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ABSTRACT
We present a novel framework for uncertain data management,
called ActivePDB. We are given a relational probabilistic database,
where each tuple is correct with some probability; e.g., a database
constructed from textual data using information extraction. We
are now given a query and we want to determine the correctness
of its results. Unlike probabilistic databases, we have an oracle
that can resolve the uncertainty, such as a domain expert that can
verify data against their sources. Since verification may be costly,
our goal is to determine the correct output of the query, while
asking the oracle to verify as few tuples as possible. ActivePDB
provides an end-to-end solution to this problem. In a nutshell, we
first track provenance to identify which input tuples contribute to
the derivation of each output tuple, and in what ways. We then
design an active learning solution to iteratively choose tuples to
be verified based on the provenance structure and on an evolving
estimation of the probability of the tuples correctness. We will
demonstrate ActivePDB in the context of the NELL database of
extracted facts, allowing participants to both pose queries and play
the role of oracles.
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1 INTRODUCTION
Many scenarios involve data whose correctness is uncertain. A
common approach in these cases is to represent the information
in a probabilistic database [10], namely a database in which every
tuple is associated with a probability value reflecting the estimated
likelihood that it is correct. An example for a large-scale probabilis-
tic database is that of NELL (http://rtw.ml.cmu.edu/rtw/), consisting
of 50M facts that were automatically extracted from different web-
sites, each along with a confidence level.

There are multiple approaches for using uncertain data. One may
attempt to clean the database, namely to retain only correct tuples,
using fully automated techniques (e.g. [9]) or involving the help of
experts or crowd workers (e.g., [2]). Cleaning large databases such
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as NELL can still be an infeasible task, unless certain conditions
hold (e.g., all incorrect tuples violate certain types of constraints).
Alternatively, one may work directly with the uncertain data, prop-
agating the uncertainty to the query results [10, 11] and quantifying
their uncertainty or seeking consistent answers across all possible
worlds [8]. In some cases, however, we are required to resolve the
uncertainty: e.g., when query results are mission-critical or when
automated techniques are insufficiently certain. In such cases we
would like to efficiently determine the correct query results while
leveraging uncertainty information.

In this work, we lay the foundations for a novel hybrid approach,
which we term Active Probabilistic Databases. We are given both
an uncertain database and an oracle that is able to resolve the
uncertainty for any given tuple, e.g., a domain expert or workers
recruited through a crowdsourcing platform. For a query of interest,
we aim to verify the correctness of as few database tuples as possible
that would still allow us to produce correct (non-probabilistic) query
answers. In this sense, we differ from works on query evaluation
that work with a probabilistic database without aiming to resolve
it [10, 11] or that clean data without a probabilistic underlying
model [1]. In our framework, the tuples to verify are selected based
on the connection between query input and output and the correct-
ness probabilities. We iteratively select tuples and send verification
requests to the oracle until the correct answers are determined.

As we send input tuples to be verified, we also gradually refine
the probability estimation with respect to other, similar input tuples
(e.g., extracted from the same source). We thus combine correctness
verification with active learning of correctness probabilities.

Consider, for a simple example, a selection-projection (SP) query.
In this case, to verify the correctness of a given output tuple, it
suffices to identify one correct input tuple yielding it, or establish
that all such tuples are incorrect. Strategically, it may thus be ad-
visable to first verify a tuple with a high probability. This should
be weighed along with (1) input tuples contribution to resolving
correctness of other output tuples and (2) their contribution to the
quality of probability estimation w.r.t. other relevant input tuples.
Naturally, the analysis is more intricate for more complex queries.

