
VINCENT: Towards Efficient Exploratory Subgraph Search in
Graph Databases

Kai Huang §,†, Qingqing Ye †, Jing Zhao §, Xi Zhao §, Haibo Hu †, Xiaofang Zhou §
§Department of Computer Science and Engineering, The Hong Kong University of Science and Technology

†Department of Electronic and Information Engineering, Hong Kong Polytechnic University
ustkhuang|xizhao|zxf@ust.hk,qqing.ye|haibo.hu@polyu.edu.hk,jzhaobq@connect.ust.hk

ABSTRACT

Exploratory search is a search paradigm that plays a vital role in
databases, data mining, and information retrieval to assist users
to get familiar with the underlying databases. It supports itera-
tive query formulation to explore the data space. Despite its grow-
ing importance, exploratory search on graph-structured data has
not received adequate attention in the literature. In this paper, we
demonstrate a novel system called Vincent that facilitates an effi-
cient exploratory subgraph search in a graph database containing a
large collection of small or medium-sized graphs. By automatically
generating the content for panels in gui and diversified patterns
from databases and providing a visual result explorer, Vincent sup-
ports data-driven visual query formulation, incremental subgraph
processing, and efficient query result summarization.

PVLDB Reference Format:

Kai Huang, Qingqing Ye, Jing Zhao, Xi Zhao, Haibo Hu, Xiaofang Zhou.
VINCENT: Towards Efficient Exploratory Subgraph Search in Graph
Databases . PVLDB, 15(12): 3634-3637, 2022.
doi:10.14778/3554821.3554862

1 INTRODUCTION

Graph databases for small or medium-sized data graphs have been
extensively studied in the literature. It has become increasingly
prevalent in a variety of real-life applications, such as pattern recog-
nition, social networks and chemoinformatics. To retrieve valuable
information from the underlying databases, many query primitives
have been developed. Subgraph search is an important type of query
as well as a fundamental task for graph data management. Given
a query graph 𝑞 and a graph database 𝐷 = {𝐺1,𝐺2, ...,𝐺𝑖 , ...,𝐺𝑛},
subgraph search is to find all data graphs𝐺𝑖 that contain 𝑞 as a sub-
graph (i.e., subgraph search) or approximately contain 𝑞 allowing a
few missing edges (i.e., subgraph similarity search). Although recent
years have witnessed a rapid development of subgraph (similarity)
search, the vast majority of these efforts have focused on “lookup”
retrieval with the assumption that users have a clear intent and suf-
ficient knowledge of the underlying graph database such that they
can accurately specify their search goal in the form of a connected
query graph. However, this assumption is clearly impracticable as
graph databases grow rapidly in size.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 12 ISSN 2150-8097.
doi:10.14778/3554821.3554862

One may resort to exploratory search to address this problem,
as exploratory search provides a search paradigm that goes beyond
such lookup retrieval and typically involves users who may not
be familiar with the underlying data in a specific domain [1]. In
particular, it can assist users to iteratively or progressively formu-
late queries, explore the query results, know the infrastructure of
the underlying databases, and identify possible search directions.
For example, an user wants to query a substructure 𝑞, but she does
not have precise knowledge of the subgraph structure due to the
topological complexity of data graphs. This hinders the query for-
mulation, i.e., precisely representing the query graph𝑞. If there is an
efficient tool that supports exploratory search, Mary can formulate
an initial query graph (e.g., a subgraph of 𝑞) and then iteratively for-
mulate the query and explore the query results, and finally identify
the exact query 𝑞. In recent years, exploratory search in relational
databases has attracted a great deal of attention [4], but exploratory
search on graph-structured data has not received adequate atten-
tion in the literature. [5] is the first exploratory subgraph search
framework, which has many disadvantages such as the inability to
summarize query results for better exploring experience.

In this demonstration, we present a novel exploratory subgraph
search engine called Vincent, which has the following innovative
features. First, it generates a set of diversified patterns called TED
patterns (i.e., Top-k Edge-Diversified patterns), which can summa-
rize the characteristic of the underlying databases and the query
results. In particular, TED patterns achieves a guaranteed approxi-
mation ratio of edge coverage and its generation process requires
limited memory. Second, it provides a visual query interface that
supports user-friendly query formulation with the aid of TED pat-
terns, query rewrite, and efficient progressive query processing.
Third, it embodies the query results explorer to analyze various fea-
tures of the query results during the exploration process to better
facilitate understanding of the data space. Query results explorer can
take advantage of the TED patterns to guide the search directions.

