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ABSTRACT
Anomaly detection is a critical task in applications like prevent-
ing financial fraud, system malfunctions, and cybersecurity attacks.
While previous research has offered a plethora of anomaly detection
algorithms, effective anomaly detection remains challenging for
users due to the tedious manual tuning process. Currently, model
developers must determine which of these numerous algorithms is
best suited for their particular domain and then must tune many
parameters by hand to make the chosen algorithm perform well.
This demonstration showcases AutoOD, the first unsupervised self-
tuning anomaly detection system which frees users from this te-
dious manual tuning process. AutoOD outperforms the best un-
supervised anomaly detection methods it deploys, with its perfor-
mance similar to those of supervised anomaly classification models,
yet without requiring ground truth labels. Our easy-to-use visual
interface allows users to gain insights into AutoOD’s self-tuning
process and explore the underlying patterns within their datasets.
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1 INTRODUCTION
Background. Anomaly detection aims to identify objects that do
not conform to an expected standard of behavior and may differ
significantly from the remainder of the data. Due to its wide ap-
plicability, anomaly detection is a critical component of analytic
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systems in domains such as financial fraud detection, system mal-
function diagnosis, and cybersecurity attack prevention. Despite
this ubiquity and importance, in practice, anomaly detection re-
mains challenging due to the scarcity of available labeled anomalies.
Anomalous instances are by definition rare and may require expert
analysis to properly identify. This makes it impractical to label a
substantial number of anomalous samples required for supervised
learning. For this reason, a wide variety of unsupervised anomaly
detection methods have been devised that aim to leverage data
characteristics to identify anomalies with a reasonable degree of
accuracy, including statistics-based methods [2, 3], density-based
methods [4, 11], and nearest neighbor-based methods [5, 14].
Challenges. A critical challenge in applying anomaly detection is
how to choose the most effective solution from a set of available
techniques and tune its parameters [1]. Since an anomaly detection
method that works well on one dataset might yield poor results on
another, users often have tomanually select amethod appropriate to
the given task. Moreover, the performance of unsupervised anomaly
detection methods can be very sensitive to the proper selection of
hyper-parameters, with these values varying significantly between
datasets. Consequently, analysts often need to iteratively rerun
their methods with different combinations of hyper-parameters in
a time-consuming and computationally expensive process. These
factors make the method selection and parameter tuning process
tedious as it can be difficult for a user to discriminate between
techniques that are poorly suited for their application and those
which simply need additional hyper-parameter tuning.

Automatic Machine Learning (AutoML) [7, 8, 13] techniques
have been proposed as a potential solution to automate this tun-
ing process. However, these techniques require a sufficient num-
ber of labeled instances to evaluate the accuracy of results and to
search for optimal models and hyper-parameters. While AutoML
has been proven successful for some classification tasks, the scarcity
of high-quality labeled data for anomaly detection makes AutoML
approaches impractical in many cases.
Proposed Solution.We have thus developed AutoOD, a self-tuning
anomaly detection system, that addresses the above challenges
of tedious method selection and hyper-parameter tuning without
requiring access to human-supplied ground truth labels.
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The core idea is that rather than carefully selecting an appro-
priate anomaly detection method for a given task and then tun-
ing its parameters, AutoOD turns the unsupervised problem into
a supervised one. AutoOD utilizes an ensemble of unsupervised
anomaly detectors with varying hyper-parameters to automatically
produce high-quality labels. This is achieved by discovering objects
from the input data that can reliably be detected as an anomaly
or inlier. Using these automatically produced labels, AutoOD then
trains a supervised classification model. The latter then is applied to
the remaining (unlabeled) objects to infer their status, producing
the final anomaly detection results. In this way, AutoOD lever-
ages supervised classification to achieve high accuracy in anomaly
detection while no longer having to rely on domain experts to
manually supply labels as required for supervised or AutoML ap-
proaches [7, 8, 13]. As we will showcase in this demonstration,
AutoOD consistently outperforms the best unsupervised anomaly
detector selected from hundreds of other detectors. Further, its ac-
curacy is comparable to supervised anomaly classification models
trained with actual ground truth labels.

For this demonstration, we have designed a rich AutoOD visual
interface that enables users to gain insights into the system’s self-
tuning process. The interface is composed of multiple different
views that the user can interact with to explore the inlier or anomaly
status of objects inferred by AutoOD. The user can also inspect
the performance of specific unsupervised anomaly detectors to
further build their understanding of AutoOD’s training process and
performance. Our demonstration visualizes the different stages of
this self-tuning process so that the users can gain trust in the system
and its final predictions.

2 THE AUTOOD SYSTEM
AutoOD is composed of seven major components (Figure 1). Next,
we examine the core idea of each component and briefly highlight
the technical contributions.

(1) System Configurator is where the user begins interactions
with AutoOD. The System Configurator takes in the input dataset,
the expected range representing the anomaly percentage of the
dataset, and the desired anomaly detection methods provided by
the user. These inputs are inspected for validity and stored in the
AutoOD database to be used later in the training process.

