
FedTSC: A Secure Federated Learning System for Interpretable
Time Series Classification

Zhiyu Liang
Harbin Institute of Technology

Harbin, China
zyliang@hit.edu.cn

Hongzhi Wang∗
Harbin Institute of Technology

Harbin, China
wangzh@hit.edu.cn

ABSTRACT
We demonstrate FedTSC, a novel federated learning (FL) system
for interpretable time series classification (TSC). FedTSC is an FL-
based TSC solution that makes a great balance among security,
interpretability, accuracy, and efficiency. We achieve this by first
extending the concept of FL to consider both stronger security and
model interpretability. Then, we propose three novel TSC methods
based on explainable features to deal with the challengeable FL
problem. To build the model in the FL setting, we propose several
security protocols that are well optimized by maximally reducing
the bottlenecked communication complexity. We build the FedTSC
system based on such a solution, and provide the user Sklearn-like
Python APIs for practical utility. We show that the system is easy
to use, and the novel TSC approach is superior.
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1 INTRODUCTION
Time series classification (TSC) tackles the problem of creating a
function that maps from the space of possible input series to the
space of possible class labels. It is one of the most basic techniques
for data analytics, with many applications in various scenarios. As
a result, many algorithms [1] have been proposed to deal with this
problem [3].

The need for FedTSC. Despite the evolving performance these
methods are achieving, existing solutions make an ideal assump-
tion that the users have free access to enough labeled data to build
classification models. However, for most real-world applications,
collecting and labeling the time series may be quite difficult. For
example, in practice, many small manufacturing businesses mon-
itor their production lines using sensors to analyze the working
condition from the recorded time series. Nevertheless, since the
time series related to the specific condition, e.g., a potential fail-
ure of an instrument, are usually rare pieces located in unknown
regions of the whole monitoring sequence, the users have to man-
ually identify the related pieces and label them to generate the

∗Corresponding author.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 12 ISSN 2150-8097.
doi:10.14778/3554821.3554875

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

Ensemble

…

Figure 1: The framework of FedTSC solution. Grey arrows
represent that security protocols are needed.

training samples, which is costly because it relies on professional
knowledge. Thus, it is difficult for these businesses to benefit from
the advanced TSC solutions, as they have no enough training data
to learn accurate models. To tackle this problem, a natural idea
is to enrich the local training dataset by gathering the samples
from external data sources, e.g., the other businesses that run the
same instrument. However, it has been increasingly difficult for
organizations to combine their data due to privacy concerns [8].

Is it possible to build accurate TSC models with the help of external
datasets while preventing privacy leakage? A recent concept, named
Federated Learning (FL) [4], provides us an inspiration. Unfortu-
nately, existing FL solutions fail to tackle the TSC problem for two
reasons. First, existing FLwork has focused on training standardma-
chine learningmodels such as tree-based [2, 7] or gradient-based [4]
models, while it has been proved that using these standard clas-
sifiers for TSC cannot achieve satisfactory accuracy because the
latent temporal features may be dismissed [1]. Secondly, many real-
world TSC applications expect the methods to be interpretable, e.g.,
the users know why a working condition is determined as a fault,
but no existing FL method considers this issue.

Based on these observations, we propose FedTSC, a novel FL-
based system for interpretable TSC. To the best of our knowledge,
we are the first to study how to enable FL for interpretable
TSC. To break the barrier between these two issues, we face several
challenges. First, the problem touches multiple fields, including data
mining, machine learning, and security. It requires us to seamlessly
integrate the techniques from these fields. Secondly, to implement
our idea, we have to consider four aspects to evaluate the method:
accuracy, security, interpretability, and efficiency. It is challenging to
design a system that performs well in all these four aspects. Thirdly,
we need to not only provide theoretical guarantees but also evaluate
the performance of our approach to validate its effectiveness.
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Figure 2: The FedTSC system architecture.