2 SYSTEM ARCHITECTURE

Figure 1 shows the architecture of Vincent, which consists of five
modules, TED Pattern Generator, Query Editor, Index Constructor,
Query Processor, and Query Results Explorer. Given a graph database
𝐷 , TED Pattern Generator module generates the diversified patterns
(i.e., TED Patterns) from 𝐷 to summarize the database information.
Query Editor module automatically generates the visual query in-
terface to support the visual query formulation by displaying these
TED Patterns and efficient query processing with the aid of Query
Processor. As subgraph search is an NP-hard problem, Vincent
follows the “filter-and-verification” paradigm, i.e., using indices

3634

https://doi.org/10.14778/3554821.3554862
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3554821.3554862

GUI

Index
Constructor

Graph
Database

Indices

Query Editor
Query

Processor

TED Pattern
Generator

Query Results
Explorer

TED Explorer

Results
Viewer

Statistics
Generator

ResultsActions

Figure 1: The architecture of Vincent.

to filter some candidates to reduce verification. Index Constructor
module implements such a paradigm by constructing indices from
the database. Based on the generated indices, the Query Processor
module can efficiently process subgraph queries in a progressive
manner. To provide better exploratory experience, Query Results

Explorer that utilizes TED Patterns for exploring and summarizing
query results is presented. More details are discussed below.

TED Pattern Generator module. The TED Pattern Generator
module proposes the Ted algorithm to generate top-𝑘 TED Patterns
P = {𝑔1, 𝑔2, ..., 𝑔 𝑗 , ..., 𝑔𝑘 } such that (nearly) maximum number of
edges in 𝐷 = {𝐺1,𝐺2, ...,𝐺𝑖 , ...,𝐺𝑛} can be covered/matched by P.

Definition 1 (Subgraph isomorphism). Given two graphs

𝐺1 and𝐺2, a subgraph isomorphism is an injective function 𝑓 :𝑉 (𝐺1)
→ 𝑉 (𝐺2) such that 1) ∀𝑣 ∈ 𝑉 (𝐺1), 𝑙 (𝑣) = 𝑙 ′(𝑓 (𝑣)) and 2) ∀(𝑢, 𝑣) ∈
𝐸 (𝐺1), (𝑓 (𝑢), 𝑓 (𝑣)) ∈ 𝐸 (𝐺2) and 𝑙 (𝑢, 𝑣) = 𝑙 ′(𝑓 (𝑢), 𝑓 (𝑣)) where 𝑙
and 𝑙 ′ are the labeling functions of graph 𝐺1 and 𝐺2, respectively.

𝐺1 is subgraph isomorphic to 𝐺2 if there is at least one subgraph
isomorphism 𝑓 from𝐺1 to𝐺2. We also say that𝐺2 is covered by𝐺1
(denoted by 𝐺1 ⊆ 𝐺2). Given a subgraph isomorphism 𝑓 and the
subgraph𝐺 ′ of𝐺2 consisting of vertices 𝑓 (𝑣) and edges (𝑓 (𝑢), 𝑓 (𝑣))
where 𝑢, 𝑣 ∈ 𝑉 (𝐺1), we say that 𝐺 ′ is a matching of 𝐺1 in 𝐺2. The
edge (𝑓 (𝑢), 𝑓 (𝑣)) is the covered edge.

Definition 2 (Cover Set and Coverage). Given two graphs

𝐺1 = (𝑉1, 𝐸1) and 𝐺2 = (𝑉2, 𝐸2), if 𝐺1 is subgraph isomorphic to 𝐺2
and the matchings are F , the cover set of𝐺1 over𝐺2 is𝐶𝑜𝑣 (𝐺1,𝐺2) =
∪𝑓 ∈F (𝑓 (𝑢), 𝑓 (𝑣)) and the coverage is |𝐶𝑜𝑣 (𝐺1,𝐺2) |.

