti Leeka. Pipemizer: An Optimizer for Analytics Data

Pipelines. PVLDB, 15(12): 3710 - 3713, 2022.

doi:10.14778/3554821.3554881

1 INTRODUCTION
Modern data analytics is often expressed as data pipelines, where
multiple queries are interconnected by their outputs and inputs to

execute critical business functions [5]. A wide range of tools have

emerged in recent years to create and manage these data pipelines,

including Airflow [1], Dagster [6], Azure Data Factory(ADF) [4],

AWS Data Pipeline [3], and Google Dataflow [7]. These tools help

users identify data pipelines and run them reliably in the cloud.

Given how interconnected workloads have become [5], it is impor-

tant to holistically optimize their performance and costs. Cloud

providers run complex analytics pipelines comprising hundreds of

thousands of jobs processing petabytes of data daily. The major-

ity of these workloads are made up of interdependent recurring

queries that form a data pipeline. Fig.1 illustrates one such pro-

duction data pipeline consisting of thousands of queries from the

Asimov production cluster, built on top of the Cosmos [16] platform

at Microsoft. Asimov pipelines analyze telemetry from millions of

∗
Work done while all authors were at Microsoft. Shi Qiao and Alekh Jindal are currently

at Keebo.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 15, No. 12 ISSN 2150-8097.

doi:10.14778/3554821.3554881

Figure 1: An Asimov production data pipeline. Each vertex is
a distinct query; edges show inter-query dependencies.

Windows devices to derive business intelligence. Organizing ana-

lytics queries as pipelines helps the Asimov team track the status of

devices, test new features, investigate bugs, and push out patches

and new functionality swiftly [2]. In the figure, a node corresponds

to a recurring query and an edge to a data dependency between

two queries. Our analysis found that 73% queries produce data files

(referenced as streams in Cosmos) that are consumed by one or

more consumer queries, and 78% queries consume one or more

streams produced by producer jobs.

Efficient analytics over data pipelines presents several challenges.

First, identifying data pipelines is non-trivial and typically achieved
by tedious, manual collaboration across large teams. Second, once

identified, it is difficult for developers to optimize the performance

and cost of data pipelines because they lack a holistic, global view

of the entire pipeline. This is because producers and consumers

lack clear contracts that define job boundaries and the whereabouts

of jobs in the data pipeline. For example, consumer jobs do not

typically come with metadata about the underlying input data prop-

erties. Similarly, producer jobs do not consider how their outputs

are consumed by subsequent jobs. As a result, there is a critical

need to develop an automated approach to optimize these complex

data pipelines. Finally, optimizing data pipelines is computationally

intractable due to the large number of jobs that have functional

dependencies in time.

Optimizing data pipelines is radically different than optimiz-

ing individual queries. First, query engines are not aware of data

pipelines. Current workflow tools that orchestrate data dependen-

cies are completely siloed from the query engine. Second, prior

work on multi-query optimization treats query workloads either

as a set of queries [10] or, at best, as a sequence of queries [8], and

focuses on optimizing the cumulative execution cost of all queries.

Furthermore, these solutions have not been optimized to operate

at the scale necessary for a service like Cosmos, which runs more

than 650k jobs per cluster per day.

3710

https://doi.org/10.14778/3554821.3554881
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3554821.3554881

Query
Workload

Input Data Pipeline Optimized Data Pipeline

Pipeline
Discovery

Pipeline
Optimization

Pipeline
Execution

Past
Queries

Future
Queries

Query
Annotations

Pipemizer

Figure 2: Pipeline Optimization.

In this paper, we present a demonstration of Pipemizer , a pipeline
optimizer that introduces a novel architecture consisting of pipeline
discovery, optimization, and execution stages (section 3) to address

the aforementioned challenges. The Pipemizer demonstration will

allow attendees to identify, optimize and visualize data pipelines.

Users will be able to enable and disable various Pipemizer optimiza-

tions (section 4) and view the performance advantages afforded by

Pipemizer . In summary, we make following contributions:

• We demonstrate that Pipemizer is a novel pipeline optimization

framework which optimizes query plans within a data pipeline.

