
DBMS Annihilator: A High-Performance Database
Workload Generator in Action

Alberto Lerner

University of Fribourg

Switzerland

Matthias Jasny

TU Darmstadt

Germany

Theo Jepsen

Stanford University

USA

Carsten Binnig

TU Darmstadt & DFKI

Germany

Philippe Cudré-Mauroux

University of Fribourg

Switzerland

ABSTRACT

Modern DBMS engines can achieve unprecedented transaction

processing speeds thanks to the invention of clever data structures,

concurrency schemes, and improvements in CPU and memory

subsystems. However, developing realistic and efficient networked

clients to benchmark these systems remains daunting. Simply put,

traditional client-side networking stacks present high overheads

and thus cannot exercise the high performance that modern DBMSs

can, in principle, provide. In this demo, we propose a different

approach to benchmarking; we showcase a new framework that

leverages hardware-software co-design. With our system, which

we call the DBMS Annihilator, workloads are specified using a

high-level language that is then converted into hardware (FPGA)

for execution. The hardware we use is a commodity Smart NIC,

allowing workloads to be fully reproducible to anyone using such

hardware. A software console and dashboard provide real-time

visibility and interactivity, which we explore in this demo.

PVLDB Reference Format:

Alberto Lerner, Matthias Jasny, Theo Jepsen, Carsten Binnig, and Philippe

Cudré-Mauroux. DBMS Annihilator: A High-Performance Database

Workload Generator in Action. PVLDB, 15(12): 3682 - 3685, 2022.

doi:10.14778/3554821.3554874

1 INTRODUCTION

Modern database engines can sustain rates of above 150M trans-

actions per second (tps) [2, 3, 11, 14], but testing these systems at

these transaction rates is challenging. Such rates correspond to

between 100 and 200 Gbps of network traffic. Networking at this

speed is not the problem; the market currently offers 200 Gbps

network interface cards (NIC) and off-the-shelf 400 Gbps network

switches. The problem is the difficulty of building benchmarking

software that simulates enough database clients to request millions

of transactions consistently. One may imagine that generating such

a workload in a controlled way is possible, given that modern tech-

niques like RDMA [8] and DPDK [5] enable building high-speed

database clients in software. In reality, however, these techniques

have limitations.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 15, No. 12 ISSN 2150-8097.

doi:10.14778/3554821.3554874

At 100 Gbps, a new packet can be sent into the network every

6.7 ns [12]. A single client machine cannot build new packets at this

pace because of DRAM latency. Therefore, fast benchmarking tools

use one of two techniques. First, they deploy several clients, gener-

ating a faster aggregated packet stream. The workload is, therefore,

partitioned across the clients. Given that, in a typical workload,

one client’s transaction choice affects another client’s transaction

options, the clients are forced to synchronize painstakingly. Second,

workloads can have their transaction requests pre-generated in

memory. Unfortunately, copying pre-generated transactions onto

the network sometimes causes duplicate or reordered transactions

to be issued [1]. Workloads generated this way are random.

Developers of modern database systems often circumvent these

problems by avoiding networked workloads. They run the work-

load generator on the same machine as the DB server and use

pre-generated transactions. The workloads demonstrate the raw

speed of the server, but, arguably, skipping networking frees CPU

and memory resources artificially that would otherwise not be

available to the database.

It is this lack of tooling for benchmarking fast databases that

we address in this paper. We propose an entirely new approach to

benchmarking that dynamically generates and issues controlled

database workloads at high speeds. We are developing a solution

that allows a user to describe the desired workload in a high-level

language but provides easy-to-use tools that convert and run the

workload in hardware (FPGAs). We call our system the DBMS

Annihilator.

In summary, this demo paper introduces theDBMSAnnihilator

and makes the following contributions:

• We propose a software/hardware co-designed approach for data-

base benchmarking tools.

• We implement such an approach using an off-the-shelf FPGA-

based Smart NIC. Anyone with access to this Smart NIC can

faithfully reproduce a benchmark.