The cover set of a set of graphs G1 = {𝐺1,𝐺2, ...,𝐺𝑖 , ...,𝐺𝑛} over
graphs G2 = {𝐺 ′

1,𝐺
′
2, ...,𝐺

′
𝑗
, ...,𝐺 ′

𝑚} is defined as 𝐶𝑜𝑣 (G1,G2) =⋃
𝑖

⋃
𝑗 𝐶𝑜𝑣 (𝐺𝑖 ,𝐺

′
𝑗
) where 𝑖 ∈ [1, 𝑛] and 𝑗 ∈ [1,𝑚].

Hence, TED patterns P are graphs that maximize |𝐶𝑜𝑣 (G1,G2) |.
In general, Ted algorithm alternately performs subgraph enumera-
tion and search process to generate these top-𝑘 patterns. For sub-
graph enumeration, it adopts a depth-first search (dfs) strategy to
traverse the search space. For top-𝑘 pattern search on the enumer-
ated subgraphs, a swapping-based strategy is adopted to maintain
patterns with limited memory consumption. In particular, it first
enumerates all 1-sized subgraphs (i.e., edges) and appends them
to the set 𝑆𝑝 . Then an iterative process is performed to generate
final patterns P by taking 𝑆𝑝 and 𝐷 as inputs. Specifically, each

subgraph 𝑔 ∈ 𝑆𝑝 is first considered and removed from 𝑆𝑝 . Then,
the procedure PatMaintain is performed to update top-𝑘 patterns
P with newly enumerated subgraph 𝑔. After that, the right-most
extension method [6] extends each subgraph 𝑔 ∈ 𝑆𝑝 with one more
edge so that its supergraphs will be considered in the next iteration.
The process repeats until 𝑆𝑝 is empty. The details of PatMaintain
procedure are discussed below.

Pattern Maintenance (PatMaintain).As themax𝑘-cover problem
is a subproblem of top-𝑘 TED patterns discovery, greedy search-
based solutions typically find entire subgraphs and store them in
memory and hence cannot be effectively exploited for a large data-
base. To address this, PatMaintain maintains only 𝑘 patterns in
memory with a swapping-based method motivated by the exist-
ing maximum coverage solver in the context of a streaming sce-
nario. We first introduce the concepts of loss score and benefit score

below to facilitate exposition. Given a pattern set P and a data-
base 𝐷 , the loss score of a pattern 𝑝 ∈ P is the decrease in total
coverage caused by removing 𝑝 from P, i.e., Score𝐿 (𝑝,P, 𝐷) =

| ∪𝑝∈P 𝐶𝑜𝑣 (𝑝, 𝐷) \ ∪𝑝′∈P\𝑝𝐶𝑜𝑣 (𝑝 ′, 𝐷) |. The benefit score of a pat-
tern 𝑔 ∉ P is the increase of total coverage caused by adding 𝑔 to P,
i.e., Score𝐵 (𝑔,P, 𝐷) = | ∪𝑝′∈P∪{𝑔} 𝐶𝑜𝑣 (𝑝 ′, 𝐷) \ ∪𝑝∈P𝐶𝑜𝑣 (𝑝, 𝐷) |.

PatMaintain first greedily selects 𝑘 patterns into the pattern
set P. When a new subgraph 𝑔 is generated, a swapping-based
process is developed to determine if 𝑔 should be swapped into P.
Specifically, it first calculates and ranks the loss scores for each
pattern 𝑝 ∈ P, and then records the pattern 𝑝𝑡 and its pattern
score Score𝐿 such that 𝑝𝑡 has a minimum loss score. Meanwhile,
the benefit score Score𝐵 of 𝑔 is also recorded. The subgraph 𝑔

is considered as a promising candidate and swapped into P if
Score𝐵 > (1+𝛼)Score𝐿 + (1−𝛼) |𝐶𝑜𝑣 (P, 𝐷) |/𝑘 is satisfied, where
𝛼 ∈ [0, 1] is a swapping threshold for balancing loss score Score𝐿
and average coverage of patterns in P. The pattern 𝑝𝑡 is swapped
out if 𝑔 is swapped in. The pattern set P is hence updated. Note
that the approximation ratio (w.r.t., total coverage) of patterns P
is bounded by |𝐶𝑜𝑣 (P, 𝐷) |/|𝐶𝑜𝑣 (P𝑜𝑝𝑡 , 𝐷) | ≥ 1

4 where P𝑜𝑝𝑡 is the
optimal solution and can be obtained by greedily enumerating all
subgraphs and generating all possible combinations of 𝑘 subgraphs.

