AMRAS: A Visual Analysis System for Spatial Crowdsourcing

Qingshun Wu, Yafei Li*, Huiling Li, Di Zhang, Guanglei Zhu
School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou, China
{wqszzu, hlli, dzhangzzu, glzhu}@gs.zzu.edu.cn, ieyfli@zzu.edu.cn

ABSTRACT

The wide adoption of GPS-enabled smart devices has greatly pro-
moted spatial crowdsourcing, where the core issue is how to assign
tasks to workers efficiently and with high quality. In this paper,
we build a novel visual analysis system for spatial crowdsourc-
ing, namely AMRAS, which can not only intuitively present the
task allocation for workers under different time window scales
to users (e.g., data analysts and managers) in real-time, but also
help users analyze task assignment decision model and its learning
process. AMRAS has the following novel features. First, AMRAS
provides two user-friendly interfaces that allow users to employ
simple and easy-to-use console to perform statistical analysis. Sec-
ondly, AMRAS provides three powerful visualization tools, such
as the visualization of assignment results, assignment process, and
assignment decision model, which not only allow users to intu-
itively analyze the whole process of task assignment, but also help
users discover the computational bottleneck of their task assign-
ment solution. Finally, AMRAS enables online access to real-time
data, providing users with instant assignment and instant analysis.
We have implemented and deployed AMRAS on Alibaba Cloud
and demonstrated its usability and efficiency in real-world datasets.
The demonstration video of AMRAS has been uploaded to Google
Drive.

PVLDB Reference Format:

Qingshun Wu, Yafei Li, Huiling Li, Di Zhang, Guanglei Zhu. AMRAS: A
Visual Analysis System for Spatial Crowdsourcing. PVLDB, 15(12):
3690-3693, 2022.

doi:10.14778/3554821.3554876

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/wuqingshun/AMRAS.

1 INTRODUCTION

With the widespread diffusion of smart devices, Spatial Crowdsour-
ing (SC) [10] has attracted considerable attention from industry,
such as Gigwalk, Uber, and Waze. According to the publishing
model, SC applications can be classified into two types: i) server
assigned tasks (SAT) [3, 5, 6, 8, 11], in which the SC server assigns
location-dependent tasks to smart devices users, called workers; ii)
worker selected tasks (WST) [1, 9], in which location-dependent tasks
are selected by moving workers. Moreover, from assignment styles,

* Corresponding author: Yafei Li

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 15, No. 12 ISSN 2150-8097.
doi:10.14778/3554821.3554876

3690

feedback

n EC‘
@
+/ @
@/ @
y ™ nan
@

Batches SC platform
decision @ spatio-temporal
results distribution ‘ 4 Worker |
Decision Model (@ sk |

Figure 1: Illustrative example of batch-based task assignment

the SAT model has two styles: instant task assignment [6, 8] and
batch-based task assignment [3, 5]. Specifically, in the instant task
assignment, the SC servers need to instantly assign available tasks
to workers in a one-by-one style. It is easy to implement but may
not generate high quality assignment results [10]. In reality, to fur-
ther improve the quality of assignment results, most SC platforms
adopt batch-based task assignment, where the servers accumulate
a batch of tasks and then assign them to workers. The illustrative
example of batch-based task assignment is shown in Figure 1, where
the decision model monitors and captures the spatio-temporal dis-
tribution of the workers/tasks in the SC platform at each time slot,
and judges whether the current time slot is suitable for dividing
batch; then assigns tasks to workers within each batch and feeds
back the assignment results to the SC platform. Existing researches
on batch-based task assignment can be divided into three modes:
fixed value-based [5], history-based [2], and learning-based [4],
but there is currently no a visualization system to demonstrate the
assignment process and results of these approaches. Motivated by
above discussion, we intend to study a visual analysis system to
manage and analyze the large assignment data generated by these
approaches on the SC platform.

There are three major challenges to analyze batch-based task
assignment data: (1) how to analyze the dynamics of assignment
process? (2) how to help users identify batch size and quality easily?
(3) how to help users judge the effectiveness of learning-based
decision model and the rationality of its structure?