Solution Overview. We provide an end-to-end solution for Ac-
tive Probabilistic Databases, focusing on the class of SPJU queries.
The architecture of our solution is depicted in Figure 1. The user
issues (step (1) in the Figure) a query over the database, and the
Query Evaluation module yields the query results along with their
provenance (step (2)). This provenance has the form of Boolean ex-
pressions, whose variables correspond to tuples have contributed
to the derivation of each query result [5]. Determining the cor-
rectness of a query result now amounts to determining the truth
value of the corresponding provenance expression, by (frugally)
probing the oracle to reveal truth values of the Boolean variables
occurring in it (see Section 3). To this end, the query results and
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Figure 1: Framework architecture

their provenance are then passed to the Manager Module. The Man-
ager also has access to past probes and answers from the Probes
Repository. Such known probe answers are assigned to the relevant
variables, and the expressions are simplified accordingly (step (3)).
Then (Step (4)), the Manager performs Active Query Evaluation, to
choose the next probe (see below). The oracle is probed to verify
the selected tuples (step (5)). In line with human-in-the-loop data
cleaning processes [2] and human-powered databases [1, 7], the
oracle is considered costly and may introduce higher latency; yet, it
performs a task that cannot be done automatically (or not with suffi-
cient accuracy). Thus, carefully choosing the requests to the oracle
is critical. The oracle answers are recorded in the Probes Repository.
If the (in)correctness of some output tuples are now resolved, the
user is notified about the (in)correctness of corresponding tuples.
Steps 3-6 repeat to choose subsequent probes.

The three modules that combine to implement Active Query
Evaluation (Step (4)) are our key technical contributions; they are
described briefly next, and in more detail in the following sections.

Learner (Section 3.2). An informed selection of oracle probes (i.e.
input tuples to be verified) relies on the estimation of probe answer
probabilities. Our framework includes a Learner module trained
for this task over past and incoming probe answers. We further
use a novel approach [6] to quantify the expected reduction in the
uncertainty of our estimation, yielded by a candidate probe. This
quantity is used as one of the criteria for probe selection, see below.

Utility Computation (Section 3.3). Given (estimated) probe answer
probabilities, we compute the expected utility of each possible probe
towards deciding the truth value of the provenance expressions.
For that, we adapt a suite of existing algorithms from the literature
on Interactive Boolean Evaluation, originally intended to evaluate a
single Boolean formula.

Probe Selector (Section 3.4). Each possible probe is assigned a
utility value and an uncertainty error reduction value (outputted by
the Learner). The Probe Selector Module addresses this exploration-
exploitation problem: exploitation corresponds here to progressing
towards revealing whether tuples are correct, and exploration cor-
responds to improving the quality of our probability estimation
with respect to future probe answers.

RelatedWork. Ourwork relates to Probabilistic Databases (e.g., [10,
11]) in the probabilistic relational model, as well as the use of prove-
nance [5]. Otherwise, our techniques and analysis are quite differ-
ent: resolving truth values enables active probability learning and
expression simplification that are not possible when uncertainty
persists. Consistent Query Answering (CQA) (e.g., [8]) is similar to
our approach in attempting to resolve the uncertainty, but differs
in looking for answers that appear in the query result with respect
to all possible worlds, rather than on a ground-truth world as we
do (and so CQA results are a subset of ours). The involvement of
oracles connects our work to human-powered databases (e.g., [7])
and data cleaning (e.g., [1, 2]). In particular, [1] uses crowd feedback
to fix a given query’s output by editing the input database; this dif-
fers from our focus on query output validation. To our knowledge,
ActivePDB is the first general-purpose framework that allows to
start with an uncertain database and get to certain query answers
by actively procuring tuple verification, alongside actively learning
correctness probabilities.

2 MODEL
2.1 Probabilistic Databases and Possible Worlds
A probabilistic database [10] is represented as �̄� = (𝐷,𝑋, 𝐿, 𝜋)
where 𝐷 is a relational database, 𝑋 is a set of Boolean variables,
𝐿 : tuples(𝐷)→𝑋 maps tuples to variables that annotate them, and
𝜋 : 𝑋 → [0, 1] reflects the (marginal) probability that the corre-
sponding tuple is correct. Unlike standard probabilistic databases,
𝜋 may initially be unknown, in which case it is learned (see below).

