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ABSTRACT
Developers of Apache Spark applications can accelerate their work-

loads by caching suitable intermediate results in memory and

reusing them rather than recomputing them all over again every

time they are needed. However, as scientific workflows are becom-

ing more complex, application developers are becoming more prone

to making wrong caching decisions, which we refer to as caching
anomalies, that lead to poor performance. We present and give a

demonstration of Spark Caching Anomalies Detector (SparkCAD), a
developer decision support tool that visualizes the logical plan of

Spark applications and detects caching anomalies.
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1 INTRODUCTION
Apache Spark [20] maximizes performance efficiency for iterative

workloads using large amounts of memory to cache frequently-used

datasets rather than recomputing them in each iteration [18].

Typically, Spark application developers make caching decisions
based on their knowledge of the application’s data flow dependen-

cies [10, 19]. However, applications are becoming more complex

with a massive number of Resilient Distributed Datasets (RDDs §2)

and the dependencies between them, resulting in gigantic data flows

with plenty of interleaving forks and joins. Additionally, Spark au-

tonomously persists intermediate results at some processing stages,

(e.g., shuffled data blocks), which further complicates the caching

decisions for the developers. Consequently, they become increas-

ingly more prone to making wrong caching decisions that can lower

the performance of their applications to 51.2 % [10].

These wrong caching decisions cause two types of caching anom-
alies in the application data flow. The first anomaly, which we term

as non-reused cached RDD, occurs when the application developer
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caches an RDD that is not reused and that occupies space from

already limited memory resources. As a result, other reused cached

RDDsmay be evicted, the freememory for executionwill be reduced

or, even worse, Out of Memory error might occur [10]. The second

anomaly, which we refer to as recomputed RDD, takes place when
the application developer does not cache an RDD that is reused

multiple times, leading to significant recomputation overhead.

To see how frequently these caching anomalies occur, we studied

130 applications from machine learning libraries like Spark ML-

lib [11], graph analysis libraries like GraphFrames [13] (a library on

top of Spark Graphx [16]), advanced Spark analytics [15], and syn-

thetic Spark benchmarks [1, 7]. We realize that only 32 applications

are free of caching anomalies. The remaining 98 applications have,

in total, 1, 756 and 15, 554 non-reused cached RDD and recomputed

RDD anomalies respectively. To show the impact of the caching

anomalies on the overall application performance, we select the

Principal Component Analysis (PCA) implementation of Spark ML-

lib to process 16.8GB input dataset (generated by HiBench [3] with

‘bigdata’ scale) and run it on our 16-node Spark cluster. Each node

is equipped with an Intel Core i5 CPU running at 4x 2.90 GHz, 16

GB RAM, 1 TB disk, and 1 GBit/s LAN and run Hadoop MapReduce

3.2.2, Spark 3.1.2, Java 8u102, Apache YARN, and HDFS. In the re-

computed RDD anomaly in PCA, we realize that PCA iterates over

an uncached RDD more than 600 times, thus taking 19 minutes to

run. We update the source code of Spark MLlib by caching that

particular RDD in memory, resulting in 9.8 minutes to process the

same input dataset on the same cluster configuration.

Spark’s History Server [2] reads execution logs and provides

a web user interface (UI) that application developers can use to

get more insights into the execution of their applications. This

web UI displays the directed acyclic graph (DAG) of RDDs in each

job (§2), individually, which gives a partial view on RDDs and

their dependencies but does not provide a comprehensive overview

on the whole application data flow, i.e., logical plan of RDDs and

transformations across all jobs and stages in a single view. Thus,

it is not reliable as a caching decision support tool for application

developers when their programs become complex.

