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ABSTRACT
We demonstrate AvantGraph, a graph query processing engine
developed by the Database group at TU Eindhoven. Designed for
efficient processing of both subgraph matching and navigational
graph queries, AvantGraph encompasses innovation in three key
areas: the planner, the cardinality estimator, and the execution en-
gine. We present demonstration scenarios covering a wide range of
workloads across diverse domains which (1) provides deep insights
into the core challenges of complex graph query processing and
(2) showcases corresponding critical optimizations via “under-the-
hood” operational insights of AvantGraph’s key components.
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1 INTRODUCTION
Graph databases have enjoyed increased attention in recent years
both in the academic and practitioner communities. Representing
information as a graph is appealing due to the simplicity and fa-
miliarity offered by graph-based data models. For example, the
property graph data model (PGM [2]), allows for a natural encoding
of the data topology via graph elements such as vertices and edges
while non-topological information is encoded in property tables

attached to these graph elements. In addition to convenience of
representation, graph databases facilitate complex analytical tasks
that involve advanced navigation over stored networks. To achieve
this, recent versions of popular graph query languages such as
Cypher1, SPARQL2 and the upcoming GQL standard3 all include
syntactic constructs enabling graph navigation via variants of regu-
lar path queries (RPQs [10]), their conjunctions (CRPQs) and unions
(UCRPQs). While non-navigational graph querying tasks can be
typically solved by efficient algorithms for the subgraph matching
(SGM) problem and its variations, complex graph navigation re-
quires fundamentally different approaches and solutions. Indeed,
SGM translates well into traditional relational-style processing rou-
tines leveraging the vast amount of expertise on optimization of
queries over relational databases (e.g., SQL query optimization).
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1http://docs.neo4j.org/chunked/stable/cypher-query-lang.html
2https://www.w3.org/TR/sparql11-overview/
3https://www.gqlstandards.org

On the contrary, graph navigation (e.g., with UCRPQs) has been
studied significantly less and requires optimization over recursive
or iterative fragments of the corresponding query algebras.

Existing solutions for recursive graph navigation either rely on
trivial extensions of relational algebras (e.g., using variations of a
transitive closure operator [9, 13]) or use intricate ad-hoc constructs
(e.g., variations of finite automata [20]) which are difficult to embed
and use in deeply optimized (e.g., vectorized, compiled, factorized,
and worst-case optimal) processing pipelines. The former solutions
miss optimization opportunities due to the limited plan space they
can afford and the latter approaches miss out on the vast expertise
on the optimization of execution of tuple-based data processing.

To bridge this gap, we developed AvantGraph4, a next-
generation graph query processing system which raison d’être is to
process queries which contain both subgraph-matching and navi-
gational fragments in a single cross-optimized pipeline. To achieve
this, we make contributions in three key areas: (1) to enable efficient
recursive processing, we proposeMagellan - a top-down query
planner that enumerates through and emits a new rich class of
cyclic graph execution plans; (2) to process these novel plans, we
introduce QuickSilver, a multi-threaded cyclic-plan execution en-
gine which operates over factorized intermediate results (IR), uses
worst-case optimal joins when advantageous, and is optimized with
vectorization and query/predicate compilation; (3) finally, to aid our
new planner, we propose BallPark - a cardinality estimation frame-
work which enables the systematic principled mix-and-matching of
the state-of-the art cardinality estimation techniques with the aim
of producing superior estimates for diverse property graph queries.

We further developed TunEx, a tune-and-explain toolkit to pro-
vide deep insight into the core challenges addressed and the op-
erating characteristics of the key components of the system. We
use our toolkit to build a comprehensive demonstration scenario
over both synthetic and real-world workloads from various diverse
application domains.

2 GUIDED TOUR OF THE SYSTEM
AvantGraph is designed to be a high-performance, minimum-
dependency processing engine for analytical queries over property
graphs. The engine is implemented in modern C++ and employs
low-level optimizations that reduce performance degradation due
to lack of locality, branch mispredictions and non-uniform memory
access. AvantGraph is a polyglot engine supporting inputs in both
PGM and RDF5 data models. For queries, feature-subsets of Cypher
and SPARQL query languages are supported (see Fig. 1 for system
overview).

