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ABSTRACT
Our ability to collect data is rapidly outstripping our ability to ef-

fectively store and use it. Organizations are therefore facing tough

decisions of what data to archive (or dispose of) to effectively meet

their business goals. PHOcus addresses this problem in the context

of image data (photos) by proposing which photos to archive to

meet an online storage budget. The decision is based on factors

such as usage patterns and their relative importance, the quality

and size of a photo, the relevance of a photo for a usage pattern, the

similarity between different photos, as well as policy requirements

of what photos must be retained. We formalize the photo archival

problem and give an efficient algorithm with an optimal approxi-

mation guarantee. We then demonstrate our system, PHOcus, on

an e-commerce application as well as with personal photos on a

smartphone, and discuss how many of the inputs to the problem

can be automatically obtained.

PVLDB Reference Format:
Susan B. Davidson, Shay Gershtein, Tova Milo, Slava Novgorodov, and May

Shoshan. PHOcus: Efficiently Archiving Photos. PVLDB, 15(12): 3630 -

3633, 2022.

doi:10.14778/3554821.3554861

1 INTRODUCTION
Although the Big Data revolution has enabled incredible advances

in areas such as medicine, commerce, transportation, and science,

we are facing an inflection point [9]: The ability to collect data

outstrips our ability to effectively use it and will eventually outstrip

our ability to store it [2]. Organizations must therefore determine

which data to move to larger, cheaper, and typically slower storage

(or dispose of) to meet an online storage budget, based on factors

such as usage patterns (workflows) and relative importance of the

workflows, the quality and size of data as well as the similarity
between different data, requirements on the quality of input data

to the workflows, as well as policy requirements, e.g. GDPR [3]

regulations or document retention regulations for banks. Due to

the volume of data, these disposal decisions must be automated.

Image data is an important special case of this problem due to

the large file sizes as well as its abundance: it is estimated that

up to three billion images are shared on the internet daily, with
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more than 340 million photos being uploaded on Facebook, over

90 million photos being posted on Instagram and more than 500

million GIFs posted on Twitter.

As a concrete example of the need to reduce the amount of online

image data, consider an e-commerce application such as XYZ
1
.

XYZ has a huge archive of images of products that are displayed

throughout a hierarchy of landing pages of product categories. For

each page, there is a pre-defined subset of images that are relevant

for the product category, out of which a small set are displayed.

Each image may be relevant for a large number of different pages,

and its value may differ between pages. For example, an image of

an iPhone which shows the model number may be very valuable

for a page which compares different models of iPhones, but not as

valuable for a page which displays smartphones in general. Some

of the images may also be required to appear on certain pages due

to legal contracts (policies). For example, a company may require

only approved images to be used on pages that are specific to

their products. Finally, the landing pages themselves may vary in

importance, reflecting the relative popularity of product categories.

To speed up the page display, images that are used on pages are

stored in a fast-access cache, which is much smaller than the size

of the archive. The problem is to find a set of images that can fit in

the cache, meet the content and policy requirements of each of the

landing pages, and maximize the value over all pages.

The e-commerce example is just one among many instances

of what we call the Photo Archive Reduction problem (PAR). At a

personal level, you may encounter it as the need to delete photos

locally on your smartphone to meet some storage budget, relying

on cloud storage for your full set of photos. You may have explicitly

organized subsets of the photos in albums, or implicitly organized

them by labeling photos with the same tag. Image tagging software

may also automatically organize photos by features such as date,

location and facial recognition. You may require that some of your

photos remain in local storage for fast access, for example, photos of

your passport, vaccination record and recent favorite photos of your

family. Again, the problem is to automate the (local) deletion (and

uploading to the cloud) of photos to maximize the value across these

pre-defined subsets of photos and satisfy retention requirements to

meet storage constraints.