In this demonstration, we design and implement a visual an-
alytical system called AMRAS, which performs efficient massive
assignment data analysis for batch-based task assignment. It in-
cludes Web-based Ul and computation engine modules, which aims
to allow users (e.g., data analysts and managers in spatial crowd-
sourcing company) to intuitively analyze the assignment data from

https://doi.org/10.14778/3554821.3554876
https://github.com/wuqingshun/AMRAS
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3554821.3554876
https://www.acm.org/publications/policies/artifact-review-and-badging-current

SC platform and assist them to optimize their assignment algo-
rithm. Additionally, AMRAS provides two user-friendly interfaces
(i.e., Analysis Interface and Decision Model Interface) that allow
users to customize the parameters required for the console, and
visualize the instant results. In particular, users can analyze the
learning process of the learning-based decision model in the De-
cision Model Interface. The demonstration video of AMRAS has
been uploaded to Google Drive'.

The main contributions of our work are summarized as follows:

o We design and implement the AMRAS, a visual analytical
system that performs task assignment analysis efficiently.
To the best of our knowledge, this is the first work on spatial
task assignment results analysis.

o We provide three powerful visualization tools to allow users
to intuitively analyze the task assignment and assist them
to optimize their matching algorithm.

o We demonstrate how our AMRAS works through three
demo scenarios on a real-world dataset.

2 AMRAS OVERVIEW

2.1 Problem Formulation

The task assignment problem can be formulated as: Given a task
stream I and a set of workers W, the problem returns an assignment
plan M of tasks to workers M = {(w, 7)|w € W, 7 € T} such that
for given revenue function ®(-), ®(M) is maximized:

oM = >, 0w, M
(w,r)eM
Next, we will define two basic concepts: worker and task.

Worker. A worker, denoted by w = (I, k¢, d), has a location w.,
a service ability w.k., and a service distance w.d. In practice, the
service ability of workers represents the number of seats in vehicles
and the capacity of backpacks in logistics. The service range of
worker w is a circle with w.[l as the center and w.d as the radius.
The ability w.k. and distance w.d of worker w determine whether
he/her can accept assignment.
Task. A task, denoted by 7 = {I, ar, e, f}, has a location 7.1, an
appearance time 7.a;, an expiration time 7.e;, and a fee 7.f. In spa-
tial crowdsourcing, a task 7 can be assigned only if 7.] is within
a worker’s service range after r.a; and the worker has sufficient
service ability. Moreover, considering the expiration time, a task
7 can be completed only if a worker can physically move to 7.
before 7.e;. Hence, there are six types of tasks: New (just appeared),
Matched (already assigned to worker), Completed (already com-
pleted by worker), Expired I (unassigned expiration), and Expired
II (assigned but not completed expiration). Note that a worker can
gain revenue 7.f only if the task 7 is in type "Completed".
Assignment Process. Initially, the customers send in their tasks
to the server, while the workers report their current statuses (e.g.,
location and service ability) to the server. After receiving the tasks,
the server divides the tasks into a sequence of batches to match
based on some division strategies. According to batch’s sequence,
the server conducts the assignment for the tasks and available
workers in a batch to maximize the revenue of the platform, while

!https://drive.google.com/file/d/1ZNRNR-qG-au1 A4wThBnMIS1LEqtfRBKk/view

AMRAS
Web-based Ul
. Visualization Database
interact »
— Data
‘-_—/ XX Lh %] @-’
User Assignment Time window Model =
Computation Engine t """""
/ 2
4 ’ i Time Slot ‘ Decision Model |
Ft 4 2 Task Type Assignment Result|| Time window
Ty v Task Location Tasks Size
= |
SC platform Data Collector

Figure 2: Overview of the AMRAS architecture

the available workers and unmatched tasks return to the streams
for the next batch matching, and the expired tasks will be discarded
from the server. Finally, the assignment results are notified to the
workers and customers, respectively.