Theorem 1. Let P𝑜𝑝𝑡 be an optimal solution to the TED patterns

discovery problem. The approximation ratio of the patterns P gener-

ated by Ted is bounded by
|𝐶𝑜𝑣 (P,𝐷) |

|𝐶𝑜𝑣 (P𝑜𝑝𝑡 ,𝐷) | ≥
1
4 .

We can prove this theorem by reducing it to the Max 𝑘-cover prob-

lem: given a number𝑚 and a collection of sets 𝑆 , the Max 𝑘-cover

problem aims to find a set 𝑆 ′ ⊂ 𝑆 such that |𝑆 ′ | = 𝑚 and the
number of covered elements is maximized. This problem has a 1

4 -
approximation solution when the swapping strategy is adopted [7].
Observe that the problem has the same setting as our problem if all
promising patterns are generated. In addition, the same swapping
strategy [7] is adopted by default. Hence, the approximation ratio of
patterns P is bounded by |𝐶𝑜𝑣 (P, 𝐷) |/|𝐶𝑜𝑣 (P𝑜𝑝𝑡 , 𝐷) | ≥ 1

4 , which
is the best known bound for the maximum k-cover problem in the
context of a streaming scenario.

Query Editor module. Figure 2 depicts the screenshot of the
visual query interface of Vincent, which consists of four panels.
Panel 1 allows us to choose a dataset, load the database intomemory,
create a query, build an index, and execute query processing. When

3635

Figure 2: The interface of Vincent.

users load a database, Panel 2 that lists all the labeled vertices
is automatically generated by a depth first search on the graphs.
Panel 3 displays the TED patterns and groups them by their size.
Panel 4 provides a canvas where users can formulate the query
graph by dragging-and-dropping TED patterns from Panel 3 and
labeled vertices from Panel 2 as well as adding edges to connect
disconnected parts. Moreover, Vincent supports query rewrite on
Panel 3 and progressively executes the evolving queries by clicking
the “Run” button in Panel 1.

Index Constructor module. This module aims to build indices
for the underlying database to facilitate efficient exploratory visual
subgraph search. The indices in our context should not only pro-
cess the partially formulated query graph, but also utilize previous
query results to quickly generate the query results for the current
query. To this end, this module implements an action-aware in-
dexing framework called Prague [9]. Prague index is built upon
frequent fragments and discriminative infrequent fragments (dif for
short). Frequent fragments is also known as frequent subgraphs,
which is generated by gSpan algorithm [6]. The data graph𝐺𝑖 in 𝐷

that contains a frequent fragment 𝑔 is called the frequent support
fragment (fsg for short) of 𝑔. For ease of presentation, we also use
𝑓 𝑠𝑔𝐼𝑑𝑠 (𝑔) to denote the set of identifiers of fsgs of 𝑔.

Based on frequent fragments and discriminative infrequent frag-
ments, the indices consisting of the action-aware frequent index
(𝐴2𝐹) and the action-aware infrequent index (𝐴2𝐼) are constructed.
𝐴2𝐹 is used to prune the graphs that contain none of the frequent
fragments which are contained by the query. While𝐴2𝐼 is designed
for pruning infrequent spaces with the aid of difs.

Query Processor module. The query processor module is to
utilize the 𝐴2𝐹 and 𝐴2𝐼 indices to improve query efficiency. Given
a query 𝑞, this module generally consists of two procedures, the
offline computation and the online processing. The former is to
filter the data graphs that are definitely not the supergraph of 𝑔
and return the filtered results 𝑅𝑞 . This can be cast as an offline
process as it is can be done by utilizing the gui latency. The latter
is to further verify the query results over 𝑅𝑞 by executing subgraph
isomorphism testing after the “Run” button is clicked.

Observe that users involved in exploratory subgraph search
tend to iteratively reformulate and re-execute a query fragment by
adding new query graphs (i.e., TED patterns from Panel 3) or nodes

Figure 3: Query Results Explorer.

Figure 4: TED Explorer.