4http://avantgraph.io
5https://www.w3.org/RDF/
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Figure 1: Overview of the AvantGraph query processing engine and its performance analysis and tuning toolset

During processing, user queries are translated into an inter-
nal representation based on the regular property graph algebra
(RPGA [5]). RPGA is an algebra equivalent in expressiveness to
regular property graph logic (RPGLog), an extended fragment of
standard non-recursive Datalog designed to work with the PGM
data model. RPGLog, at its base, considers graph predicates which
can be unary (node labels) or binary (edge predicates). Further, RP-
GLog supports queries which operate over unions of conjunctions
of graph predicates, augmented with edge variables and extended
with a transitive closure operation and query nesting. The desir-
able characteristics of RPGA/RPGLog are two-fold. First, current
practical query languages (e.g., Cypher and SPARQL) can be ex-
pressed in RPGA. In fact, RPGA is strictly more expressive than
the corresponding fragments in both Cypher and SPARQL and,
hence, is “future-proof” as it supports features that form the core
of the upcoming languages such as G-CORE [3] and GQL (e.g.,
full support for UCRPQs and composability). Second, while being
more expressive than current practical query languages, RPGA does
not have higher evaluation complexity (NP-complete in combined
complexity and NLogspace-complete in data complexity [5]).

AvantGraph’s storage engine follows classical primary (mem-
ory) and secondary (disk) storage pool separation. To offset the
negative effects of the secondary storage IO cost, we employ an
efficient and scalable buffer manager which shares many prop-
erties with the recently proposed high-performance Umbra [12]
relational query processing engine. Further, in addition to tradi-
tional adjacency indexes, string pools, and property table storage,
AvantGraph includes native implementations for 𝑑𝑘2-trees [7]
(for compressing adjacency), and RingIndex [4] and HashTrie [8]
(for worst-case optimal processing).

2.1 Planning Recursive Analytics
Navigational queries over graphs (e.g., UCRPQs) require constructs
which enable recursive or iterative processing in the correspond-
ing query algebra. Most database techniques approach recursive
processing from one of two perspectives: some extend the internal
relational algebra (RA) with a variation of a transitive closure (TC)
operator, while others use ad-hoc constructs based on specialized
mechanisms derived from finite automata (FA). Algebra-based ap-
proaches are efficient, but miss plans [20], and automata-based
approaches have rich plan spaces but are oblivious to the optimiza-
tions over the non-navigational fragments of a query.

AvantGraph borrows the best from both approaches by intro-
ducingMagellan: a planner that enumerates plans which are cyclic
(cf. tree- or DAG-shaped plans used in other query processing en-
gines) and operate in a single cross-optimized navigational and
subgraph-matching execution pipeline. While cyclic plans allow us
to encode any FA-plan (any automaton can be translated directly
to a cyclic graph plan) and any RA-plan (iteration in the TC opera-
tors is represented by simple loops in a cyclic plan), they come at
increased enumeration complexity as standard tree-algebra-based
dynamic programming enumerators no longer work.

Instead, the enumerator works in a top-down manner and oper-
ates on abstractions over algebraic expressions which are typically,
but not necessarily, sub-expressions of the input query. Any enu-
meration procedure starts from a single abstraction over the input
query. Abstractions are represented schematically using a box con-
taining the abstracted expression, and are iteratively refined until no
abstractions are left. Refinement means replacing an abstraction by
some concrete logical operator and zero or more new abstractions.

3699
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Figure 2: Example enumeration procedure. Solid arrows in-
dicate tuple flow. Dashed arrows indicate enumeration steps.
𝛼 (1) is the root operator.

To represent cyclic plans, two operators 𝛼 (𝑖) and 𝛽 ( 𝑗) are intro-
duced alongside conventional operators like join and union. The 𝛼
and 𝛽 operators are references to a named sub-plan. These refer-
ences can be used recursively to construct a cyclic tuple flow. The
informal semantics of an operator 𝛼 (𝑖) are to obtain all tuples from
it’s child operator, write them to a buffer 𝑖 and pass them on to a
parent operator. An operator 𝛽 ( 𝑗) reads tuples written to a buffer 𝑗
since 𝛽 ( 𝑗) was last evoked, eliminates duplicates, and passes tuples
on to a parent operator.