2.2 System Framework

The architecture of AMRAS is shown in Figure 2, which mainly
includes two modules: Computation Engine and Web-based Ul
Computation Engine Module. The computation engine module is
the core module that performs task assignment by utilizing decision
model to divide batches. The data collector can collect assignment
data, which is composed of real-time data from SC platform and
learning data from learning-based decision model. Specifically, the
real-time data includes: time slot, task type, task location, worker
service ability, assignment result, time window size and revenue.
Herein, a time window can be denoted by ¥ = {yo, Y1, ..., ¥n|n €
N}, where ¢, is a time slot. Then, we upload the above data to the
database for use by the Web-based UI module.

Web-based UI Module. The Web-based UI module is implemented
upon the computation engine module, which bridges the gaps be-
tween the users and SC platform. This module allows users to
conduct their analytical tasks by simple operations, which is vital
for those users who are not familiar with SQL-like query language.
First, we extract heterogeneous and massive assignment data from
database, and preprocess the assignment data by exploiting the
data cleansing techniques in previous work [7]. It builds spatial
objects index to accelerate spatial query processing. Furthermore,
we devise a suite of visualization tools (assignment visualization,
time window visualization, and decision model visualization) to
illustrate the analyzing results effectively.

3 DEMONSTRATION

The Web-based UI module of AMRAS contains the analysis and
decision model interfaces as shown in Figure 3. It is developed using
Dash (an efficient Python framework for building web applications
based on Flask?, Plotly.js> and React.js*). Its client-side is written in
JavaScript under the React]S framework. Its server-side is written

Zhttps://flask.pocoo.org/
3https://www.plotly.com/
*https://www.reactjs.org/

3691

AMRAS

6454 20021 (@ 7% 61%

(a) Analysis Interface

AMRAS

(b) Decision Model Interface

Figure 3: Demonstration of AMRAS

(a) Overlapping

(b) Separate (Vertical)

w (c) Separate (Horizontal)

Figure 4: Display Mode

Vv Network Parameters v Size & Margin

text size 18

input = 256/256/3

feard num filters/filter size/stride

16/(4, 4)/(2, 2)

text margin | 25

inter layer margin 90

conv2

bounding box margin 10

convd 4/(8, 8)/(2,2)

v Color
pooll (3, 3)/(2,2)

text color layer | (0, 0, 0)

pool2 (3,3)/(1,1)

line color layer (211, 84, 0)
fc1 128

line color feature map (31, 97, 141)
fc2 40 text color feature map (0, 0, 0)

Figure 5: Network Structure Parameters

under the Flask framework. Plotly]JS is the graphics library adopted
by Dash. We use RDS mysql, the Alibaba cloud version of MySQL,

as the document database of the application. In addition, we use
Gunicorn as the Web server and deploy the application to Aliyun”.

3.1 Analysis and Decision Model Interfaces

As shown in Figure 3(a), the analysis interface contains 7 functional
panels. Panel-@ is the console, where we can set the time period
and task type. When we slide the time period axis or select different
task types, the contents displayed in the other six panels will change
accordingly. Panel-@ is a summary of the overall tasks, where we
can view the proportion of different task types. Panel-® is the task
data statistics, where we can view the total number of tasks, total
revenue, task assignment rate and completion rate. Panel-®@ is a
time window visualization, where we can view the size of each time
window and the revenue generated by task assignment within this
time window. Panel-® is a satellite overview of the tasks, where we
can view the geographic location, type of each task and the worker
it belongs to. When we select a task in panel-®, we can view the
service ability and revenue trend of the worker serving this task
in panel-®. Meanwhile, we can view the task proportion of this
worker in panel-@.