• Pipemizer identifies data pipelines by mining producer-consumer

relationship between jobs from telemetry. It introduces novel

optimizations for efficiently executing this graph (section 3).

• SCOPE runs hundreds of thousands of jobs daily. This explodes

the optimization complexity due to presence of very large num-

ber of job dependencies which together result in a much larger

overall DAG. Thus rendering state-of-the-art multi-query opti-

mization techniques impractical [17, 18]. Pipemizer introduces
novel techniques for reducing this complexity and is the first

framework tested at scale and in production at Microsoft.

• Pipemizer introduces an explainable approach that visually rep-

resents data pipelines and gives actionable recommendations.

2 PIPEMIZER OVERVIEW
We next describe the Pipemizer architecture which consists of three

stages: Pipeline Discovery, Optimization, and Execution.
Pipeline Discovery. Pipelines are discovered in Pipemizer using
telemetry logs from Airflow, ADF, etc. In Cosmos we discover

pipelines by analyzing past query workloads in SCOPE using the

Peregrine framework [14, 15]. Pipemizer first collects query exe-

cution plans and runtime metrics. Then it analyzes telemetry to

identify data pipelines by finding recurring producer and consumer

jobs, i.e., queries executed at regular intervals with same scripts. Fi-

nally, Pipemizer identifies streams emitted by Producer Jobs that are
used as input to Consumer Jobs. This information is used to form

an edge in the producer-consumer graph. The graph represents In-
put Data Pipelines, as shown in Fig. 2. Visualizing this graph helps

teams in Microsoft identify and understand their data pipelines.

In this stage, Pipemizer also collects interesting properties such

as job vitals, runtime statistics, and query access patterns of jobs.

Pipeline Optimization. Pipemizer takes the resulting producer-
consumer graph as input. It then uses the graph to identify con-

sumer job requirements that, when satisfied by producer jobs, lead

to a reduction in resource utilization and processing time. Pipem-
izer achieves this by attempting to find the most efficient way (see

Statistics
collection hints

Query optimizer
data hints

Operator
Pushup hints

Job Split

Jobs Merge

Operator
Pushup

Derived
data hints

Derived data
materialization + reuse

Deriving
Required

Properties

Search &
Optimize

Phase

Collecting
requirements
for producer
jobs
(recursively)

Applying
global
storage &
other
constraints
(iteratively)

Inject data hints
and stats collection

Job Reorder

42

Figure 3: Architecture of Pipeline Optimizer.

section 3) to execute the graph while satisfying consumer job re-

quirements. The output of this stage is an Optimized Data Pipeline
shown in Fig. 2.

Pipeline Integration in Existing Engine. Pipemizer injects its
optimizations into existing query execution engines through two

channels. In one channel, the optimizer for the consumer job can re-

quest and consume targeted statistics from a producer job to correct

for various derived properties. In the other, pipeline optimization

recommendations are served as annotations to the optimizer for a

producer job. These recommendations can be applied automatically

in SCOPE using Peregrine [14, 15].

3 PIPELINE OPTIMIZATION
Pipemizer uses a two-phase, iterative approach for optimization:

derive and apply. In the derive phase, Pipemizer collects, from each

data pipeline, consumer jobs requirements (e.g., operator push-up,

statistics) in a bottom-up manner. In the apply phase, Pipemizer
applies its optimizations and generates recommendations, which

are surfaced to users. Scalable Optimization: These phases are

scaled by mapping them to massively parallel SCOPE engine.

3.1 Derive
The derive phase takes as input the producer-consumer graph

from the Pipeline Discovery stage described in section 2. First, in a

bottom-up manner, it identifies the consumer job requirements that

producer jobs must satisfy. For example, the output of producer jobs

must be sorted on P.x, statistics are required on P.y and P.yz, output

of producer job must project away columns P.a and P.b, output of

producer job must satisfy filter predicates in consumer jobs, etc.

Since requirements of different consumer jobs can be conflicting

(i.e., one consumer job may need a producer job’s output to be

sorted on P.x, while another requires the output to be sorted on

P.y), Pipemizer chooses the requirement that optimizes the overall

pipeline as described next in Apply phase.