Some previous studies rank cached RDDs to select those to purge

from memory in case of memory limitation by proposing cache

eviction policies [14, 18]. Some adjust memory parameters to avoid

cache eviction in advance [4, 9, 17]. Even though these solutions

are effective, they still work based on the caching decisions of ap-

plication developers. For example, these solutions and their likes

will not improve the performance in the previously illustrated PCA

scenario because the developers of Spark MLlib do not cache any of

its RDDs. Other studies try to solve the problem by caching RDDs
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Figure 1: Logical Plan as a Single View of Applications.

on the fly [12] or detecting cache-related bugs [10]. These solutions

(1) require instrumenting Spark’s code for trace collection, which

adds more complexity and performance overhead, (2) are generic

for all applications without considering specific characteristics of

each application, leading to sub-optimal solutions, and (3) do not

give application developers the option to contribute to the caching

decision based on their knowledge of the specific performance

characteristics of their applications. For example, an application

developer might opt for recomputing a reused RDD whose compu-

tation time is negligible rather than caching it in memory, especially

if it is huge in size. We use the Latent Dirichlet Allocation (LDA) ap-

plication to validate this. Similar to our experiment on PCA, Spark

MLlib developers do not cache any RDD in LDA even though there

is an RDD reused 20 times. We run LDA on 4.1GB input dataset

(generated by HiBench [3] with ‘bigdata’ scale) with the default im-

plementation and after caching the reused RDD, we do not realize

any impact of our update on the performance. This is because LDA

is a CPU-intensive application and its performance bottleneck is in

data processing rather than recomputing the reused RDD.

In this demonstration, we present SparkCAD, a tool that supports
Spark application developers in writing complex programs, e.g.,

advanced analytics. Firstly, it visualizes the logical plan of the entire

application in a single view with various display options. Secondly,

it helps application developers to detect caching anomalies in the

logical plan based on their criteria. Thirdly, as an interactive what-if
analysis tool, it allows application developers to make new caching

decisions and see the impact of their caching decisions without

carrying out additional experiments. Lastly, it provides the devel-

oper with a sequence of recommended cache/unpersist commands,

which we term Recommended Schedule, to help the developer to

know when to cache or unpersist an RDD. In addition, it gives an

overview of memory footprint during the application run.

2 EXECUTION MODEL OF SPARK
RDDs are the primary abstraction for distributed data processing

in Spark [19]. A class of operations called transformations (e.g.,
map, filter) create new RDDs from existing ones. Another class of

operations called actions (e.g., collect, count) return a value to a

central process driver after running a computation over RDDs.

The application level is the highest level of computation in Spark

and consists of one or more sequential jobs, each of which is trig-

gered by an action. A job comprises a single action and a sequence

of the transformations preceding it, represented by a DAG of trans-

formations. When a transformation is applied on a (parent) RDD,

a new (child) RDD is created. A transformation is either narrow
or wide. Spark stages are created by splitting the DAG at shuffle

boundaries (wide transformation), whereby the scheduler pipelines

each group of narrow transformations into a stage.

Several jobs in the same application may have transformations

in common. Figure 1 illustrates the merging of all the DAGs of

jobs to have a single logical plan of the entire application. The

computation of the RDDs can be traced in a depth-first traversal

order, starting from𝑅𝐷𝐷0. Without caching, the number of times an

RDD is computed is determined by the number of its child branches

in the complete DAG. However, 𝑅𝐷𝐷1 is computed once because it

is followed by a wide transformation and Spark persists its shuffle

blocks. 𝑆𝑡𝑎𝑔𝑒2 and 𝑆𝑡𝑎𝑔𝑒4 are therefore skipped stages. Even though

𝑅𝐷𝐷8 is used twice, it is computed once because it is cached and

since it is the only child of 𝑅𝐷𝐷7, the latter is also computed once.

𝑅𝐷𝐷5 is used to compute each of 𝑅𝐷𝐷6 and 𝑅𝐷𝐷7. 𝑅𝐷𝐷5 is thus

computed twice because it is not cached. Even though 𝑅𝐷𝐷3 is

cached, 𝑅𝐷𝐷2 is computed every time 𝑅𝐷𝐷5 is computed. This is

because computing 𝑅𝐷𝐷5 requires computing 𝑅𝐷𝐷4, which is not

cached and, in turn, computing 𝑅𝐷𝐷4 requires computing 𝑅𝐷𝐷2.