Our contributions. To overcome these challenges, we propose
a novel secure and interpretable federated learning (SIFL) solution
that extends the concept of FL to consider not only security but
also interpretability. Specifically, we remove the dependency on
a trusted third party used by many existing studies and adopt a
stronger security model, which makes our system more practical
but challengeable. Then, we propose three novel TSC frameworks
tailored for SIFL based on interpretable time series features. Since
FL is bottlenecked by communication and data encryption, we care-
fully design efficient security protocols for the tailored approaches,
where we make several technical contributions that can also benefit
general applications. We show that the security, interpretability,
and efficiency of the protocols are guaranteed. Experimental results
validate that our approach can achieve competitive accuracy to the
ideal scenario where all training data are gathered, and the novel
protocols can significantly reduce the communication complex-
ity. To demonstrate the benefits of the proposed solution, we build
FedTSC, an FL system for interpretable TSC that can achieve a great
balance among accuracy, security, interpretability, and efficiency.
We design the interface as Sklearn-like APIs for practical utility.
The users can either interact with the system through a common
python shell or integrate the solution into their business pipeline.

To gain a deep understanding of the FedTSC system, we give an
overview of it in Section 2, including the problem description, the
solution framework, and the system architecture. Our main tech-
nical contributions, the FedTSC internals, are present in Section 3.
Finally, we demonstrate FedTSC in Section 4.

2 SYSTEM OVERVIEW
2.1 Problem Description
Let 𝑇𝐷 = {(𝑇𝑗 , 𝑦 𝑗 )} be a time series dataset, where each 𝑇𝑗 =

(𝑡 𝑗,1, ..., 𝑡 𝑗,𝑁 ) is a time series sample, and 𝑦 𝑗 ∈ {𝑐𝑖 }𝐶𝑖=1 is the corre-
sponding class label. The goal of TSC is to build a model over 𝑇𝐷
to predict labels for unseen series. Specifically, we consider an FL
setting that a party 𝑃0 aims to build a TSC model with the help of
some partners 𝑃1, ..., 𝑃𝑛−1. Each party 𝑃𝑖 holds a training dataset
𝑇𝐷𝑖 collected from the same area. The 𝑛 parties aim to jointly build
a model without revealing their data. Besides, the user of 𝑃0 needs

the TSC method explainable to understand the prediction. Next, we
define the security and interpretability in the FL setting.

Security. To avoid data leakage, the parties have to follow se-
curity protocols (denoted as 𝜋 ) for computation. We consider the
semi-honest model where each party follows the protocols but may
try to infer the private information of the others. The setting is
similar to horizontal FL (HFL) because the data are horizontally
partitioned across the parties. However, unlike many existing HFL
solutions that rely on a trust third-party, we remove this depen-
dency since identifying such a party may cause additional cost
or security issues. Further, we adopt a stronger security model
commonly used by secure machine learning, as defined in [7].

Interpretability.More importantly, we target a practical setting
where the user who initiates the FL (i.e., 𝑃0) needs the learned
method to be interpretable. Although explaining a model is quite
a challenging problem, it is out of the scope of this paper how to
explain a model well. In contrast, we focus on a more essential
problem which is how a model trained from FL can be “at least"
interpretable for 𝑃0. In fact, any MLmethod can be explained, either
intrinsically or by adopting general post-hoc methods, if and only
if the feature used for explanation is human-understandable [6].
Thus, to guarantee interpretability for 𝑃0, the FL protocols need
to ensure that i) the features used for prediction is human-
understandable, and ii) the features can be accessed by 𝑃0
without data leakage. Hence, we define the problem that we
target, secure and interpretable federated learning, as follows.

Definition 2.1 Secure and Interpretable Federated Learning (SIFL).
Given a party 𝑃0 and its several partners 𝑃1, ..., 𝑃𝑛−1. The goal
of SIFL is to design a security protocol 𝜋 for the parties that can
build a model over the local data 𝑇𝐷0, 𝑇𝐷1, ..., 𝑇𝐷𝑛−1 for 𝑃0 while
guaranteeing interpretability requirements i) and ii) are satisfied.