The PHOcus system, presented in this demo, address this impor-

tant problem. Our first contribution in this demo is a formalization

of PAR, its inputs, and the optimization goal used in PHOcus. Our

second contribution is the algorithm underlying our implementa-

tion. Since an exact solution for PAR is not computationally feasible,

1
Company name omitted due to privacy considerations.
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we use in PHOcus an efficient algorithm with an optimal approx-

imation guarantee. Our third contribution is a demonstration of

how to obtain the inputs to PAR. Some of these inputs are straight-

forward – the input set of photos, the size of each photo, retention

requirements, and the overall storage constraint. Other inputs seem

difficult to obtain, but in fact there are common practical solutions

for obtaining them automatically. We show examples of how to

do this in the e-commerce setting in the demo – the pre-defined

subsets of photos, the relative importance of pre-defined subsets of

photos, or the value of a photo for a pre-defined subset. Our final

contribution is a demonstration of the operation of PHOcus in the

two scenarios discussed above. In particular, PHOcus proposes a

solution which can be easily refined manually if desired.

It should be noted that we have also evaluated the e-commerce

application within XYZ on several product categories (separately,

as each category is assigned different analysts and has its own

space constraint). Initial reports indicate that PHOcus significantly

reduces manual work; concretely, analysts reported that it took

them less then 10 minutes on medium size datasets compared to

hours of manual work invested without PHOcus.

Demonstration Overview. Our demonstration will showcase

the two photo archiving use-cases described above. The first use-

case demonstrates how PHOcus is being used in an e-commerce

company for deriving a space efficient subset of representative fast-

cached photos for landing pages. The second use-case demonstrates

the management of personal photo albums, which may be of more

general interest to the audience. For each use-case, the demonstra-

tion consists of two parts: (1) examining the raw data and defining

a specific instance of PAR by providing the necessary input; and (2)

interactively adjusting the requirements to fine-tune the solution.

2 RELATEDWORK
The problem of selecting a subset of photos has been considered in

various settings, e.g. image collection for e-commerce, story-telling

from personal albums, online image recommendation systems, and

while training machine learning algorithms [11–14, 16].

However, this work differs in several important ways from our

setting. First, while most work has a similar goal of summariza-
tion they also directly optimize the diversity of the selected photos,

which leads to non-monotone objective functions [14, 16]. In con-

trast, diversity is a by-product of the similarity function used in

our setting, guaranteeing monotonicity of the objective function

and thus allowing for approximation guarantees (see Section 3).

Second, most work aims to select a specified number of photos
[12–14, 16], whereas our setting is more general: the cardinality

constraint is extended to a knapsack constraint (a bound on the

sum of non-uniform sizes of the photos). To allow the user control

of which aspects/categories of photos should be preserved and to

what extent, our input includes an explicit specification of the rel-

evant photo subsets (along with importance weights), instead of

attempting to derive such aspects implicitly based on embedding

similarity or clustering [12, 14]. Caching algorithms (e.g., [7, 17])

are also related, but in contrast to our work these works either only

consider varying size individual items without predefined subsets

(as, e.g. in files caching) or do consider item subsets but of fix size

items (as e.g., in semantic query caching).

To model the distances/similarities of photos to measure how

well a non-selected photo is captured by the retained photos, we

adapt existing techniques [14] to our setting, as discussed in Section

4. Finally, we note that there are similar problems in other domains,

where the set of items does not consist of photos. For example, [4]

studied the optimal selection of products to offer for sale out of the

entire catalog. While the input derivation is naturally unrelated,

the theoretical approach is a simplified variant of our solution.

3 MODEL AND APPROACH
We now describe the formal model of PAR, discuss the algorithmic

approach, and contrast our solution with related work.

Input. The input set of photos is denoted by 𝑃 , and the set of

photos that must be retained by 𝑆0. The number of input photos is

denoted by 𝑛 = |𝑃 |. The cost of each photo is its size (in terms of

the disk space required to store it) and is given by the cost function

C : 𝑃 ↦→ R+. For a subset of photos 𝑆 ⊆ 𝑃 , we denote its cost, which

is defined as the sum of the individual costs, by C(𝑆) = ∑
𝑝∈𝑆 C(𝑝).