3 SPARKCAD
SparkCAD is a Python decision support tool for Spark application

developers. As shown in Figure 2, SparkCAD visualizes the entire
logical plan of an application and detects caching anomalies in three

steps, namely, parse, analyze and visualize.

3.1 Parse
The log file that Spark’s History Server reads to make displays via

its web UI contains an ordered list of runtime events stored in JSON

format. Even though Spark does not provide the size of each RDD

and the execution time of each transformation, SparkCAD uses the

log file without any additional metadata. SparkCAD selects three

relevant events: (1) SparkListenerApplicationStart, from which it

extracts the application name, (2) SparkListenerJobStart to get the

ID and name of each job and information on each RDD in each job

such as the list of its parent RDDs, its callsite (i.e., the location in

the source code), whether it is cached or not, etc, and (3) SparkLis-
tenerStageSubmitted to obtain the set of actually executed stages

(that are not skipped) like 𝑆𝑡𝑎𝑔𝑒0, 𝑆𝑡𝑎𝑔𝑒1, 𝑆𝑡𝑎𝑔𝑒3, and 𝑆𝑡𝑎𝑔𝑒5 in

Figure 1. The extracted information is stored in a data structure we

call FactHub that serves as the data source for later steps.

3.2 Analyze
Firstly, SparkCAD generates the set of transformations between

RDDs based on their parent-child dependencies. It considers a de-

pendency as a narrow transformation if the parent and child RDDs

are in the same stage, and as a wide transformation otherwise. Sec-

ondly, it calculates the number of usage of each RDD by traversing

each submitted stage starting from the last RDD therein and going

backwards in a recursive fashion towards its root RDDs. Consider
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Figure 2: Overview of SparkCAD.

Figure 1. A root RDD in a stage is one that has no parent RDD

(𝑅𝐷𝐷0 in 𝑆𝑡𝑎𝑔𝑒0), or is cached (𝑅𝐷𝐷8 in 𝑆𝑡𝑎𝑔𝑒5), or whose parent

RDD(s) is in another stage (𝑅𝐷𝐷2 in 𝑆𝑡𝑎𝑔𝑒1). Note that even though

𝑅𝐷𝐷8 is cached, it is not a root RDD in 𝑆𝑡𝑎𝑔𝑒3 because it is com-

puted for the first time in this stage. Thirdly, SparkCAD detects

caching anomalies by identifying two cases. If an RDD is cached

and the number of its usage is less than or equal to the Computation
Tolerance Threshold (1 by default), then the case is considered as

a non-reused cached RDD anomaly. If an RDD is not cached and

the number of its usage is more than the threshold, then the case

is considered as a recomputed RDD anomaly. By increasing the

value of the Computation Tolerance Threshold, the cached RDDs in

memory will be less. Users can determine this value based on their

knowledge of the available memory. All the results of this step

are stored in the AnalysisHub to be visualized in the next step. In

the interactive what-if analysis session, the user can re-trigger the

analyze step after changing the caching plan (set of cached RDDs).

SparkCAD then recalculates the number of usage of each RDD and

detects caching anomalies with regards to the new caching plan.

While traversing RDDs, SparkCAD keeps track of the job and stage

of the last usage of each RDD. This way, SparkCAD recommends

when to unpersist an RDD, as part of the sequence of recommended

cache and unpersist instructions, which we refer to as Recommended
Schedule. In Figure 2, starting from 𝐽𝑜𝑏1, 𝑅𝐷𝐷8 is a child of 𝑅𝐷𝐷3

in all the remaining jobs. Therefore, the recommended schedule

specifies unpersisting 𝑅𝐷𝐷3 after caching 𝑅𝐷𝐷8 in 𝐽𝑜𝑏1. SparkCAD
displays the change in memory footprint with regards to each item

in the recommended schedule (i.e., cache or unpersist) to let the

user see the memory usage during the application run.