Example requirements collected in derive phase are highlighted

on the left side of Fig. 3 as triangles: • stats • layout • indexes

• operator pushup • failure probability • scheduling/IO overhead

• reuse opportunity (described later in seconds 3.3, 3.4, 3.5).

3.2 Apply
Pipemizer systematically combines the requirements collected in

the Derive stage from each producer job along the following dimen-

sions: sorting columns, partitioning columns, statistics collection

columns, filter predicates, and projection push-up columns. Along

each dimension, Pipemizer chooses consumer requirements that

optimize the entire pipeline to be pushed to producer jobs. For

3711

Figure 4: Number of columns requested per data stream in
analysis of over 1M+ daily streams in Cosmos in last quarter.

example, for projection operator push-up it selects an intersecting

set of columns that satisfies all consumer jobs when pushed up to

producer jobs. For Physical Design, Pipemizer also recommends

partitioning and sorting the output of producer jobs, thus eliminat-

ing the need for multiple consumer jobs to re-partition/re-sort data

while satisfying storage and compute constraints.

Recommendations generated by Pipemizer shown on right side

of Fig. 3 are: • statistics generation • physical design • operator

push-up • job split & merge • job reorder (described later in sec-

tions 3.3, 3.4, 3.5).

The rest of this section describes three key core sets of pipeline

optimizations that we have implemented: (1) Pipeline-aware Statis-

tics, (2) Operator Push-Up, and (3) Job Split, Merge& Job Reordering.

3.3 Pipeline-aware Statistics
A significant number of Cosmos’ data streams are greater than

1 TB with hundreds of columns, complicating efforts in collecting

statistics and profiling each stream. We assessed means to reduce

the cycles required for statistics collection and observed that not

all dimensions of a stream are necessary for pipeline query opti-

mization. We thus apply a data-driven approach to streamline the

generation of statistics for SCOPE.

We achieve this by implementing a column provenance feature

that, at compile time, tracks what and how each input column

is consumed as data propagates and evolves in a job’s operator

tree. This usage history is then shared with future producers in

the pipeline. Current insights indicate that building statistics on

the top five most accessed columns leads to decent coverage in

our production pipeline as highlighted in Fig. 4. For our online

pipeline optimization strategy, a producer job and its respective

consumer jobs use a distributed cache and a protocol to log and

exchange knowledge of interesting statistics. Conflicts may arise

due to consumer jobs’ interest in different portions of the same

input schema, so we implemented an offline ranking algorithm that

is executed periodically to rank the input columns by importance.

The algorithm ranks columns based on frequency and compute

spent on processing related portion of the data. Statistics generated

include data distribution, heavy hitters and sketches.

3.4 Operator Push-Up
In Cosmos, we observe significant overlap across consumer jobs,

i.e. part of query plan is duplicated across multiple consumer jobs,

thus generating redundant cost. We focus on pushing common

subexpressions to producer jobs in order to optimize resource con-

sumption. We call this operation Operator Push-Up. An example

push-up operation is highlighted below in which Q1 produces a

stream q1 that is consumed by jobs Q2 and Q3. These consumer

jobs apply a highly selective filter predicate on col3. Pushing this

predicate to Q1 saves on storage and compute costs.

Q1: x = SELECT f(c1) AS c3 FROM t1; OUTPUT s1 TO "q1";
Q2: y = SELECT * FROM "q1" WHERE c3 > 10;
Q3: z = SELECT f1(c3) AS c4 FROM "q1" WHERE c3 > 10;

Pipemizer identifies common subexpressions and recommends

their push-up to producer jobs. We show physical design and projec-

tion push-up operations in detail in this demo, described in section 4;

however, the optimization is also applicable to other operators.

3.5 Job Implementation & Reordering
Cosmos users have the freedom to write both large and small jobs

as shown in Table 1, thus straining the underlying system. We

assess the heterogeneity among job runtimes on one of Cosmos’

most utilized clusters. The distribution is bimodal, revealing that

jobs can be bucketed into “large” (≥50 compute hours) jobs, versus

“small” jobs (<50 compute hours). Large jobs are candidates for job

split while small jobs are candidates for job merge.