Figure 2 shows an example of one of the possible enumeration
procedures for an input RPQ defined by (𝑎𝑏𝑐 (𝑑𝑏𝑐)∗)+. Step 1 shows
the abstraction over the input, step 2 establishes a cyclic tuple
flow via the buffer 1, and step 3 constructs a tuple flow where the
extension of a path with edges labelled 𝑏 and 𝑐 consecutively is
shared between the two cyclic flows over buffers 1 and 2 which
implement the Kleene plus and Kleene star, respectively.

Magellan implements all of the optimizations and considers a
plan space which fully subsumes those of extended-RA approaches
(𝛼-RA [13], 𝜇-RA [9]) and FA approaches (WaveGuide [19]). Further,
note thatMagellan’s plans are strictly more expressive than 𝜇-RA
plans since, for example, the plan shown in Fig. 2 is not expressible
in 𝜇-RA.

2.2 Cardinality Estimation For PGM Queries
Cardinality estimation over property graphs add additional com-
plexity related to the schemaless nature of stored graphs, many-
to-many relationships encoded in the graph topology, and diverse
(and often highly correlated) property predicates.

We address these by introducing a modular mix-and-match car-
dinality estimation framework for property graphs. Specifically,
AvantGraph’s cardinality estimator, BallPark [17], implements a
collection of state-of-the-art estimation techniques based on graph
synopses, sketches, histograms, machine learning models, and sam-
pling. The idea is to address the complexity and diversity of graph
workloads by systematically using, extending, and then combin-
ing the results of cardinality estimation techniques each of which
are best suited for a query fragment at hand. For example, topo-
logical fragments of a query are best estimated with labeled topo-
logical synopses for a corresponding query shape (e.g., chains for
navigational fragments, stars for relational-style subgraph match-
ing). On the other hand, for highly-correlated property predicates,

machine-learning-based approaches which perform inference over
joint distributions are well suited.

2.3 Execution Engine For Cyclic Plans
AvantGraph’s execution engine, QuickSilver, is designed for
efficient and scalable processing of the novel cyclic physical ex-
ecution plans produced by the Magellan planner. Towards this,
we propose and implement novel optimizations in: (1) fine-grained
intra-operator parallel execution, (2) use of factorized intermediate
results, and (3) vectorized and compiled query runtime.

QuickSilver’s parallel execution engine, AvantStep [16], is in-
spired by a recent QuickStep scale-up data platform [14]. The en-
gine is optimized to have high intra-operator, intra-query, and
inter-query parallelisms. Further, special care is taken to enable
execution of cyclic plans, e.g., operators in a cycle are checked for
completion simultaneously to prevent deadlocks. Specialized algo-
rithms including worst-case optimal joins and transitive closure
computation are also parallelized.

QuickSilver operates over both non-factorized (tuple blocks)
and factorized IR representations. Factorized IR is used for queries
which involve many foreign-key-to-foreign-key (FK-FK) joins. In-
deed, FK-FK joins often appear specifically in graph workloads
due to the typical abundance of many-to-many relationships in
graph topologies. For these queries, we employ a two-step query
execution process: first, during evaluation, intermediate results are
factorized and compressed in a specialized data structure, an answer
graph (AG [1]); then, the query answer is obtained by defactorizing
a resulting AG. Compared to a tuple-block IR which size grows
exponentially (in the number of FK-FK joins), AG grows linearly
and thus affords a potential dramatic compression of the IR. This,
however, comes at a cost of maintenance of the AG (via a sequence
of semi-joins or burn-backs). Hence, the decision whether to use
factorized vs. non-factorized IR is ultimately cost-based.

QuickSilver’s execution pipeline includes low-level optimiza-
tions such as vectorization and query compilation. For long-running
analytical queries, we propose an abstraction model for reasoning
about compiled query plans and show how an entire query can
be compiled using this model [15]. This comes at a compilation
cost, however. For shorter-running queries, a subset of query pred-
icates is compiled by using an adaptation of a recently proposed
copy-and-patch framework [18].

Details and experimental evaluation. Extensive experimental
evaluation and further details of our proposed optimizations are
available in: BallPark cardinality estimator [17]; Magellan plan-
ner subsumes WaveGuide [19, 20] and 𝛼, 𝜇-RA [9, 13]; Quick-
Silver’s vectorization and compilation framework [15], multi-
threaded (parallel) query execution [16], IR factorization [1], and
temporal query processing [21].