2.2 The Framework of FedTSC solution
Top-Level Design. To solve the SIFL problem for TSC, we pro-
pose three TSC solutions based on representative interpretable
features [1], i.e., i) shapelet feature that represents the similarity
of the series to specific shapes, ii) interval feature that measures
the statistics (e.g., mean and median) of the series at some fixed
intervals, and iii) dictionary feature that counts the numbers of
the features summarized from the series (e.g., Fourier coefficients).

For the shapelet feature, we consider the state-of-the-art Shapelet
Transform (ST) framework. For interval features, we consider the
Time Series Tree (TST) based method since it is a general framework
that supports different interval features, including the state-of-the-
art DrCIF [5]. For the dictionary feature, we choose Weasel since it
adopts logistic regression as the base classifier, thus each party can
publicly know the feature spaces while keeping the feature values
private. We cannot consider the state-of-the-art TDE method [5],
since TDE adopts the nearest-neighbor classifier that can only be
interpreted by accessing the samples, which violates the security.

There are two additional benefits from leveraging these features.
First, recent studies [1, 5] show an ensemble of models built from
these features can achieve the best accuracy among all TSC solu-
tions. Secondly, both ST and TST based methods are “contractable",
i.e., they can build the best possible model in a “time contract" set
by the user to balance the efficiency and accuracy. We integrate
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these strategies into FedTSC such that the system is more flexible
to use. Besides, we propose two techniques to effectively make the
contract to Weasel, as described in Section 3.

We design the security protocols based on additive secret sharing
scheme since it can achieve the security operations that we need,
i.e., addition, multiplication, division, and comparison. Since FL is
bottlenecked by communication and data encryption, we carefully
design the protocols so that as many as possible computations are
performed locally and few encryptions are needed. We discuss the
protocol details in Section 3.

The framework of the FedTSC solution is shown in Figure 1.
Note that each of the three methods is independent of the others.
Overall, the solution has two stages: secure feature extraction and
secure model training., which are introduced as follows.

Secure Feature Extraction. First, 𝑃0 initializes the FL and co-
ordinates the parties to transform their local data into the feature
spaces. The interval features, denoted as 𝐼 , can be extracted locally
from each training sample. For shapelet transformation, only 𝑃0
generates candidates from its data, and the parties jointly measure
the quality to select the most discriminatory shapelets 𝑆0. Then,
all training samples are transformed into the 𝑆𝑇 space where each
feature is the distance between the samples to a shapelet of 𝑆0.
The feature is secretly shared among the parties, and thus no data
is revealed. The dictionary features are generated locally, but the
parties need to jointly measure the quality to select the best ones.
During the feature extraction, the parties can only know the public
feature spaces, while keeping all feature values private. 𝑃0 knows
the meaning of all features and can securely access shapelets 𝑆0
since it is locally generated. Thus, the security for all parties and
the interpretability for 𝑃0 are both guaranteed.

Secure Model Training. Classification models are jointly built
by the parties using their local (for 𝐼 and 𝐷) or secret shared (for
𝑆𝑇 ) features extracted in stage one. We adopt the same models
as the original works of these methods, but we propose security
protocols that can train these models effectively and efficiently over
the features. We design a decision tree based protocol that builds
the tree𝑀 (𝑆𝑇 ) over the secret shared 𝑆𝑇 features while executing
as many local computations as possible. The protocol can be easily
adapted to train the TST model 𝑀 (𝐼 ) over the interval features 𝐼 .
Besides, we propose a speed-up technique for TST building that
effectively reduces the number of features checked at each node.
To build a classifier𝑀 (𝐷) for dictionary features 𝐷 , we propose a
novel protocol that trains the logistic regression model based on a
dual coordinate descent method.