3.5.1 Job Split and Job Merge. Pipemizer aims to merge small jobs

to avoid the strain on global storage due to three-way replication in

Cosmos. We achieve these merges using classical graph partitioning

techniques that minimize the number of edges between groups of

small jobs [13]. Large jobs, on the other hand, either fail needing

longer restart times, or unnecessarily delay future jobs that depend

on its output. We rely on Phoebe [20] to address the first issue by

check-pointing intermediate stages of a job to global storage. We

leave the latter challenge for future work.

Table 1: Job runtimes on a Cosmos Cluster over a week.

Compute Time (in hours) #Jobs Percentage of Jobs

≤ 1 765 K 13%

≤ 50 3352 K 58%

≤ 100 3901 K 68%

All 5729 K 100%

3.5.2 Job Reordering, Data Materialization, and Reuse. We sched-

ule producer-consumer jobs to get maximum subexpression reuse.

Polaris [9] is able to maximize sub-expression re-use for concur-

rently running queries. We leave the design of the scheduler, which

maximizes compute reuse, for future work.

4 DEMONSTRATION
This demonstration is done using SCOPE preloaded with Asimov

inspired producer-consumer graph on TPC-DS. Recommendations

are generated by Pipemizer . The audience can apply the recom-

mendations on queries. We encourage the audience to modify the

queries and explore different execution scenarios, viz.: Pipeline Iden-

tification and Visualization; Physical Design, columnar push-up

and statistics generation optimizations, as shown in Fig. 5.

4.1 Scenario 1: Visualizing pipelines
The audience can input a set of queries and view the producer-

consumer graph generated, similar to Fig. 1.

3712

4.2 Scenario 2: Physical Design Push-Up
Many SCOPE users do not specify partitioning/sorting of output

streams, causing consumer jobs with same physical design require-

ments to re-partition or re-sort streams multiple times, wasting

compute and storage. In Asimov, more than half of the intermediate

outputs are re-partitioned or re-sorted on the same attributes in

consumer jobs, leading to high operational cost. With Pipemizer ,
partition/sorting can be Pushed Up from consumers to producers.

In our demonstration, the audience is encouraged to write their

own queries, view recommendations generated by Pipemizer , apply
generated recommendations, view performance of queries before

and after applying recommendations. Fig. 5 shows the user interface,

with an example job in SCOPE before and after applying physical

design recommendation.

Query To Execute

❑ Pipeline Identification
❑ Pipeline Visualization
❑ Physical Design Optimization
❑ Column Push-Up Optimization
❑ Statistics Generation

\

Pipemizer: Pipeline Query Optimizeration

Optimization Techniques:

v1 = SELECT *
FROM (SSTREAM @viewsSS3);

OUTPUT TO SSTREAM “out.ss”
HASH CLUSTERED BY NormJobName INTO 250;

❑ Query without Pipemizer
❑ Query with Pipemizer
❑ Query without Pipemizer (Left)

and Query with Pipemizer
(Right)

View Mode

\

Query without Pipemizer Query with Pipemizer

Execute

Figure 5: Demo User Interface

4.3 Scenario 3: Projection Push-Up
4.3.1 Projection Push-Up: Consumer jobs often use only a subset

of columns from input streams generated by producer jobs. Since

these streams are saved in global storage in Cosmos, we project

out unused columns from producer jobs to save on storage and

compute costs. In our production clusters, we found that more than

25% of recurring streams have more than 10 unused columns. Thus

eliminating unused columns saves storage and compute cost.

In this demonstration the audience will be encouraged to write

their own queries, see the projection push-up recommendations

generated by Pipemizer , observe reduction in storage and compute.

4.4 Scenario 4: Pipeline-aware Statistics
Fig. 6 is one example of a job whose total compute time improves by

>10% when statistics are available on the join column, JobID. Since
statistics collected on this column in its producer job suggest a lack

of skew, the optimizer knows to inactivate the inappropriate skew-

join data hint the user injected, thus improving the subsequent

query plan and the job’s runtime. In the demo, we show the audience

how our ranking algorithm identifies the most important columns

to collect statistics on and how the subsequent statistics collected

results in a better query plan.