• We show that the workload can be generated dynamically and

interactively without needing a fleet of client machines or sacri-

ficing speed.

In the remainder of the paper, we describe the DBMS Anni-

hilator in detail in Section 2 and elaborate on the scenarios we

intend to bring to the demo in Section 3. We comment on related

work and future directions in Section 4. In the demonstration, the

user will interact with our system’s runtime tooling and experience

how to find the limits and performance characteristics of an actual

high-speed database.

3682

https://doi.org/10.14778/3554821.3554874
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3554821.3554874


Workload
Description

Packet Engine

Console/
Script

TXN Requests

TXN Responses

Dashboard

High
Performance 

Database

Runtime

DBMS Annihilator

Figure 1: Workload descriptions are compiled into a

hardware-based (transaction) packet generation engine. The

engine and the runtime work autonomously, without any

server assistance. They issue transactions against a database

and record their responses. A Console and a Dashboard con-

trol and monitor the process, respectively.

2 THE DBMS ANNIHILATOR

The DBMS Annihilator is a hardware/software co-designed plat-

form that leverages FPGA-based Smart NICs in implementing our

approach. Figure 1 shows the system’smain components.We present

an overview of our system in Section 2.1 and describe its internal

architecture in Section 2.2.

2.1 System Overview

At the heart of our solution lies a domain-specific language that

can describe database workloads. The language has constructs for

the static and dynamic components of the workload. In short, the

static components comprise the transaction types to be issued. For

instance, in TPC-C, those would be NewOrder, Payment, and so on.

The dynamic components encompass the logic to generate transac-

tion arguments to use during the run time and to mix the transac-

tion types into a controlled workload. Using the TPC-C example

once more, NewOrder and Payment should dominate the workload

mix. Based on this workload description, the DBMS Annihilator

then compiles a workload description into a hardware-based Packet
Engine as the benchmark’s driver.

Hardware Platform. The Packet Engine runs on a single FPGA-

based network card. However, thanks to the hardware-based nature

of our solution, the workload generated even by a single 100 Gbps

Smart NIC replaces several software clients. We are currently tar-

geting three boards: the Xilinx ZCU106, Alveo U50 and the Xilinx

VCU129. The ZCU106 and U50 are cost-conscious, FPGA-based

NICswith 10 and 100 Gbps network ports, respectively. The VCU129

is not exactly a network card because it is not a PCIe peripheral. It

is a standalone platform containing the necessary hardware (i.e.,

56G transceivers) to generate workloads at 400, 800, or 1200 Gbps.

Such a bandwidth easily matches and surpasses the network

capacity of a single server. Currently, a server can support 400 Gbps

of traffic by using two Mellanox ConnectX-6 200 Gbps NICs, each

in a PCIe Gen4 ×16 or dual Gen3 ×16 slots. That is where our

second platform, the VCU129, can be helpful. For instance, the extra

capacity of the DBMS Annihilator can be used to generate traffic

for the secondary servers in a replication scenario. As discussed in

the previous section, producing such a coordinated workload in a

software-based generator would not be practical, if at all possible.

TXN0 Parms
Generator

…

Transaction 
Selector

Runtime 
Parameters

Stats
Manager

TXN Payload Queue

Packetizer
TX

Response
Handler RX

TXNN Parms
Generator

Console/Script Dashboard

Figure 2: The DBMS Annihilator’s architecture. Purple

modules are tailored to the workload description.

Benchmarking Workflow. To run a benchmarking workload, we

synthesize a bitstream, which we use to program the NIC’s FPGA.

The bitstream captures theWorkload Description provided by the

programmer and generates a Packet Engine. In turn, a Runtime
subsystem in the card leverages the Packet Engine to produce and

ship transaction requests using a networking protocol that the

Database Under Test (DUT) understands. We currently support an

RDMA-based protocol for its high-throughput and low latency, but

we also plan to implement an ODBC/TCP-IP stack. Note that the

network address of the DUT and the protocol to be used can be

configured at run time.