2.3 System Architecture
Based on the above solution, we design the FedTSC system. As
shown in Figure 2, the system is divided into two parts: a Sklearn-
style interface and an engine that executes the security protocols.
Please note that we just take 𝑃0 as an example. In practice, any
business can use the system in the same fashion as 𝑃0.

FedTSC Interface. Similar to many existing ML systems, we
provide the FedTSC with a Python-based interface, which allows
the users to integrate well-known tools, e.g., Matplotlib for plotting,
and Pandas for data manipulation. The developers can extend the
system by designing new protocols or APIs for their applications.

Specifically, we adopt the Sklearn-style APIs since it is one of the
most popular ML libraries familiar to almost everyone in the data
science community. We expect the user can interact with the system
just like using Sklearn on a local machine, while the entire FL
process is automatically performed by the FedTSC engine.

FedTSC Engine. FedTSC engine is a black box to the user. It au-
tomatically coordinates the parties to execute the FL protocols. The
security of the protocols can be theoretically guaranteed. Thus, no
privacy is revealed. Besides, we carefully designed the protocols by
tackling many technical challenges to decrease the communication
complexity for efficiency, as discussed in Section 3.

3 FEDTSC INTERNALS
In this section, we introduce the novel protocols proposed in FedTSC.
They are our main technical contributions and the FedTSC internals.
The target scenarios of these protocols are shown in Figure 1.

Secure Two-Party Dot-Product Protocol 𝝅𝑺𝑫𝑷 . During the
shapelet feature extraction and model training, the private values
are only secretly shared by 𝑃0 and one of other 𝑃𝑖 . Hence, we
transform many costly “sum of multiplications” operations into dot-
product computations and propose a novel secure two-party dot-
product protocol for acceleration. In this way, the communication
amounts are effectively reduced compared to the naive solution
that adopts the basic secure operations. By leveraging 𝜋𝑆𝐷𝑃 , our
shapelet transformation and decision tree training protocols (as
discussed below) are more communication-efficient.

Shapelet Transformation Protocol 𝝅𝑺𝑻 . The protocol trans-
forms the training samples into the distances to each shapelet can-
didate. Then, it measures the quality of each candidate over the
distances and the class labels using a communication-efficient 𝐹 -
statistic tailored for the FL setting. The candidates with the best
quality are selected as 𝑃0’s shapelets. We use an indicating vector
to securely aggregate the distances such that all local computa-
tions are indistinguishable to other parties. The retained shapelets
are used to transform the samples into distances, i.e., the feature
𝑆𝑇 . The dot-product protocol 𝜋𝑆𝐷𝑃 is leveraged to accelerate the
distance computation and the quality measurement.

Decision Tree Training Protocol 𝝅𝑫𝑻 . Decision tree is the
base model for the shapelet classifier [5]. The key for training the
tree in an FL setting is to securely partition the samples for each
split and count the samples in each class to find the best split. We
partition the secret shared distances using the secure comparison
operator and adopt the same idea as 𝜋𝑆𝑇 that leverages the indi-
cating vector to securely count their numbers, and uses 𝜋𝑆𝐷𝑃 to
speed-up the “sum of multiplications” computations. Since the sam-
ples are horizontally partitioned, the total number of samples is just
the sum of counts for each party, which corresponds to the additive
secret sharing scheme. Thus, the split measure can be easily com-
puted using the secure operators. The best split is also determined
by the parties over the shared values.

Time Series Tree Training Protocol 𝝅𝑻𝑺𝑻 . The protocol is
similar to 𝜋𝐷𝑇 but more simple. Since the interval features are lo-
cally held by each party, the parties can partition and count the
features using only local computations. Then, they jointly compute
the measure for each split and find the best using the secure opera-
tors. To further decrease the communication cost, we propose to
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evaluate each feature using the 𝐹 -statistic, and only the top-quality
features are selected for best split searching. In this way, we can
speed up the protocol by one order of magnitude.

