
ReMac: A Matrix Computation System with Redundancy
Elimination

Zihao Chen
East China Normal University†

zhchen@stu.ecnu.edu.cn

Zhizhen Xu
East China Normal University†

zhizhxu@stu.ecnu.edu.cn

Baokun Han
East China Normal University†

bkhan@stu.ecnu.edu.cn

Chen Xu∗
East China Normal University†

cxu@dase.ecnu.edu.cn

Weining Qian
East China Normal University†
wnqian@dase.ecnu.edu.cn

Aoying Zhou
East China Normal University†
ayzhou@dase.ecnu.edu.cn

ABSTRACT
Distributed matrix computation solutions support query interfaces
of linear algebra expressions, which often contain redundancy,
i.e., common and loop-constant subexpressions. However, exist-
ing solutions fail to find all redundant subexpressions. Moreover,
eliminating the found redundancy leads to new execution order of
operators, which may have side effect. To exploit the benefits of
redundancy elimination, we propose a new system called ReMac,
which performs automatic and adaptive elimination. In particular,
automatic elimination adopts a block-wise search that exploits the
properties of matrix computation for speed-up. Adaptive elimi-
nation employs a cost model and a dynamic programming-based
method to generate efficient plans with redundancy elimination.
In this demonstration, attendees will have an opportunity to expe-
rience the effect that automatic and adaptive elimination have on
distributed matrix computation.

PVLDB Reference Format:
Zihao Chen, Zhizhen Xu, Baokun Han, Chen Xu, Weining Qian,
and Aoying Zhou. ReMac: A Matrix Computation System with
Redundancy Elimination. PVLDB, 15(12): 3674 - 3677, 2022.
doi:10.14778/3554821.3554872

1 INTRODUCTION
Matrix computation is widely used in data science, machine learn-
ing, and statistical science. To performmatrix computation on large-
scale datasets, numbers of systems and solutions have emerged,
such as SystemDS [2], MLlib [3], ScaLAPACK [1], and SciDB [4]. To
improve the performance of distributed matrix computation, one
essential optimization is to eliminate the redundant computation
and communication in execution plans.

To ease our discussion and illustrate redundancy elimination,
consider using the Davidon-Fletcher-Powell (DFP) formulation
to model the relationship between advertising spending and rev-
enue for future advertising strategies, as depicted in Figure 1. For
simplicity, the model uses linear regression on least squares, i.e.,

∗Chen Xu is the corresponding author
†Shanghai Engineering Research Center of Big Data Management
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 12 ISSN 2150-8097.
doi:10.14778/3554821.3554872

DGYHUWLVLQJ�

VSHQGLQJ

� VRFLDO�PHGLD

� HPDLO

� WHOHYLVLRQ

� «

UHYHQXH ���m

+LVWRULFDO�'DWD

PRGHOLQJ�

YLD�')3

)XWXUH�

$GYHUWLVLQJ�

6WUDWHJLHV

Figure 1: Application of DFP

�m ��

�x

�x

�m ��

7 �x

(a) Common Subexpression

��

�m��m
Í

��
Í

�x

�x

�x

(b) Loop-constant Subexpression

Figure 2: Examples of Redundancy in DFP

𝑚𝑖𝑛
𝒙∈R𝑛

∥𝑨𝒙 − 𝒃 ∥2. Here,𝑨 represents the historical advertising spend-
ing, and 𝒃 represents the corresponding revenue. In particular, the
DFP formulation involves an expression 𝒅𝑇𝑨𝑇𝑨𝒅. There are two
types of redundancy elimination in this expression: 1) common
subexpression elimination (CSE), for the identical subtrees in the
execution plan (e.g., 𝑨𝒅 as depicted in Figure 2(a)), and 2) loop-
constant subexpression elimination (LSE), for the subtrees with
constant outputs in loops (e.g., 𝑨𝑇𝑨 as depicted in Figure 2(b)).

In our recent work [5], we have found the execution planmay not
explicitly indicate CSE or LSE, preventing the system from detecting
redundancy. Hence, we aim to study a novel method to search for
CSE and LSE, supporting automatic elimination. Furthermore, the
found elimination options may be contradictory or detrimental to
performance. This motivates us to discover an efficient method to
combine those options, supporting adaptive elimination. We have
developed a novel system called ReMac built atop SystemDS, which
implements automatic and adaptive elimination, fully exploits CSE
and LSE, and improves distributed computation over matrices. For
automatic elimination, we propose a block-wisemethod that exploits
the properties of matrix computation to speed up the search for
CSE and LSE. For adaptive elimination, we adopts a cost model to

3674

https://doi.org/10.14778/3554821.3554872
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3554821.3554872

0DVWHU

&RPSLOHU

5XQWLPH

/RFDO�2SHUDWRU 'LVWULEXWHG�2SHUDWRU

%ORFN�ZLVH�6HDUFK

2SWLPL]HU

3ODQ�*HQHUDWRU

'\QDPLF�3URJUDPPLQJ�EDVHG�3URELQJ

HOLPLQDWLRQ�RSWLRQV

FDQGLGDWH�H[HFXWLRQ�SODQV

D�FRVW�JUDSK

%XLOGLQJ &RVW�0RGHO

WKH�ILQDO�H[HFXWLRQ�SODQ

XVHU
VXEPLW�D�VFULSW

:RUNHU

([HFXWRU
([HFXWRU([HFXWRU 'DWD

:RUNHU

([HFXWRU
([HFXWRU([HFXWRU 'DWD

Figure 3: System Architecture

evaluate CSE and LSE options, as well as a dynamic programming-
based method to address the combinatorial explosion of CSE and
LSE options. In our earlier experiments, we determined that ReMac
achieves a 14.4x speedup over SystemDS.