The DUT sends back transaction response packets, which are

captured and decoded by the Runtime subsystem. At this time, the

system can calculate each transaction’s latency and the instanta-

neous aggregated throughput the server is delivering. The results

are displayed via a Dashboard. Optionally, the database can be in-

strumented to report on its resource consumption (e.g., CPU or

memory utilization) in aggregate or on a transaction-basis level.

These additional metrics can also be retrieved from the Dashboard.

Note that the Packet Engine’s dynamic components can be mod-

ified during runtime. For instance, the frequencies with which each

transaction appears in the workload can be adjusted. The modifi-

cations are made through the Interactive Console or via scripting.
Furthermore, one can use execution signals to vary the workload.

In other words, the workload can be changed in response to prior

database errors or variations in performance. We describe such

scenarios in more detail in Section 3.

2.2 System Architecture

The Packet Engine and the Runtime modules are composed of

several sub-modules. The sub-modules interact to generate the

workload and produce execution statistics, as shown in Figure 2.

We describe each of the sub-modules in turn.

Transaction Parameter Generator. Each transaction type in

the Workload Definition is represented by one of these modules.

They produce the arguments that are used in each new transaction

request. The generators are independent of one another and run

in parallel. This means that the machinery can choose the next

transaction among the provided types without restrictions.

3683



Transaction Selector. This is the module that performs such a

choice. It is responsible for mixing the transaction types in a work-

load according to the workload description. It uses two sources of

information to make this decision: the Runtime Parameters and

statistics.

The Runtime Parameters module. It is also a generated module.

Its goal is to record the desired mix of transactions in the workload.

For instance, in a workload like TPC-C, the transactions should be

issued with a specified frequency. In this module, the frequency

of different transaction types can be modified via the Console in-

teractively. Any change is immediately reflected in the generated

transaction stream of the workload.

Stats Manager. This module keeps track of past executed trans-

actions. For each transaction type, the module maintains counters

for successful and failed transactions, along with their latency. The

counters are sampled frequently, and it is the result of this sampling

that the Dashboard shows.

Modules for Packet Handling. The remaining modules of the

DBMS Annihilator’s runtime revolve around packet handling.

The Packetizer module takes a transaction’s parameters and gen-

erates the corresponding network packet to be issued against the

DUT. The converse of that module is the Response Handler, which
extracts execution information from transaction response packets

sent by the server.

The Packetizer and Response Handler modules communicate

directly with the network-related IP block. Simply put, the latter

manages all the low-level aspects of the communication. Currently,

the modules are hard-coded to issue and receive RoCE packets

(RDMA over Converged Ethernet).

3 THE DEMONSTRATION

The demo consists of an instance of the DBMS Annihilator exe-

cuting TPC-C against a high-performance database. We chose to

use NetSilo, a version of the Silo [14] transaction engine that we

modified to add RDMA support. Silo is based on an in-memory

data structure that has been used as a baseline in numerous works

(e.g., [3, 11]). Since our workload description language is still un-

der development, we hand-code Verilog modules for the TPC-C

workload in the way we expect the language compiler to produce

them. The machine running Silo is powered by a Xeon 4216 CPU

with 16 cores (32 threads) running at 2.1 GHz and with 192 GB of

memory and a Mellanox ConnectX-5 100 Gbps network card. The

client machine hosts the U50 loaded with the DBMS Annihilator

logic, where the console and dashboard also run. Based on this

setup, the demo allows a user to experience different scenarios,

which we will describe next.

3.1 Scenario I: Interactive Console

We developed a GUI that allows the user to control and analyze a

workload interactively. The GUI will be generated according to the

workload description, i.e., it will adapt to the number and type of

transactions, just as the workload generator. For the demonstration,

we hand-coded the GUI to ”pilot” a TPC-Cworkload. Figure 3 shows

a screenshot of the GUI, which is built around two panels.

The first panel, on the bottom half of the screen, is the console.