(2) Unsupervised Detector Generator leverages a rich library
of diverse unsupervised anomaly detectors, including but not lim-
ited to Density-based methods [4, 11], Isolation Forest (IF) [10],
K-Nearest Neighbors-based methods [9, 12], and statistical-based
anomaly detection [1]. Users can add additional algorithms by in-
stantiating the detector template with the corresponding name,
algorithm implementation, its parameters, and typical parameter
ranges. Or, they can remove the default algorithms that do not fit
their applications. For each detection method, AutoOD selects its
hyper-parameter configurations from a reasonable parameter range
maintained by our system. AutoOD instantiates several detectors
of each selected method type with hyper-parameter values selected
from within this range. This results in an ensemble consisting of
multiple diverse anomaly detection methods with many different
combinations of hyper-parameter configurations. Each detector is
deployed in parallel to detect anomalies in the dataset of interest.

Figure 1: AutoOD Architecture

(3) Reliable Object Identifier. The number and quality of the
automatically produced labels by the previously mentioned instan-
tiated detectors are critical to AutoOD’s effectiveness. To this end,
we design several methods for the identification of objects with
reliable labels. For example, one of our core identification methods
starts with discovering a small but reliable set of labels based on a
strong consensus of all the deployed unsupervised anomaly detec-
tors. Utilizing the anomaly detection results from the unsupervised
detectors, the Reliable Object Identifier separates the input data
into two groups: reliable objects and unsure objects. Where each
group may contain inliers and anomalies. Intuitively, an object is
considered reliable if all detectors agree on its label. The remaining
non-reliable objects are added to the unsure set.

(4) Unsupervised Detector Pruner. Given the pseudo-labeled
reliable object set, AutoOD leverages these objects to identify any
truly poor performing detectors using various machine learning
strategies. After pruning the poor performing detectors from the
ensemble, AutoOD gets more reliable objects in the reliable object
set. This is because the smaller set of remaining detectors are more
likely to agree on an object’s label, thus placing that object into the
reliable object set. This process repeats iteratively until the reliable
object set converges into a stable set. At this point, the pruning
process is complete and the detector ensemble has been reduced to
a set of well-tuned methods.

(5) Supervised Anomaly Classification Engine. Next, Au-
toOD leverages supervised classification techniques to improve its
anomaly detection capabilities beyond those of the purely unsuper-
vised ensemble. AutoOD treats the pseudo-labeled reliable objects
described above as a labeled training set to train a supervised clas-
sification model. Examples of such models include Support Vector
Machines (SVM), Logistic regression, and Random Forest. In this
demonstration, we use SVM as the classification method, as it, while
simple, shows superior performance in anomaly detection without
requiring hyper-parameter tuning. The resulting trained classifi-
cation model is used to predict the final labels for all objects that
had remained in the unsure object set. To resolve the imbalance of
anomaly and inlier labels and reduce the time complexity of the
training process, we chunk the inlier labeled dataset into multiple
partitions, train multiple models in parallel using multi-processors,
and combine the results. In this training process, each processor
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Figure 2: Configuration Interface. Users can upload data, pro-
vide their own anomaly detection methods, specify the col-
umn of labels, and customize the expected percentage range
of anomalies in their dataset.

uses all anomaly labels (given there are typically a lot fewer anom-
alies than inliers). Doing so allows AutoOD to perform automatic
tuning, yet with only a light computational overhead.

(6) Detection Result Explorer. AutoOD features an interactive
visualizer that enables users to explore their dataset throughout
the training process. This way, users can gain insights into which
objects have been identified as anomalies by which detectors. The
Detection Result Explorer uses t-SNE to reduce the dimension-
ality of the input data, which is needed to plot the data into a
2-dimensional display. AutoOD then color-codes the objects based
on the final classification result. Doing so, allows users to view the
natural grouping of their data in relation to their anomaly detection
status – empowering them to understand how AutoOD operates.
The Detection Results Explorer also includes an object inspection
tool that allows users to examine the anomaly detection scores of
each detector for that object. This can help in identifying methods
that may be poorly suited to anomaly detection on the given dataset
and thus should be removed from the ensemble.

(7) Reliable Object Explorer. As AutoOD’s classification per-
formance depends heavily on the iterative pruning, achieved in
collaboration between the Reliable Object Identifier and the De-
tector Pruner, it is vital to visually display this information. The
Reliable Object Explorer visually depicts changes to the reliable
object set at each iteration as detector pruning progresses. This
allows users to examine the reliable object set as it grows over the
iterations to understand AutoOD’s poor detector pruning process.