(i.e., labeled vertices from Panel 2), the edge list 𝑒𝐿𝑖𝑠𝑡 is adopted to
store all newly added edges including those of TED patterns. These
edges are gradually added to the query 𝑞 such that 𝑞 always remains
connected and a dynamic index called spig set [9] is constructed
on the fly. The identifiers of data graphs (i.e., fsg identifiers) that
contains the query fragment 𝑞 (denoted by 𝑅𝑞) are then obtained.
As 𝑞 can be a frequent fragment, dif, and non-dif, different steps
are introduced. If 𝑞 is a frequent fragment, the 𝑓 𝑠𝑔𝐼𝑑𝑠 (𝑞) can be
retrieved from 𝐴2𝐼 ; if it is a dif, then 𝑓 𝑠𝑔𝐼𝑑𝑠 (𝑞) can be retrieved
from 𝐴2𝐹 ; otherwise, the spig set and the action-aware indices are
teamed to generate the candidate set. If 𝑅𝑞 is empty at a specific
step, a similarity search process are implemented by using the spig
set to identify relevant subgraphs of 𝑞, which need to be matched
for retrieving candidates. Once a user clicks on the “Run” button,
the online processing is activated. If 𝑞 is a frequent fragment or dif,
𝑅𝑞 is directly derived; otherwise, subgraph isomorphism testing,
e.g., VF2, for exact search or mccs-based similarity verification [9]
is used to verify the query results in 𝑅𝑞 .

Query Results Explorer module. This module enables users
to analyze and explore the query results to identify possible search
directions. To this end, it includes three submodules, Results Viewer,
TED Explorer, and Statistics Generator. As depicted in Figure 3, Re-
sults Viewer (the part circled in red, Figure 3) provides a multi-
stream results viewer to view and analyze former and current re-
sults during an exploratory search in a user-friendly manner. The
multi-stream results viewer enables users to view the query results,
highlighted matched parts, total number of matchings, etc. TED
Explorer module is to generate and display the TED patterns for the
query results. As TED patterns can summarize the characteristic

3636

of graphs, this module can enable users to better understand the
results space. When users click the “TED” button (top left, Figure
3), the TED Explorer is activated and TED patterns are generated
(see Figure 4). As shown in this figure, users are allowed to spec-
ify parameters such as minimum/maximum number of edges (i.e.,
MinE and MaxE), value of 𝑘 , minimum support, etc. The total edge
coverage is also displayed accordingly. Statistics Generator module
can generate different topological and statistical properties for dif-
ferent search streams, and allow users to view and compare them
by clicking the “KCores” and “Distribution” buttons (next to “TED”
button, Figure 3).

3 RELATED SYSTEMS AND NOVELTY

There is extensive work in classical subgraph search and subgraph
similarity search, involving not only a set of small or medium-sized
graphs [13] but also a single large graph [8, 11]. They focus on
efficient subgraph query processing methods instead of exploratory
subgraph search. Although [3, 9, 12] can better support exploratory
subgraph search or visual query formulation, they are orthogonal
to our work as they are necessary steps in Vincent framework.

Research prototypes on subgraph search such as Gblender [10]
and AURORA [14] have recently been demonstrated in data man-
agement venues. However, these efforts do not focus on exploratory
search. Gblender [10] is such a demonstration system that blends
the formulation and processing of visual subgraph queries. The
query graph was executed once in contrast to iterative query re-
formulation and execution during an exploratory search. AURORA
[14] is designed for the construction of data-driven visual subgraph
query interfaces.

Vincent is built on top of the first exploratory subgraph search
framework picasso [5] . However, picasso has the following disad-
vantages: 1) the visual patterns picasso generated have no quality
guarantee in terms of edge coverage. In contrast, the TED patterns
(Panel 3, Figure 2) generated by Vincent can achieve a guaranteed
approximation ratio of edge coverage (see Theorem 1) and the gener-
ation process requires limited memory; 2) picasso cannot generate
summary information for the query results while Vincent utilizes
TED Explorer to facilitate identifying possible search directions.

4 DEMONSTRATION OVERVIEW

Vincent is implemented in Java JDK 1.8. It will be loaded with
several real datasets including aids1, and eMolecules2. Example
query graphs will be presented for exploratory search. Users can
also write their own ad-hoc queries through our gui. The key objec-
tive of the demonstration is to enable the audience to interactively
experience multiple reformulations of the initial subgraph query
in a progressive manner to learn about the underlying data space
to identify possible search directions. In particular, it enables the
audience to interactively experience the following.