5 RELATEDWORK
Pipeline optimization, especially in the context of Machine Learning

pipelines [19], is prevalent. However, existing approaches do not

Figure 6: Query plan shown on right results in >10% improved
runtime with pipeline-aware statistics.
work for queries expressed in SQL dialects. Pipemizer fills this gap
and demonstrates solutions for optimizing large scale production

database pipelines.

Other systems have looked at data pipelines from the perspective

of scheduling [11, 12]. Wing [11] schedules jobs based on its impact

on pending jobs. MQO [12] develops a schedule for maximizing

concurrent execution of queries containing common subexpres-

sions. Our work differs in two ways: (1) we view scheduling from

the perspective of maximizing subexpression reuse by materializing

within a storage budget; and (2) we introduce a holistic framework

incorporating a suite of techniques for optimizing pipelines.

6 CONCLUSION
We demonstrated how Pipemizer leverages query workloads from

big data analytical engines such as SCOPE to discover data pipelines,

optimize resource consumption, and provide pipeline-aware opti-

mization related annotations back to the query engine.

REFERENCES
[1] [n.d.]. Apache Airflow. https://airflow.apache.org/.

[2] [n.d.]. Asimov Windows Telemetry. https://mywindowshub.com/microsoft-

uses-real-time-telemetry-asimov-build-test-update-windows-9/.

[3] [n.d.]. AWS Data Pipeline. https://aws.amazon.com/datapipeline/.

[4] [n.d.]. Azure Data Factory. https://metaflow.org/.

[5] [n.d.]. CIDR 2021 Keynote by Benoit Dageville, Snowflake Co-Founder President

of Products. http://cidrdb.org/cidr2021/keynotespeakers.html.

[6] [n.d.]. Dagster. https://dagster.io/.

[7] [n.d.]. Google Dataflow. https://cloud.google.com/dataflow.

[8] Sanjay Agrawal et al. 2006. Automatic physical design tuning: workload as a

sequence. In SIGMOD.
[9] Josep Aguilar-Saborit et al. 2020. POLARIS: the distributed SQL engine in azure

synapse. PVLDB (2020).

[10] Surajit Chaudhuri and Vivek Narasayya. 1998. AutoAdmin “what-if” index

analysis utility. ACM SIGMOD Record (1998).

[11] Andrew Chung et al. 2020. Unearthing inter-job dependencies for better cluster

scheduling. In OSDI 20.
[12] Nilesh N Dalvi et al. 2003. Pipelining in multi-query optimization. J. Comput.

System Sci. 66, 4 (2003).
[13] Per-Olof Fjällström. 1998. Algorithms for graph partitioning: A survey.
[14] Alekh Jindal et al. 2019. Peregrine: Workload optimization for cloud query

engines. In Proceedings of the ACM Symposium on Cloud Computing. 416–427.
[15] Alekh Jindal et al. 2021. Production Experiences from Computation Reuse at

Microsoft.. In EDBT. 623–634.
[16] Conor Power et al. 2021. The Cosmos Big Data Platform at Microsoft: Over a

Decade of Progress and a Decade to Look Forward. PVLDB 14, 12 (2021).

[17] Prasan Roy et al. 2000. Efficient and extensible algorithms for multi query

optimization. In SIGMOD.
[18] Guoping Wang and Chee-Yong Chan. 2013. Multi-query optimization in mapre-

duce framework. PVLDB (2013).

[19] Doris Xin et al. 2021. Production machine learning pipelines: Empirical analysis

and optimization opportunities. In SIGMOD.
[20] Yiwen Zhu et al. 2021. Phoebe: a learning-based checkpoint optimizer. PVLDB

(2021).

3713

https://airflow.apache.org/
https://mywindowshub.com/microsoft-uses-real-time-telemetry-asimov-build-test-update-windows-9/
https://mywindowshub.com/microsoft-uses-real-time-telemetry-asimov-build-test-update-windows-9/
https://aws.amazon.com/datapipeline/
https://metaflow.org/
http://cidrdb.org/cidr2021/keynotespeakers.html
https://dagster.io/
https://cloud.google.com/dataflow