Although the analysis interface can already meet most of the
functional needs of users, the learning-based batch task assign-
ment mode has proved to be the best [4]. To allow users to further
analyze the learning process, we implement the decision model
interface. As shown in Figure 3(b), the decision model interface
contains 3 functional panels. The most representative of learning-
based batch task assignment is deep reinforcement learning, so we
will take the deep reinforcement learning algorithm as an exam-
ple to demonstrate. Panel-® is the console, where we can select
the deep reinforcement learning algorithm, the network structure
parameters of the algorithm and the update speed of the curve in
panel-@. Similar to analysis interface, when we operate the console,
the contents displayed on panel-@ and panel-® will be updated
synchronously. Panel-® displays the trend of loss and Q-value dur-
ing the learning of deep reinforcement learning algorithm, where
we can adjust whether the curves are smooth, the degree of smooth-
ness, and the display mode. AMRAS provides 3 display modes as
shown in Figure 4. Panel-® visualizes the network structure of the

Shttps://cn.aliyun.com/

deep reinforcement learning algorithm, where we can adjust the
network parameters, size, margin and color of the drawn network
structure. The specific adjustable parameters are shown in Figure 5.
Note that when we hover the mouse over the parameter input box,
it will pop up the comment of the corresponding parameter.

3.2 Demo Scenario

This section shows three demo scenarios where the users can inter-
act with AMRAS to understand its operation from points of view of
both: (a) a user who needs to use AMRAS, and (b) what can AMRAS
do for users. We demonstrate these scenarios over New York City
(NYC) dataset, which consists of road network data and order data.
The road network data is extracted from OpenStreetMap® and it
contains 264,346 nodes, and 366,923 edges. The order data is col-
lected from 8:00 to 12:00 on 01/01/2016 by NYCTaxi’ and it contains
20,089 orders, where each order can be represented as a quintuple
(index, origin, destination, departure time, and arrive time).
Scenario 1: Assignment Analysis. The users can perform assign-
ment analysis through the two main customizations (time period
and task type) of the assignment visualization tool provided by
AMRAS, which involves panels-®, @, ®, ®, ® and @ of Figure 3(a).
Specifically, the users can dynamically select the time period and
task type to be analyzed on panel-®. Here, we preset three groups
of task types: All (New, Matched, Completed, Expired I, Expired II),
Online (New, Matched, Completed) and Offline (Expired I, Expired
II). Note that users can also freely combine different task types for
analysis. According to the selected time period and task type, the
users can see the proportion and statistics (total number of tasks,
total revenue, assignment rate and completion rate) of various tasks
in panel-® and panel-®, respectively. In addition, AMRAS provides
an intuitive map-based satellite overview in panel-® that allows
users to view the spatial distribution of various tasks. When the
users click a task icon, the relevant information of the task will
pop up, such as latitude and longitude, and the index of the worker
serving it. Meanwhile, the users can see the service ability and rev-
enue changes of the specified worker (worker serving the selected
task in panel-®) in panel-®, and the proportion of different types
of tasks served by this worker in panel-@.

Scenario 2: Time Window Analysis. AMRAS provides a time
window visualization tool, which allows users to intuitively see the
size and quality of the time window, and analyze the performance
of decision model in dividing time windows. As shown in panel-
@ in Figure 3(a), the visualization tool consists of a scatter chart
(time window size) and a bar chart (assignment revenue within a
time window), where the revenue can represent the quality of the
time window. Here, the horizontal axis scale of these charts is the
same time scale as in panel-®. The chart content of the time period
selected by the users is drawn in dark color, and the rest is drawn
in light color.

Scenario 3: Decision model Analysis. In this scenario, the users
can utilize the decision model visualization tool (see panels-®, @, @
of Figure 3(b)) provided by AMRAS to intuitively view the learning
quality (loss and Q-value convergence) and network structure of
decision model. Specifically, users first need to select a decision