In this demonstration, we showcase two aspects: 1) how the
block-wise method speeds up the search for CSE and LSE, 2) how
ReMac evaluates the performance impact of CSE and LSE options
via the cost model, and how the dynamic programming-basedmethod
overcomes the combinatorial explosion of those options.

2 REMAC OVERVIEW
In this section, we briefly introduce the goals of ReMac, and elabo-
rate the design details.

2.1 System Goals
Redundancy elimination in matrix computation includes CSE and
LSE. First, to make full advantage of CSE and LSE, ReMac automat-
ically finds all elimination options, especially implicit ones, within
negligible search time. Furthermore, we observe that the options
may be contradictory, requiring trade-off. Meanwhile, some of them
may even be detrimental to performance, and therefore have to be
abandoned. Based on those observations, it is natural to employ
adaptive elimination in ReMac, i.e., generating an efficient combi-
nation of CSE and LSE options to improve the final execution plan
for matrix computation.

2.2 System Design
ReMac is designed to run on a cluster, which consists of two types
of nodes: a master and multiple workers (as depicted in Figure 3).
The master node generates an execution plan from an input script,
and drives the execution, which is performed by the worker node.

In ReMac, the master node is comprised of three components:
a compiler, an optimizer, and a runtime. First, according to a user-
defined script, the compiler obtains a syntax tree, and finds CSE and
LSE options through the block-wise search. Second, the role of the
optimizer is to generate an efficient execution plan with redundancy
elimination. In specific, the optimizer creates candidate plan trees to
build a cost graph, and adapts the graph to the efficient combination
of the options through a dynamic programming procedure. Finally,
the runtime executes the operators of the plan in either local or
distributed mode. In the following, we will dive into each of these
three components.
Compiler. The compiler takes charge of automatic elimination. It
initially parses a script into a syntax tree. Based on the tree, the
compiler searches for common or loop-constant subexpressions,
preparing for automatic elimination. However, to find all implicit
redundancy from the tree directly, we have to traverse all equivalent
syntax trees. This tree-wise search method involves a duplicated
search procedure and suffers from a large search space as well. 1)
The method needs to scan the whole tree for redundancy, after
transforming a syntax tree into an equivalent tree by changing a
certain subtree. That means revisiting the other unchanged sub-
trees. 2) The method is strict with the internal execution order of
subexpressions. However, it may be unnecessary to traverse all
execution order to find out redundancy. For example, to detect the
common subexpression 𝑨𝑇𝑨𝒅, we do not need to concern whether
its internal execution order is (𝑨𝑇𝑨)𝒅 or 𝑨𝑇 (𝑨𝒅).

As a result, to overcome the search issues, we propose a block-
wise search method for ReMac. First, we mitigate duplicated search
via employing a divide-and-rule approach. That is, we split a given
expression into blocks, and search for redundancy by blocks, to
avoid revisiting unchanged parts during traversal. Second, to reduce
the large search space, we disregard the internal execution order of
matrix multiplication chains according to the non-commutative and
associative properties of matrix multiplication. In particular, instead
of traversing equivalent subtrees, we employ sliding windows to
accomplish the search on the chains.
Optimizer. The optimizer is responsible for adaptive elimination.
It generates an efficient execution plan along with the elimination
options fed by the compiler. That means, the optimizer has to com-
bine the options properly. To do so, we employs a cost model to
evaluate operators in terms of computation and transmission. The
cost model allows the optimizer to predict the impacts of different
elimination options and thus choose the more efficient options.

However, due to the large number of elimination options, enu-
merating and evaluating elimination combinations would lead to
the combinatorial explosion and thus unaffordable overhead costs.
Hence, we propose a dynamic programming-based method to miti-
gate this. The main idea of this method is to evaluate each elimi-
nation option solely and form the efficient combination based on
those evaluation results. Accordingly, the method consists of two
phases, namely building and probing.

In the building phase, the optimizer generates optimized exe-
cution plan for each elimination options, regarded as candidates
for our final execution plan. Subsequently, the optimizer evaluates
those candidate plans via the cost model and collates the results
into a cost graph. Here, the cost graph includes the topologies of

3675

Figure 4: Block-wise Search

candidates and the costs of their operators, which are sufficient
enough to derive our final plan later.

In the probing phase, the optimizer prunes the cost graph through
a dynamic programming procedure. In specific, the procedure is to
compare and choose operators based on their costs from the bottom
up, and finally convert the graph into a tree, representing our final
execution plan.
Runtime. The runtime component runs the efficient execution
plan with redundancy elimination provided by the optimizer. An
execution plan contains two types of operators: local operators per-
formed on a single machine and distributed operators performed
in a distributed environment. For distributed operators, the run-
time component drives the executors in the workers to perform
distributed matrix computation.