Dictionary Building Protocol 𝝅𝑫𝑩 . The dictionary features
are generated by each party locally, but the parties jointly select the
most discriminatory ones from the candidates. We design efficient
feature evaluation procedures by taking advantage of the additive
secret sharing scheme to execute most computations locally. Be-
sides, we propose two strategies to control the running time of the
protocol by predicting the running time for each window used for
feature extraction. Once the predicted time exceeds the remain-
ing time, the extraction stops and only the existing features are
retained. We use i) the maximum-so-far running time, and ii) the
prediction of an estimator built from the historical running time, as
the predicted time for the windows. Both strategies can effectively
trade-off efficiency and accuracy.

Logistic Regression Training Protocol 𝝅𝑳𝑹 . The original
work of WEASEL suggests training a logistic regression (LR) model
over the features since the number of features is very large. Con-
sidering that the dictionary features are private data horizontally
partitioned over the parties, we propose a novel LR training pro-
tocol based on a dual coordinate descent method. Compared to
existing HFL solutions, our approach does not rely on any trust
server and requires only few encryptions and communications. The
protocol can also benefit other applications beyond FedTSC.

4 DEMONSTRATION
In our demonstration, users will use FedTSC to coordinate some
partners to jointly build TSC models. They can achieve this inter-
actively through a Python Shell. Here we clarify the utility and
superiority of FedTSC, while we demonstrate in the supplemen-
tary video how the user can achieve flexible interaction by easily
integrating the tools like IPython Widgets.

Initialization. Initializing a method in FedTSC is as simple as
instantiating a Python object, where the hyper-parameters (e.g.,
the time contract) are declared.

Feature Extraction and Model Training.. To start the proce-
dure, the users call the ’fit’ method of the instantiated object, where
the index of the users’ and the partners’ training data are input.
Once receiving this command, the FedTSC engine automatically
executes the security protocols over the parties. After finishing the
process, FedTSC returns the trained model to the users.

Inference (Prediction). The users use the trained model to
classify the unseen time series locally. They can get either the
predicted labels by calling predict or the class distributions using the
predict_probmethod, just like using Sklearn. They can also integrate
tools for further applications, e.g., evaluating and interpreting the
prediction based on the explainable model and features.

Optimization The users may want to evaluate the model per-
formance using a validation set. If not satisfied, they can restart the
FL using other hyper-parameters or features.

Superiority of FedTSC. The users can run experiments to test
the effectiveness of FedTSC. For instance, we show in Figure 3(a)
the performance of contracting the Weasel on a real-world action
recognition problem. The dictionary building time is limited to the
percent of the total from 10% to 90%. As can be seen, i) the real time

(a) (b) (c)

Figure 3: Demonstration of (a) the accuracy (top) and the run-
ning time (bottom) against the time contract, and the 1-to-1
accuracy comparison on 97 datasets for FedWeasel against (b)
Weasel (FedWeasel Wins/Ties/Loses: 40/11/46), and (c) Local
TDE (FedWeasel Wins/Ties/Loses: 68/5/24). The blue, black,
and red dots represent the datasets where FedWeasel wins,
ties, and loses against the competitors, respectively.

is very close to the contract, and ii) the model accuracy remains
or declines as the building time decreases. The results indicate our
two strategies effectively balance efficiency and accuracy. Besides,
we evaluate 97 datasets collected from different domains to com-
pare the accuracy of the FedTSC Weasel (FedWeasel) against the
Weasel trained on the complete datasets. As depicted in Figure 3(b),
FedWeasel achieve comparable accuracy as the ideal condition.
We show in Figure 3(c) the comparison of FedWeasel against the
state-of-the-art TDE trained over local data. The result shows that
FedWeasel is significantly better. It indicates enriching the data
could be more effective than improving the model. Certainly, one
can build the TDE model in an FL setting to achieve better accuracy
than FedWeasel. However, the nature of TDE makes it impossible to
guarantee both security and interpretability. In contrast, FedWeasel
achieves a great balance among accuracy, interpretability, security,
and efficiency. It demonstrates the superiority of FedTSC.
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