The set of pre-defined subsets of photos is denoted by 𝑄 ⊆ 2
𝑃
.

The function W : 𝑄 ↦→ R+ assigns a positive weight to each

pre-defined subset, to reflect its importance (i.e. how valuable it is

to retain the photos in this subset). Given any specific 𝑞 ∈ 𝑄 , the

relevance function R : 𝑄 × 𝑃 ↦→ R+ assigns a score to each photo 𝑝

in 𝑞 that reflects how relevant it is for this pre-defined subset (the

score for photos in 𝑃 \ 𝑞 is 0). The relevance scores of all photos

in a pre-defined subset are normalized (in advance) to sum up to 1:

∀𝑞 ∈ 𝑄 :

∑
𝑝∈𝑞 R(𝑞, 𝑝) = 1. A (contextualized) similarity function

SIM : 𝑄 × 𝑃 × 𝑃 ↦→ [0, 1] produces a normalized measure of the

similarity of any given pair of photos, w.r.t. a given pre-defined

subset. Note that the similarity of any pair of photos differs based

on the pre-defined subset, which is referred to as the context of the
similarity. In particular, if at least one of the two photos is not in the

context subset, then the similarity score is defined to be 0. Moreover,

the similarity of any photo to itself is 1. However, a similarity score

of 1 does not necessarily imply that the pair of photos are identical.

Lastly, the budget 𝐵 is an upper bound on the cost of the solution,

e.g., the capacity of the cache. Hence, the complete input for a PAR

instance consists of the tuple ⟨𝑃, 𝑆0, 𝑄, C,W,R,SIM, 𝐵⟩.

Example 3.1. Consider the e-commerce application introduced

earlier, which will form the basis of the demo: 𝑃 is the image archive.

𝑆0 is the set of images that are required to appear on certain pages

due to legal contracts. 𝑄 represents the set of landing pages, each

of which is defined by a set of relevant images for the page and its

title (e.g., “Nike red shirts”, “LG smartphones” or “shoes”). C gives

the size of each image. W represents the relative importance of

concrete landing page and is calculated based on the landing page

popularity, i.e. the number of visits in the last 90 days, normalized by

sum of all visits to all landing pages. R represents the relevance of

each image to the landing page, and is computed based both on the

quality of the image (using an internal model [1]) and the relevance

score of the product represented in the image (using the product

title and search engine retrieval score). Finally, SIM (similarity) is

calculated using cosine similarity between image embeddings. The

embeddings are based on the ResNet-50 network [5] and is trained

on over 50M product images [1].
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Objective. Given an input PAR instance, the goal is to find the

“best" subset of photos to retain, i.e a solution 𝑆 ⊆ 𝑃 such that

C(𝑆) ≤ 𝐵, 𝑆0 ⊆ 𝑆 , and the score of 𝑆 is maximized. To describe how

a solution is scored, we first need the following definition: given a

pre-defined subset 𝑞 ∈ 𝑄 , a photo 𝑝 ∈ 𝑞, and a solution 𝑆 ⊆ 𝑃 , the

nearest neighbour of 𝑝 in 𝑆 w.r.t.𝑞 is themost similar photo in 𝑆∩𝑞 to
𝑝 , denoted by𝑁𝑁 (𝑞, 𝑝, 𝑆) = argmax𝑝′∈𝑆∩𝑞 SIM(𝑞, 𝑝, 𝑝 ′) (if there
are several such photos, we choose one arbitrarily). Observe that if

𝑝 ∈ 𝑆 , then 𝑁𝑁 (𝑞, 𝑝, 𝑆) = 𝑝 . Note that defining the contribution to

the objective over a specific non-selected photo via the similarity

to the nearest neighbor implies that solving the problem over each

single subset is equivalent to the facility location problem, which is

a typical modeling choice. We define the score of a solution 𝑆 w.r.t.

a given pre-defined subset 𝑞 ∈ 𝑄 as

G(𝑞, 𝑆) =
∑︁
𝑝∈𝑞

R(𝑞, 𝑝) · SIM(𝑞, 𝑝, 𝑁𝑁 (𝑞, 𝑝, 𝑆)) .