3 DEMONSTRATION
In our demonstration, we deploy ReMac on a seven-node cluster,
where each node has two Intel(R) Xeon(R) E5-2620 0 @ 2.00GHz
six-core processors, 32GB DRAM, a 4TB hard disk and 1Gbps Eth-
ernet. In particular, we implement a GUI to visualize the procedure
of automatic elimination, i.e., the block-wise search, and adap-
tive elimination, i.e., the dynamic programming-based method.
There are three algorithms provided in the GUI, including Gra-
dient Descent (GD), Davidon-Fletcher-Powell (DFP), and Broy-
den–Fletcher–Goldfarb–Shanno (BFGS). In particular, GD involves

loop-constant subexpressions, and DFP as well as BFGS involve
both common and loop-constant subexpressions.

3.1 Automatic Elimination
Attendees will initially see a UI for the “Automatic Elimination”
as depicted in Figure 4. On top of the UI, attendees will choose
among three algorithms: GD, DFP, and BFGS, and the method to
search for elimination options. Particularly, in addition to our block-
wise search, the demonstration will have the tree-wise search as a
baseline. To perform the demonstration, attendees will click on the
“run” button. For the block-wise search, the UI will show how an
expression is split into blocks along with their coordinates, and the
hash tables recording the search results. Here, the keys in the tables
indicates common or loop-constant subexpressions. Attendees can
tell the genesis of the redundancy in the expression via the values,
i.e., coordinates of matrices, recorded in the table. Once the search
is completed, the UI records the search time at the bottom of the
UI so that, after running both two search methods, attendees can
distinguish among the differences in the performance. Due to space
limitations, we do not include this part in Figure 4.

For example, the block-wise search splits the expression of DFP
into blocks (e.g., 𝑯𝑨𝑇𝑨𝑯𝒈𝒈𝑇𝑯𝑨𝑇𝑨𝑯) and multiple common
subexpressions and loop-constant subexpressions. Eventually, ReMac
finds 1391 CSE options as well as 31 LSE options.

3676

Figure 5: Dynamic Programming-based Method of Combining Options

Figure 6: Execution Plan

3.2 Adaptive Elimination
Upon clicking on the left hand side, attendees will see a UI for
the “Adaptive Elimination”, which provides insight on how to com-
bine elimination options efficiently. Attendees will pick an algo-
rithm and a combining method, either our dynamic programming-
basedmethod or enumeration. For the dynamic programming-based
method, they will experience the procedure of building and probing
a cost graph. Initially, the UI demonstrates a empty graph. By grad-
ually raising the step number underneath the graph, attendees will
see the cost graph growing. This demonstrate how ReMac collates
candidate execution plans with different elimination options into
the cost graph, i.e., the building phase. Afterwards, at some point,
the cost graph will begin to narrow down, meaning ReMac enters
the probing phase. In this phase, attendees will see how ReMac
prunes the cost graph into a tree step by step.

As demonstrated in Figure 5, the cost graph involves the topolo-
gies of candidate plans, where each dotted box represents an oper-
ator. Also, the cost graph maintains the evaluation results of the
cost model. That is, the ellipses in dotted boxes represent the costs
of operators. Particularly, the yellow and blue ellipses are the costs
related to CSE and LSE options, respectively.

After combining the found options, ReMac will eventually gen-
erates the final execution plan. Accordingly, attendees will see two
execution plans underneath the cost graph. One plan is optimized

with no redundancy elimination, and the other plan applies the
efficient combination of elimination options where the yellow and
blue vertices indicates the eliminated redundancy. For example, by
comparing the two plans of DFP demonstrated in Figure 6, atten-
dees can see ReMac eliminates a loop-constant subexpression 𝑨𝑇𝑨
and multiple constant subexpressions such as 𝑯𝒈.

Finally, to showcase the performance impact of adaptive elimi-
nation, the UI will record both the compilation time (that generates
the final execution plan with redundancy elimination) and the exe-
cution time (that completes the algorithm) after each running.

ACKNOWLEDGMENTS
This work was supported by the National Natural Science Foun-
dation of China (No. 61902128), and the ECNU-OceanBase Joint
Research Lab.

REFERENCES
[1] ScaLAPACK. http://www.netlib.org/scalapack/.
[2] Matthias Boehm et al. 2020. SystemDS: A Declarative Machine Learning System

for the End-to-End Data Science Lifecycle. In Proceedings of the 10th Conference
on Innovative Data Systems Research (CIDR).

[3] Reza Bosagh Zadeh et al. 2016. Matrix Computations and Optimization in Apache
Spark. In SIGKDD. 31–38.

[4] Paul G. Brown. 2010. Overview of SciDB: Large Scale Array Storage, Processing
and Analysis. In SIGMOD. 963–968.

[5] Zihao Chen et al. 2022. Redundancy Elimination in Distributed Matrix Computa-
tion. In SIGMOD. 573–586.

3677