As discussed above, it controls the target workload throughput. The

console has a widget for the target rate counter that can be adjusted

up and down in 1 ktxn/s increments. When the user changes the

counter, the DBMS Annihilator reacts immediately by adjusting

its transaction rate. The console also has slider widgets, one per
transaction type, representing the latter’s relative frequency. In

the beginning, the sliders are positioned according to the TPC-

C-recommended transaction mix. The user can freely change the

frequencies bymoving the sliders, thus altering theworkload.When

a slider is moved, the other sliders compensate to ensure that the

transaction frequencies add up to 100%.

The second panel, on the top half of the screen, is the dashboard.

It plots the instantaneous transaction rate that the DUT achieves.

The transaction rates are color-coded according to their type, and

the curves are cumulative. This way, the user can simultaneously see

the aggregated workload and its components. The dashboard has a

mouse-over feature that shows workload details. This information

appears in Figure 3 as gray labels. The dashboard also records

changes in the workload rate, shown as black labels.

3.2 Scenario II: Scripted Console

The previous scenario allows interactive variations in the generated

workload. Such interactivity is very useful for performance explo-

ration, but sometimes, one may wish to execute a workload that is

determined upfront. This second scenario shows how to execute

such scripted workloads using the DBMS Annihilator.

When in scripted mode, the DBMS Annihilator follows the

instructions contained in a script file. The script file can be de-

veloped offline by a programmer. It can also be recorded during

an interactive session. The instructions are timed and reflect GUI

manipulations that would be done had the session been interactive.

The results shown by the dashboard can be saved and analyzed

offline later.

In this scenario, we will explore two features. First, we will show

how to change some workload characteristics on a millisecond

scale, which is not possible manually. Second, we will execute the

same script repeatedly against different database configurations

and analyze which has the best performance impact.

3.3 Scenario III: Threshold Analysis

The scenarios above revolve around issuing workloads independent

of how the DUT reacts to them. In this scenario, we are interested

in adapting the workload according to the DUT’s performance.

For example, we may want to find the limits of a given DUT’s

concurrency control (CC) scheme. The idea is to increase some

aspect of the workload, transaction contention in this case, until we

see diminishing returns or performance regression. We can then

adjust or experiment with different CC schemes and find how well

they work for the workload.

In this scenario, we use a modified workload generator that cre-

ates a feedback loop. The Transaction Selector issues transactions

with increasingly smaller intervals and monitors the transaction

throughputs rather than their relative frequency.When the through-

put stops increasing, the Selector stabilizes onto the maximum

sustainable transaction rate.

3684



Figure 3: The Dashboard (top) shows how the database is performing and the Console (bottom) controls workload characteristics.

4 RELATED AND FUTUREWORK

The DBMS Annihilator combines a network traffic generator and

a database benchmarking tool. Regarding traffic generators, a close

tool to ours is Caliper [7]. It can inject packets with highly accurate

intervals and, at the time of its publication, at high speeds. That

system, however, is software-based, which would make it difficult

to scale at current networking speeds. Regarding database bench-

marking frameworks, a close system to ours is DIAMetrics [4]. The

system can generate transaction requests and graphically analyze

the database responses. It is also a software tool, and while it scales

in size, it does so by forfeiting the precision that the network traffic

generators can offer. In contrast, the DBMS Annihilator is unique

in that it can generate highly-crafted workloads at a very high

speed by leveraging hardware/software co-design.

There have been, however, other works that leverage network-

ing hardware for transaction execution as opposed to generation.

Regarding switch-based efforts, Transaction Triaging [10] rear-

ranges the stream of transaction requests sent to the server in a

way to foster performance while P4DB [9] offloads OLTP trans-

action processing for hot tuples onto a programmable switch, sig-

nificantly improving latency as well. Regarding NIC-based efforts,

D-RDMA [13] gives the card an active role in determining how data

should be transferred into the network. We see an increasing num-

ber of works that, like ours, rethinks the division of functionality

between hardware and software.