3.3 Visualize
SparkCAD uses Graphviz [6] to visualize the logical plan of an appli-

cation as a DAG of nodes and edges, where the nodes are the RDDs

and the edges are the transformations between them. With various

drawing configurations in SparkCAD, a user can identify whether

an RDD is cached or not, whether a transformation is narrow or

wide, the occurrence of caching anomalies, etc. It is worth mention-

ing that even though SparkCAD is used for Spark applications, the

concept behind it is applicable to any other dataflow processing

system (e.g., Flink and Storm) by updating the parse step (3.1).

Figure 3: SparkCAD: Logical Plan Visualization and Caching
Anomalies Detection of SVM Application in Spark MLlib.

4 DEMONSTRATION
Figures 3 and 4 are sample screenshots of the visualization by

SparkCAD. Using Jupyter notebook [8], a user can interactively run

SparkCAD as demonstrated below:

Step 1: Show me the logical plan of my application. The user selects
one of the 130 prepared Spark execution logs or uses other logs to

see the logical plan of the application.

Step 2: Showme a different view of my application. The user changes
the drawing parameters to improve the readability of the logical

plan. In Figure 3a, instead of displaying the logical plan with hun-

dreds of iterations (i.e., the repetitive lineage of RDDs and transfor-

mations), the user reduces the maximum number of drawn itera-

tions to four and, as a result, SparkCAD does not display jobs/actions

between 𝐽𝑜𝑏6 - 𝐽𝑜𝑏104.

Step 3: Are there caching anomalies in the logical plan? In Figure 3b,

the user selects the option to highlight both caching anomaly types

(i.e., non-reused cached RDD and recomputed RDD).

Step 4: What happens if I cache/do not cache a certain RDD? Firstly,
the user defines the Computation Tolerance Threshold (three in Fig-

ure 4a). This means that SparkCAD does not highlight an RDD that

is computed twice (e.g., 𝑅𝐷𝐷1) as a recomputed RDD. To resolve

caching anomalies, the user adds 𝑅𝐷𝐷6 to the caching plan and

removes 𝑅𝐷𝐷217 from it. As depicted in Figure 4b, 𝑅𝐷𝐷2 becomes

a non-reused cached RDD because it is cached and its number of

usage is equal to the Computation Tolerance Threshold. As Fig-

ure 4c depicts, resolving this anomaly by removing 𝑅𝐷𝐷2 from the

caching plan leads to 𝑅𝐷𝐷1 becoming a recomputed RDD because

it would be computed four times in 𝐽𝑜𝑏0, 𝐽𝑜𝑏1 𝐽𝑜𝑏2 and 𝐽𝑜𝑏104.

Step 5:Which RDDs should be unpersisted and when? What is the
memory footprint? In Figure 4b, SparkCAD recommends unpersist-

ing 𝑅𝐷𝐷2 after 𝐽𝑜𝑏2 because in this job, 𝑅𝐷𝐷6 is cached and it is a

child of 𝑅𝐷𝐷2 in all remaining jobs. This means that starting from

𝐽𝑜𝑏3, 𝑅𝐷𝐷6 is used rather than 𝑅𝐷𝐷2. Note that 𝑅𝐷𝐷2 is not to be

unpersisted in 𝐽𝑜𝑏2 because, due to the lazy evaluation of Spark, it

will be recomputed in 𝐽𝑜𝑏2. The peak memory pressure could be

analyzed and the user decides whether to keep the caching plan in
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Figure 4: SparkCAD: Interactive What-if Analysis Session with on SVM Application in Spark MLlib.

Figure 4c by caching only 𝑅𝐷𝐷6 or by adding 𝑅𝐷𝐷1 to the caching

plan. The users make these decisions based on their knowledge of

the size of each RDD, the allocated memory and the computation

overhead of transformations.

Step 6: Show me the impact of my updates to the caching plan on
the application performance. In the end, the resulting recommended

schedule could be applied using Juggler Engine [5], which is an in-

strumented version of Spark that accepts the recommended sched-

ule as a configuration and overwrites the default caching plan.
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