3 DEMONSTRATIONWALKTHROUGH
Spambase Benchmark Dataset. We demonstrate AutoOD using
various use cases, including the anomaly detection benchmark
dataset Spambase [6]. This dataset consists of email data where the
goal is to detect anomalous instances which could be spam emails.
Spambase consists of 4,601 instances and 57 attributes.
AutoOD Configuration. For this demonstration, a data scientist,
henceforth referred to as Jo, aims to find anomalous emails such as
unwanted marketing emails or phishing attempts at their company.
Jo starts interactions via the AutoOD interface shown in Figure 2.
Jo will be asked to upload their dataset and identify the columns
corresponding to instance id and labels. By default, AutoOD uses

all the anomaly detection methods available in its built-in library,
but also allows Jo to customize the selection of methods to be used
for detection. To guide the tuning of AutoOD, Jo is also asked to
enter the expected percentage range of anomalies in the dataset.
This allows the user to leverage their domain knowledge to aid
in the selection of hyper-parameters to experiment with, if so de-
sired. Otherwise, the default range maintained by the system will
be deployed. Upon clicking submit, AutoOD instantiates different
detectors with diverse hyper-parameters for each detector type
selected by Jo. The system then proceeds with the training process
described in Section 2.
Reliable Object Purification. Once AutoOD completes its run,
Jo will be greeted via AutoOD ’s Data Analytics Display seen in
Figure 3. This display allows the user to interact with the Detection
Result Explorer (Figure 3A) on the left of the screen and the Reliable
Object Explorer (Figure 3B) on the bottom of the screen. The first
interaction point is the data scatterplot in Figure 3A which displays
the t-SNE projected data points with identified inliers color-coded
in blue and anomalies in yellow. Here Jo can explore the model’s
performance by zooming in on regions of the data to examine points
in relation to their neighbors and filter based on ground truth labels,
predicted results, and/or correct predictions.

Assume our data scientist Jo is curious as to why the inlier point
𝑝1 in the scatterplot at the top of Figure 3A is surrounded by anom-
alies. To investigate this, Jo uses the Detection Result Explorer to
select two points of interest to drill down into more specific in-
formation about those instances for comparison. Here we picture
the user selecting 𝑝1 and its nearest anomaly 𝑝2 both seen towards
the top of the scatterplot in Figure 3. After selecting these points,
two bar charts appear on the right of the screen (Figure 3D) pro-
viding the anomaly scores for each unsupervised detector along
with a table of the instances’ attributes. The height of each bar
represents the anomaly score from each of the anomaly detectors,
while the color represents the detectors’ overall prediction (blue
denotes inlier, yellow anomaly). Leveraging these charts for points
surrounding 𝑝1 (such as 𝑝2) and their domain knowledge of typical
inlier attributes, Jo can build an understanding as to why AutoOD
predicted 𝑝1 to be an inlier while the surrounding points were clas-
sified as anomalies. By doing so, not only does Jo gain insights into
AutoOD but they also gain trust in the system’s training process.
Poor Detector Pruning.While Jo is exploring AutoOD’s results,
they may determine that one or more detectors exhibit consistent
poor performance, meaning the detectors are responsible for many
mislabeled instances. For example, in Figure 3D, Isolation Forest
(IF) provided a low anomaly score for both points 𝑝1 and 𝑝2 and
mislabeled 𝑝2. To examine the impact of each detector on the reli-
able object set, and therefore the overall model’s performance, Jo
can adjust the Reliable Object Explorer seen in Figure 3B.

This component keeps a log of the changes to the reliable object
set allowing Jo to step through the iterations of AutoOD’s training
process at their own speed. To visually depict this information,
AutoOD updates the scatterplot to show the state of the reliable
object set after each training iteration. Bymoving the slider depicted
at the bottom of Figure 3B through each iteration, Jo can watch
the reliable object set change. At any time Jo can select a point
to view the contribution of each detector to its predicted status.
If the Isolation Forest detector is the source of many mislabeled
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Figure 3: Data Analytics Display: Demonstrates AutoOD’s Detection Result Explorer (A) and Reliable Object Explorer (B). Users
can filter based on metrics provided (C) and interact with points by hovering over them to view summary statistics. A click on a
point will provide that respective points anomaly score for each detector and attributes (D).

objects, wewould expect to see the reliable object set growing across
iterations to include several mislabeled points with the Isolation
Forest contributing strongly to the status of these objects. Once Jo
has identified a poor-performing detector, they hit the rerun button
at the top of Figure 3. This will prompt Jo to select which detectors
they want to rerun with. Here, Jo removes the IF from the set of
selected methods. After this, AutoOD will start training again this
time without the IF detector.

4 CONCLUSION
AutoOD is a self-tuning anomaly detection system that combines
the benefits of unsupervised anomaly detection and supervised
classification. AutoOD addresses the challenges of the lack of labels,
method selection, and tedious hyper-parameter tuning by automati-
cally producing a set of high-quality labels that reliably capture key
differences between anomalies and inliers. AutoOD provides rich
visual views which allow the user to interactively gain insights into
how AutoOD operates, build an understanding of patterns within
their dataset, and adjust the detection methods to maximize the
performance of the system for their dataset.
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