Example 2.1. Table 1 outlines a probabilistic database with three
relations: Acquisitions, including data on companies acquired by
other companies; Roles, including data on roles of different organiza-
tion members; and Education, including data on university alumni.
The right-most column shows the variable 𝑋 annotating the tuple,
which 𝜋 associates with some correctness probability.

A truth valuation val : 𝑋→{True, False} yields a possible world
𝐷val ⊆ 𝐷 , namely, the subset of database tuples whose variables
have been mapped to True. Given also a query 𝑄 over �̄� , a tuple 𝑡
is said to be correct w.r.t. val if 𝑡 is in the output of 𝑄 (𝐷val).

Example 2.2. As part of seeking promising entrepreneurs, an
analyst may issue the SPJU query in Figure 2 over the DB in Table 1,
which returns companies acquired since 2017 along with institutes
in which founders of these companies had studied. In the event
that the first two tuples in the Acquisitions relation are incorrect
(val(𝑎0) = val(𝑎1) = False) the query has no correct results. If,
alternatively, the first tuple of each of the three relations is correct
(i.e., val(𝑎0) = val(𝑟0) = val(𝑒0) = True), the query result tuple
(A2Bdone, U. Melbourne), derived from these input tuples, is correct.

2.2 The Active Model
Next, we diverge from the standard probabilistic databases model
in that we aim to reveal the correct query results by probing an
oracle. We assume a ground truth valuation val∗ reflecting the real
correctness of input tuples; val∗ may be (fully or partially) unknown
and its assignments can be discovered by oracle probes, where each
probe reveals val∗ (𝑥) for a specific 𝑥 ∈ 𝑋 . When val∗ is partially
known, we may use the known values and meta-data attributes
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Table 1: Example probabilistic database.

Acquisitions

Acquired Acquiring Date

A2Bdone Zazzer 7/11/2020 𝑎0
microBarg Zazzer 1/5/2017 𝑎1
fPharm Fiffer 1/2/2016 𝑎2
Optobest Fiffer 8/8/2015 𝑎3

Roles

Organization Role Member

A2Bdone Founder Usha Koirala 𝑟0
A2Bdone Founding member Pavel Lebedev 𝑟1
A2Bdone Founding member Nana Alvi 𝑟2
microBarg Co-founder Nana Alvi 𝑟3
microBarg Co-founder Gao Yawen 𝑟4

Education

Alumni Institute Year

Usha Koirala U. Melbourne 2017 𝑒0
Pavel Lebedev U. Melbourne 2017 𝑒1
Nana Alvi U. Sau Paolo 2012 𝑒2
Nana Alvi U. Melbourne 2017 𝑒3
Gao Yawen U. Sau Paolo 2012 𝑒4

1 SELECT DISTINCT a.Acquired, e.Institute
2 FROM Acquisitions AS a, Roles AS r, Education AS e
3 WHERE a.Acquired = r.Organization AND
4 r.Member = e.Alumni AND a.Date >= 2017.01.01 AND
5 r.Role LIKE '%found%' AND e.YEAR <= year(a.Date)

Figure 2: Query over the example database

to estimate correctness probability for the remaining tuples. We
use A(�̄�) to denote meta-data which may, e.g., include schema
information, properties of the data source, etc.

Problem definition. We are given a probabilistic database �̄� , (pos-
sibly without the probability distribution 𝜋 ), metadata A(�̄�) about
�̄�’s tuples and an SPJU query 𝑄 over �̄� . We assume an unknown
ground-truth valuation val∗ drawn from 𝜋 . We then iteratively se-
lect a tuple 𝑡 ∈ �̄� and verify its correctness, i.e., discover val∗ (𝑥)
for 𝑥 = 𝐿(𝑡), through an oracle call. Our goal is to verify the cor-
rectness of output tuples in 𝑄 (�̄�) while making a minimal number
of probes to the oracle in expectancy w.r.t. 𝜋 . If 𝜋 is unknown, we
may estimate it based on the accumulating probe answers along
with their metadata in A(�̄�).