Scenario 1: Data-driven visual query formulation. The vi-
sual query interface of Vincent (Figure 2) enables the audience to
load databases into memory (Panel 1, Figure 2), generate diversified
patterns (i.e., TED patterns) from the databases to display on the
gui (Panel 3), create a canvas to visually formulate and reformulate

1https://wiki.nci.nih.gov/display/NCIDTPdata/AIDS+Antiviral+Screen+Data
2https://www.emolecules.com/info/plus/download-database

queries (Panel 4) by dragging-and-dropping TED patterns from
Panel 3 and labeled vertices from Panel 2. Consequently, one will be
able to formulate visual subgraph queries effortlessly over different
graph databases.

Scenario 2: Incremental subgraph processing. Vincent en-
ables the audience to gain a better query experience by exploring
the underlying data graphs through iterative refinement of a sub-
graph query, incrementally generating results of a query fragment
in real time by clicking the “Run” button in Panel 1 (Figure 2) to
leverage the Query Processor module.

Scenario 3: Efficient query result summarization. Vincent
enables users to analyze and explore query results to identify possi-
ble search directions. When users click the “TED” button (top left,
Figure 3), the TED Explorer is activated and TED patterns are gen-
erated (see Figure 4). The audience is able to view the summary in-
formation and specify the parameters such as minimum/maximum
number of edges to obtain more details. They can also acquire
different topological and statistical properties for different search
streams, view and compare them by clicking the “KCores” and
“Distribution” buttons (Figure 3).

A demonstration video is publicly available at https://www.
youtube.com/video/rP9Csi2oJTo/.

ACKNOWLEDGMENTS

The research work described in this paper was partially conducted
in the JC STEM Lab of Data Science Foundations funded by The
Hong Kong Jockey Club Charities Trust. This work was also sup-
ported by the National Natural Science Foundation of China (Grant
No: 62072390 and 62102334), and the Research Grants Council,
Hong Kong SAR, China (Grant No: 15222118, 15218919, 15203120,
15226221, 15225921 and C2004-21GF).

REFERENCES

[1] White R W, Roth R A. Exploratory search: Beyond the query-response paradigm.
Synthesis lectures on information concepts, retrieval, and services, 1(1): 1-98, 2009.

[2] Ahn J, Brusilovsky P. Adaptive visualization for exploratory information retrieval.
Info. Proc. & Man., 49(5): 1139-1164, 2013.

[3] Huang K, Chua H E, et al. MIDAS: Towards Efficient and Effective Maintenance
of Canned Patterns in Visual Graph Query Interfaces. In SIGMOD, 2021.

[4] Idreos S, Papaemmanouil O, Chaudhuri S. Overview of data exploration tech-
niques. In SIGMOD, 2015.

[5] Huang K, Bhowmick S S, Zhou S, et al. Picasso: exploratory search of connected
subgraph substructures in graph databases. In PVLDB, 2017.

[6] Yan X, Han J. gspan: Graph-based substructure pattern mining. In ICDE, 2002.
[7] Feige U. A threshold of ln n for approximating set cover. Journal of ACM, 45(4):

634-652, 1998.
[8] Huang K, Hu H, Zhou S, et al. Privacy and efficiency guaranteed social subgraph

matching. The VLDB Journal, 31(3): 581-602, 2022.
[9] Jin C, Bhowmick S S, Choi B, et al. prague: A practical framework for blending

visual subgraph query formulation and query processing. In ICDE, 2012.
[10] Jin C, Bhowmick S S, Xiao X, et al. GBLENDER: visual subgraph query formula-

tion meets query processing. In SIGMOD, 2011.
[11] Bi F, Chang L, Lin X, et al. Efficient subgraph matching by postponing cartesian

products. In SIGMOD, 2016.
[12] Huang K, Chua H E, Bhowmick S S, et al. CATAPULT: data-driven selection of

canned patterns for efficient visual graph query formulation. In SIGMOD, 2019.
[13] Katsarou F, Ntarmos N, Triantallou P. Performance and Scalability of Indexed

Subgraph Query Processing Methods. In PVLDB, 2015.
[14] Bhowmick S S, Huang K, Chua H E, et al. AURORA: data-driven construction of

visual graph query interfaces for graph databases. In SIGMOD, 2020.

3637

https://www.youtube.com/video/rP9Csi2oJTo/
https://www.youtube.com/video/rP9Csi2oJTo/