Abusing notation, the overall score of a solution 𝑆 is defined as

the weighted sum of the scores w.r.t. pre-defined subsets :

G(𝑆) =
∑︁
𝑞∈𝑄

𝑊 (𝑞) · G(𝑞, 𝑆) .

Thus, the goal is to produce argmax𝑆0⊆𝑆⊆𝑃,C(𝑆) ≤𝐵 G(𝑆).
Theoretical Approach. It can be shown that PAR cannot be

approximated beyond a (1 − 1/𝑒) factor, unless 𝑃 = 𝑁𝑃 , via a

straightforward reduction from the Maximum Coverage problem.

We, nevertheless, solve the problem via an efficient algorithm with

a tight worst-case approximation guarantee.

Concretely, since the objective function can be proved to be non-

negative, monotone and submodular, we use the approach of [15]

that applies to the maximization of such set functions subject to a

knapsack constraint, which in our setting is the budget constraint.

The proof of these properties can be found in a full version of this

demo paper (in preparation).

The algorithm of [15] is an extension of the standard iterative

greedy algorithm that also uses enumeration. In the following de-

scription, the construction of each examined solution begins with

selecting all photos in 𝑆0. For brevity, we describe the algorithm for

𝑆0 = ∅, however, note that, in general, the final solution is the union
of the described solution with 𝑆0 (the approximation guarantees

may only improve when 𝑆0 ≠ ∅). The algorithm first examines all

solutions of cardinality at most 2 (i.e. 1 or 2 photos), denoting the

best such solution by 𝑆1. It also examines all valid selections of

size 3 (there are at most 𝑂 (𝑛3) such selections), unrelated to 𝑆1,

and greedily extends each such selection until reaching the budget

bound, denoting the best such solution by 𝑆2. The final output is

the best solution out of 𝑆1 and 𝑆2. This algorithm is proven in [15]

to achieve a (1 − 1/𝑒) approximation ratio, which is optimal, given

the aforementioned hardness bound.

Optimizations. To facilitate efficiency, we leverage both the fact

that the above algorithm is embarrassingly parallelizable and the

submodularity of the objective which lends itself to an improved

implementation of the greedy procedure employed by the algo-

rithm. Concretely, observe that all 𝑂 (𝑛2) solutions examined for

deriving 𝑆1 and all 𝑂 (𝑛3) greedy procedures employed to derive

𝑆2 are completely independent, and thus can be evaluated in paral-

lel. Furthermore, for the greedy procedure we use the accelerated

Photos & Metadata

-----------
-----------
-----------
-----------

Modeled data Retained photos

Size Constraint

Data 
Representation 

Module

Solver

User Interface

Analysis

Figure 1: System Architecture

implementation of [10], which employs lazy evaluations that take

advantage of the submodularity of the objective to examine fewer

possible solutions.

4 SYSTEM ARCHITECTURE
We implemented PHOcus using Python and Flask, and its high-level

architecture is shown in Figure 1. The system consists of a user

interface and two modules: the Data Representation Module and the
Solver. The user interacts with the system via the UI to specify the

input, as described below. Note that the similarity function SIM
is computed automatically at a later stage.

The pre-defined subsets may be specified in one of three ways:

(1) Directly: each photo is tagged with all the subsets that

include it. The relevance scores, which are assumed to be

uniform by default, may be adjusted via the UI;

(2) Queries: users provide queries such as ("Paris vacation"),

and the subsets are computed via the PHOcus search engine.

The confidence scores of the engine are then converted into

the relevance scores; or

(3) Automatic tagging: Subsets are derived by automatic tag-

ging methods. The weights for subsets derived by all meth-

ods may be adjusted using dedicated UI.