3 DEMONSTRATION
We propose a demonstration plan that aims to (1) provide attendees
with deep-insights into the critical challenges of evaluation of graph-
based workloads and (2) showcase novel solutions to these challenges
as implemented in AvantGraph.
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The demonstration relies on our tune-and-explain TunEx frame-
work (shown in Fig. 1). The goal of TunEx is to provide a multi-

faceted and comprehensive view into the operational insights of
the AvantGraph engine and performance characteristics of the
corresponding underlying algorithms. TunEx incorporates three
complimentary facets of query execution: a fine-grained perfor-
mance tracer 𝑃𝑇 which profiles per-thread code execution and
presents an execution stack as a detailed flame chart; an execu-
tion plan explainer and analyzer 𝑃𝐸𝐴 , a coarser-grained profiler,
which presents a cyclic plan, its operators annotated with cardi-
nalities (estimates and real), work-unit distribution, and total time
spent processing the operator; and, finally, an execution visualizer
𝐸𝑉 , which visualizes query execution as a graph search, show-
ing real-time exploration of a property graph and highlighting the
corresponding bottlenecks during the graph exploration.

We use a diverse collection of real-world and synthetic datasets
from encyclopedic (DBPedia6, YAGO47), investigative (The Ba-
hamas Leaks8), life-sciences (UNIPROT9), and social network
(LDBC datagen [11]) domains. We use hand-crafted queries for
DBPedia, YAGO4 (used in [1, 9, 20]) and for LDBC (used in the re-
cent LSQB benchmark [11]). We also use queries which weremined

from a dataset according to a given query shape (e.g., chain, star,
snowflake, etc.). We obtain popular and challenging query shapes
from a recent query-log study [6].

Scenario set CHS: Challenges of graph query evaluation. In this
scenario set, we interactively illustrate to attendees the challenges
which are specific to evaluation of queries on property graphs.
CHS-1: Queries with many FK-FK joins. These are found in all of
our datasets, especially for complex shapes (e.g., snowflake). We use
mined queries of complex shapes along with hand-crafted queries.
QuickSilver is set to use tuple-block IR. During execution, real-
time IR blow-up is observed in 𝐸𝑉 , which is later confirmed in
𝑃𝐸𝐴 . Performance degradation is seen in 𝑃𝑇 .
CHS-2: Queries that mix navigation and subgraph matching. We
use LSQB queries augmented with navigation and mined queries
which combine shapes (e.g., star + chain). Cyclic plans are disabled
in Magellan, and the TC operator is used instead. 𝐸𝑉 shows
multiple independent searches exploring large parts of a graph.
High-cardinality tuple flow and slow execution is shown in 𝑃𝐸𝐴 .
CHS-3: Queries with diverse and correlated property predicates.We
use hand-crafted queries and queries from LSQB. BallPark is set
to use simple topological synopses and fall back to independence
assumptions. Large errors in cardinality are observed in 𝑃𝐸𝐴

which lead to bad plans.

Scenario set SOL: Solutions in AvantGraph. In this scenario
set, we showcase how optimizations proposed and implemented in
AvantGraph can solve the challenges identified in CHS.
SOL-1:QuickSilver is set to use a factorized IR. During execution,
IR blow-up is controlled as confirmed by 𝑃𝐸𝐴 and 𝑃𝑇 .

6http://dbpedia.org/
7http://yago- knowledge.org/resource/
8https://www.icij.org/tags/bahamas-leaks/
9http://www.uniprot.org/

SOL-2:Magellan is set to use cyclic plans. 𝐸𝑉 shows multiple
interdependent constrained searches exploring the graph. 𝑃𝐸𝐴

confirms low-cardinality tuple flow.
SOL-3: BallPark is set to use MD histograms and ML-based esti-
mation. 𝑃𝐸𝐴 shows dramatically improved cardinality estimates
leading to better plans.

Attendees will also be able to easily submit their own queries and
interact with the live system. Through these rich demonstration
scenarios attendees will gain deep insight into the critical challenges
of graph query processing and the state of the art innovations
realised in AvantGraph to address these challenges.
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