3 SOLUTION ARCHITECTURE
We next elaborate on the components of ActivePDB.

3.1 Provenance
A key component in our solution is that of Boolean provenance [5],
computed alongside query evaluation (step 2 in Figure 1). Briefly,
given a probabilistic database �̄� = (𝐷,𝑋, 𝐿, 𝜋) and a query 𝑄 , we
compute the representation 𝑄 (�̄�) = (𝑄 (𝐷), Bool[𝑋 ], 𝐿′) that con-
sists of the “standard” query result and a labeling function 𝐿′ that
maps each output tuple 𝑡 to a Boolean expression over the input
annotations. Crucially, 𝐿′ has the property that a valuation val sat-
isfies 𝐿′(𝑡) if and only if 𝑡 is correct w.r.t. val. We focus on SPJU
queries, whose provenance can be computed in polynomial time
as monotone 𝑘-DNF expressions, i.e., without negation and where
terms (conjunctions) include at most 𝑘 variables.

Example 3.1. The result of applying the query from Figure 2 to
the DB in Table 1 is shown in Table 2, along with its provenance
in 3-DNF. In line with Example 2.2, since every provenance term
contains either 𝑎0 or 𝑎1, if val(𝑎0) = val(𝑎1) = False then all four
expressions are False, i.e., every output tuple is incorrect.

After provenance is computed, ActivePDB substitutes variables
with known probe answers recorded in the Probes Repository, if

Table 2: Result of the example query.

Acquired Institute

A2Bdone U. Melbourne (𝑎0∧𝑟0∧𝑒0) ∨ (𝑎0∧𝑟1∧𝑒1) ∨ (𝑎0∧𝑟2∧𝑒3)
A2Bdone U. Sau Paolo (𝑎0∧𝑟2∧𝑒2)
microBarg U. Melbourne (𝑎1∧𝑟3∧𝑒3)
microBarg U. Sau Paolo (𝑎1∧𝑟3∧𝑒2) ∨ (𝑎1∧𝑟4∧𝑒4)

exist, and simplifies the expressions accordingly (step 3 in Figure 1).
Next, we explain the use of such expressions in selecting the next
probe, by the Active Query Evaluation modules (step 4 in Figure 1).

3.2 Learner
Each answer from the oracle reveals the correctness of a specific
input tuple, but, as explained above, we also use it to estimate the
correctness of other tuples. Our Learner (step 4.1 in Figure 1) is
trained over each such incoming answer along with metadata of the
resolved tuple (e.g., the website fromwhich the tuple was extracted),
and has two types of output, per candidate probe: (1) the estimated
probability for a True probe answer, needed for estimating its ef-
fect on correctness computation; and (2) the expected uncertainty
reduction if we train the Learner with this probe’s answer, leading
to improved probability estimation in the next probe selection. The
first output depends on the concrete Learner used. For instance, in
the demonstration we train a Random Forest Classifier, where the
probability of that 𝑡 is correct is the fraction of trees which classify
𝑡 as correct. The second output follows an active learning paradigm,
where training data is actively chosen by the Learner to improve
the model’s accuracy, and is used as one of the criteria in selecting
probes. For quantifying uncertainty reduction, we use an advanced
approach called Learning Active Learning (LAL) [6]. Briefly, LAL
uses a regressor that is trained on an annotated dataset (possibly
from another domain). This regressor is transferred to predict the
expected error reduction, in our case, for a candidate probe and a
trained classifier, treating it as a regression problem.

3.3 Probe Utility Computation
Using the probe answer probabilities, the Utility Computation mod-
ule (step 4.2 in Figure 1) estimates the utility of each candidate
probe towards deciding the correctness of query output tuples. This
problem is closely related to Interactive Boolean Evaluation, namely,
revealing the truth value of a given Boolean formula by probing
truth values of its variables. Work in this area generally considers
Boolean Evaluation in isolation, namely, assumes fixed and known
variable probabilities and a single Boolean formula. We thus cannot
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Figure 3: Query results screen.

directly use them. In [4], by the present authors, such algorithms
were adapted to the context of consent management and in partic-
ular to support multiple formulas in a query output’s provenance.
In contrast, in the present work Boolean Evaluation is not the only
consideration in choosing among candidate probes. To allow com-
bining it with other factors we cast these algorithms through a
utility function assigning a score to every candidate probe.