Moreover, we believe that our contributions can go beyond

benchmarking. Applications are workload generators in a sense, but

this time the feedback cycle, that is, the decision on which transac-

tion to issue next, is not based on the database system performance.

It comes from user interactions. We believe that our techniques can

be used to replace the traditional software stack in database clients

with an entirely new, accelerated communication stack. We intend

to explore these advancements in an upcoming paper.

ACKNOWLEDGMENTS

We thank Sangjin Lee and André Ryser for their help setting up ex-

periments. We also thank Alex Forencich for making Corundum [6]

available and for the discussions about its inner workings. This

work was partially funded by the German Research Foundation

(DFG) under the grants BI2011/1 & BI2011/2 (DFG priority program

2037) and the DFG Collaborative Research Center 1053 (MAKI).

REFERENCES

[1] Alan Arondel. 2021. TX Burst and Ordered Packets. https://www.mail-archive.

com/users@dpdk.org/msg05660.html.

[2] Robert Binna, Eva Zangerle, Martin Pichl, Günther Specht, and Viktor Leis.

2018. HOT: A Height Optimized Trie Index for Main-Memory Database Systems

(SIGMOD ’18).
[3] Badrish Chandramouli, Guna Prasaad, Donald Kossmann, Justin Levandoski,

James Hunter, and Mike Barnett. 2018. FASTER: A Concurrent Key-Value Store

with In-Place Updates (SIGMOD ’18).
[4] Shaleen Deep, Anja Gruenheid, Kruthi Nagaraj, Hiro Naito, Jeff Naughton, and

Stratis Viglas. 2021. DIAMetrics: Benchmarking Query Engines at Scale. SIGMOD
Rec. 50, 1 (2021), 24–31.

[5] DPDK [n.d.]. Data Plane Developemnt Kit. https://dpdk.org/.

[6] Alex Forencich, Alex C. Snoeren, George Porter, and George Papen. 2020. Corun-

dum: An Open-Source 100-Gbps NIC. In 28th IEEE International Symposium on
Field-Programmable Custom Computing Machines.

[7] Manya Ghobadi, Geoffrey Salmon, Yashar Ganjali, Martin Labrecque, and J. Gre-

gory Steffan. 2012. Caliper: Precise and Responsive Traffic Generator. In 2012
IEEE 20th Annual Symposium on High-Performance Interconnects.

[8] Infiniband Architecture Specifications [n.d.]. Infiniband Architecture Specifica-

tion. https://www.infinibandta.org/ibta-specifications-download/.

[9] Matthias Jasny, Lasse Thostrup, Tobias Ziegler, and Carsten Binnig. 2022. P4DB

- The Case for In-Network OLTP (SIGMOD ’22).
[10] Theo Jepsen, Alberto Lerner, Fernando Pedone, Robert Soulé, and Philippe Cudré-

Mauroux. 2021. In-Network Support for Transaction Triaging. Proc. VLDB Endow.
(2021), 1626–1639.

[11] Viktor Leis, Alfons Kemper, and Thomas Neumann. 2013. The adaptive radix

tree: ARTful indexing for main-memory databases (ICDE ’13).
[12] Juniper Networks. [n.d.]. How many Packets per Second per port are needed to

achieve Wire-Speed? https://kb.juniper.net/InfoCenter/index?page=content&

id=kb14737.

[13] André Ryser, Alberto Lerner, Alex Forencich, and Philippe Cudré-Mauroux. 2022.

D-RDMA: Bringing Zero-Copy RDMA to Database Systems (CIDR ’22).
[14] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel Madden.

2013. Speedy Transactions in Multicore In-Memory Databases (SOSP ’13).

3685

https://www.mail-archive.com/users@dpdk.org/msg05660.html
https://www.mail-archive.com/users@dpdk.org/msg05660.html
https://dpdk.org/
https://www.infinibandta.org/ibta-specifications-download/
https://kb.juniper.net/InfoCenter/index?page=content&id=kb14737
https://kb.juniper.net/InfoCenter/index?page=content&id=kb14737