Shttps://www.openstreetmap.org/
http://www.nyc.gov/

3693

model algorithm and a structure level (a decision model algorithm
may have multiple structures) on the console of panel-®. Our AM-
RAS presets six learning-based decision model algorithms of three
types, such as value-based (DQN, Dueling DQN), policy-based (PPO,
DPPO) and actor-critic (A3C, DDPG). Then, the users can view the
loss and Q-value convergence displayed in panel-® and the deci-
sion model network structure displayed in panel-® by clicking the
start button in the console. In panel-®, we also design two small
tools: curve smoothing and display mode. The users can control
whether the curve is smooth and degree of smoothness through
the curve smoothing tool. And the users can switch three differ-
ent curve display styles (i.e., overlapping, separate-vertical, and
separate-horizontal) through the display mode tool (see Figure 4).
In addition, AMRAS provides curve dynamic refresh function. The
users can select the refresh speed in panel-@ to view the real-time
refresh effect. In panel-®, the users can customize their decision
model network structure by adjusting three groups of parame-
ters (see Figure 5).

4 CONCLUSION

We have demonstrated AMRAS, a visual analytical system that
performs efficient massive assignment data analysis for batch-based
task assignment. It is mainly composed of two modules Web-based
UI and Computation Engine, which aims to allow users intuitively
analyze the assignment data from SC platform and assist them to
optimize their assignment algorithm. In addtion, we demonstrate
three scenarios on a real-world dataset to illustrate the usability
and efficiency of AMRAS.

ACKNOWLEDGMENTS

This work is supported by the grants: NSFC Grants 61972362 and
61602420; CPSF Grant 2018M630836; HNSF Grant 202300410378.

REFERENCES

[1] Dingxiong Deng, Cyrus Shahabi, and Ugur Demiryurek. 2013. Maximizing the
number of worker’s self-selected tasks in spatial crowdsourcing. In SIGSPATIAL.
ACM, 314-323.

[2] Zhao-Hong Jia, Le-yang Gao, and Xing-yi Zhang. 2020. A new history-guided
multi-objective evolutionary algorithm based on decomposition for batching
scheduling. Expert Syst. Appl. 141 (2020).

[3] Maocheng Li, Jiachuan Wang, Libin Zheng, Han Wu, Peng Cheng, Lei Chen, and
Xuemin Lin. 2021. Privacy-Preserving Batch-based Task Assignment in Spatial
Crowdsourcing with Untrusted Server. In CIKM. 947-956.

[4] Yafei Li, Qingshun Wu, Xin Huang, Jianliang Xu, Wanru Gao, and Mingliang Xu.
2022. Efficient Adaptive Matching for Real-Time City Express Delivery. TKDE
(2022), 1-1.

[5] Yexin Li, Yu Zheng, and Qiang Yang. 2020. Cooperative Multi-Agent Reinforce-
ment Learning in Express System. In CIKM. 805-814.

[6] Tianshu Song, Yongxin Tong, Libin Wang, Jieying She, Bin Yao, Lei Chen, and Ke
Xu. 2017. Trichromatic Online Matching in Real-Time Spatial Crowdsourcing.
In ICDE. 1009-1020.

[7] Bo Tang, Chuan Yang, Long Xiang, and Jian Zeng. 2018. Deriving Real-time
City Crowd Flows by Heterogeneous Big Urban Data. In IEEE BigData 2018.
3485-3494.

[8] Yongxin Tong, Jieying She, Bolin Ding, Libin Wang, and Lei Chen. 2016. Online
mobile Micro-Task Allocation in spatial crowdsourcing. In ICDE. 49-60.

[9] Yongxin Tong, Yuxiang Zeng, Zimu Zhou, Lei Chen, Jieping Ye, and Ke Xu. 2018.
A Unified Approach to Route Planning for Shared Mobility. PVLDB 11, 11 (2018),
1633-1646.

[10] Yongxin Tong, Zimu Zhou, Yuxiang Zeng, Lei Chen, and Cyrus Shahabi. 2020.
Spatial crowdsourcing: a survey. PVLDB 29, 1 (2020), 217-250.

[11] Yan Zhao, Kai Zheng, Yang Li, Han Su, Jiajun Liu, and Xiaofang Zhou. 2020.
Destination-Aware Task Assignment in Spatial Crowdsourcing: A Worker De-
composition Approach. TKDE 32, 12 (2020), 2336-2350.