We briefly and intuitively mention one utility function we de-
rived, where is an adaptation of an algorithm compatible with the
provenance shape of a specific query class. A function based on
the Q-Value approach of [3], which typically yields near-optimal
probe selection but requires both the DNF and CNF representations
of Boolean formulas. Hence, it is suitable e.g. for projection-free
(SJU) queries, where each output tuple depends on a bounded num-
ber of input tuples. Intuitively based on the number of DNF terms
and CNF clauses that each probe is expected to resolve. At each
point, we have a partial valuation val capturing the answers we
got so far. For a variable 𝑥 , let valx=True be the valuation iden-
tical to val except that it also assigns True to 𝑥 (and symmetri-
cally for False). Let Φ be a set of Boolean formulas and given a
formula 𝜑 ∈ Φ, denote by nt(𝜑) and nc(𝜑), respectively, the num-
ber of DNF terms and CNF clauses in 𝜑 . Denote by val(𝜑) the
formula obtained by replacing variables in 𝜑 with their assign-
ment in val. The Q-Value utility function can then be written as:
util(Φ, 𝜋, val, 𝑥) = ∑

𝜑 ∈Φ{nt(𝜑) · nc(𝜑) − 𝜋 (𝑥) · nt(valx=True (𝜑)) ·
nc(valx=True (𝜑)) − (1−𝜋 (𝑥)) ·nt(valx=False (𝜑)) ·nc(valx=False (𝜑)).

3.4 Probe Selector
The utility and the uncertainty reduction scores outputted by the
above two modules, are fed into the Probe Selector (step 4.3 in
Figure 1), whose role is to balance these two factors. Unlike clas-
sic exploration-exploitation problems such as multi-armed bandit,
exploitation in our case has a different flavor, since each probe elim-
inates some candidate probes (in particular, the same probe is never
issued twice). Our solution is to assign a score to each possible
probe that combines the probe’s estimated utility (denoted 𝑥) and
its effect on uncertainty (denoted 𝑦). An example commonly used
to combine rankings in IR is 𝑓 (𝑥,𝑦) := 𝑥 · (𝑦 + 1).

4 IMPLEMENTATION AND DEMO SCENARIO
ActivePDB is implemented using Scikit-learn, boolean.py (https:
//pypi.org/project/boolean.py/) and MySQL. Our implementation

Figure 4: Manual correctness verification screen.

incorporates several optimizations, including parallel implemen-
tation of the utility computation and efficient CNF computation
needed for the utility function Q-Value. We will demonstrate Ac-
tivePDB in the context of the NELL database mentioned above.

First, we will ask the audience to select a query to be issued
over the data, track the progress of verifying query results (as in
Figure 3) while a simulated expert answers probes about the query.
Initially, for all the output tuples, correctness is unknown (marked
by blue question marks); but as probe answers accumulate, more
tuples are resolved as (in)correct (green ✓/red x).

Next, we will change the system configuration (e.g., to use a dif-
ferent utility function), and switch off automated probe answering.
We will use a split screen to give both insights on the underlying
model and the probe answering interface: the first frame will show,
as before, the output tuples, this time along with their Boolean
expressions (right of Figure 3). The second frame will show, for
each unresolved variable, properties such as its current probability
estimated by our Learner and its current uncertainty reduction
estimation. We will be able to observe the gradual convergence of
probability estimation and uncertainty reduction. The third frame
will sequentially display the oracle questions in the form of Figure 4,
where tuple correctness can be verified by referring to the source
from which they were extracted. We will feed in different answers
and show their effect on the progress of determining correctness.
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