The Data Representation module receives this input and, if it

contains user-provided queries, uses an internal search engine to

compute the result sets and the relevance scores. It then normalizes

the relevance scores (as described in Section 3), and derives the

contextualized similarities (SIM). This is done using the approach

in [14], which computes the distance between two photos based

on both quantitative and categorical attributes that are derived via

standard methods, including, e.g., reading the EXIF metadata and

generating visual words via the SIFT algorithm [8]. An important

adaptation to our setting, however, is normalizing the distances

differently for each context subset. This is done by dividing all

distances by the maximum distance between any two photos in

the context. Intuitively, this emphasizes smaller variations across

photos for more granular queries. For example, when searching for

photos of all “trips", having many photos of the same trip to Paris

in 2016 may seem redundant. However, when searching for this

specific trip, photos are only redundant if they are very similar in

more specific features (e.g., many photos of Eiffel Tower taken in

the same day).

The complete input is then passed to the Solver module, which

runs the optimization algorithm described in Section 3. The pro-

posed solution is finally displayed to the user, along with various

metrics, as discussed next in Section 5.
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Figure 2: Generating the input

5 DEMONSTRATION SCENARIO
To highlight the general applicability of our model and approach,

our demonstration will showcase the two photo archiving use-cases

described in the introduction. The first use-case demonstrates how

PHOcus would be used in an e-commerce company for deriving

a space efficient subset of representative fast-cached photos for

landing pages, whereas the second use-case demonstrates the man-

agement of personal photo albums, which may be of more general

interest. PHOcus schematically operates the same for both cases.

The demonstration consists of two parts: (1) examining the raw

data and defining a specific instance of PAR by providing the nec-

essary input; and (2) interactively adjusting the requirements to

fine-tune the solution.

Defining a problem instance. The audience will play the role

of a user who wishes to reduce a photo archive to fit into a specified

space constraint; in the e-commerce scenario the user is typically a

business analyst. The audience will first choose one of the two use-

cases, and the dataset will be presented via the UI. The e-commerce

dataset is a real-life XYZ dataset used for this problem, whereas the

personal photo dataset is taken from [6].

The user may examine the photos and click on each one to view

its size and any existing metadata, and then specify the input using

the UI. Most importantly, users may specify the input subsets by

adding tags to photos, submitting queries to the search bar, or

enabling automatic tag generation (as discussed in Section 4). An

example of specifying subsets that fits specific tag is given in Figure

2, where the user first has clicked on several photos (indicated by

red boxes), and then entered a tag next to the submit button. For

the e-commerce use-case there is already an initial set of photos

used by XYZ, which the user may also use. The user will indicate

the relative importance weights of the subsets using sliders; the

relevance scores may also be viewed and adjusting using a similar

UI. Finally, a user may mark specific photos to add to 𝑆0, the set of

photos that must be retained, and specify the total space capacity

of the final reduced collection.

Interactive adjustments. To continue our demonstration, PHO-

cus will compute the solution and present to the user the suggested

set of photos to retain (the user is also shown the complement

set). The user can examine separately the retained photos for each

pre-defined subset and sort the photos by various metrics. These

metrics include the contribution to the score over that subset or the

Figure 3: Analysis

contribution normalized by the size, and are displayed by clicking

on a photo. Moreover, the user can view the granular scores over

the subsets, and for each subset the user can inspect the photos that

were not selected. By clicking on such a photo, PHOcus shows the se-
lected photo that is most similar to it. The user may then modify the

solution by adjusting the input (the subsets, their weights, and the

budget), requiring that some specific photos are retained/disposed

of, and even manually adjusting the relevance scores for the result

sets computed for the queries, which can be inspected in a separate

view. PHOcus will then recompute the solution and present it to

the user along with a compact visualization of the changes, thereby

allowing a “what-if”-style analysis, as illustrated in Figure 3.
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