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ABSTRACT

Manual analysis on plan regression is both labor-intensive and in-
efficient for a large query plan and numerous queries. In this paper,
we demonstrate AutoDI, an automatic detection and inference tool
that has been developed to investigate why a sub-optimal plan is
obtained by analyzing two different plans of the same query. Au-
toDI consists of two main modules, Difference Finder and Inference.
The former aims to find where the two plans are different, and the
latter tries to obtain the reasons why the differences come out. In
our demonstration, we use a real plan regression in TiDB to show
how AutoDI works.
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1 INTRODUCTION

Motivation. Database vendors have been spending substantial re-
sources on plan quality assurance. There are two common ways to
achieve so. The first way is via a SQL tuning advisor [3, 4], target-
ing for database users to avoid a sub-optimal plan on a production
database system. For example, Oracle provides the SQL Tuning
Advisor [3], where users can submit one or more SQL statements
as the input to the advisor and receive advice or recommendations
on how to tune the statements, e.g., updating statistics, along with
a rationale and expected benefit. It tries the possible optimizations,
e.g., calling the index advisor to create or drop some indexes. By
comparing the performance of the default plan with the newly
generated plan that has a lower query latency, it gives the recom-
mendations. Obviously, it is uninformed for optimizer developers
to quickly find the reason why such differences (performance re-
gression or performance improvement) come out. The second way
is via the optimizer testing [5, 8, 10], targeting for the optimizer
development team before releasing a new optimizer version. Most
of these studies introduce a metric to assess the accuracy of the
optimizer based on the estimated cost rank and runtime rank of
the possible plans. These metrics can be an early warning of an
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optimizer while they still could not provide the sufficient feedback
from a certain query.

A simple but important question is: if we find that a worse
plan was chosen by the optimizer in default during the testing,
what are the reasons behind that? Two common scenarios that
sub-optimal plans are generated can happen in the optimizer test:
Case 1: Different Cost Rank and Runtime Rank. For each query, a plan
enumeration process will be called to find a set of plan candidates
that are equivalent to the one generated in default. These plans will
be costed and executed. After that, a plan regression will be found
if a plan with larger cost than the default one has a lower runtime.
Case 2: Regression In Different Optimizer Versions. The newly gen-

erated plan will be also compared to the one generated by the last
optimizer version. Similarly, a plan regression will be found if the
runtime of the new plan is larger than the old one.

To answer the above question, a manual analysis has to be con-
ducted by the optimizer development team at the moment. Such an
analysis consists of two steps: 1) find the differences between two
plans, 2) check out possible reasons with the corresponding col-
lected data e.g., operators’ cardinality, estimated cost, and running
time. However, if the number of problematic queries or the plan
tree is large, it becomes labor-intensive work and is challenging
for a developer to quickly find out the differences between two
different plans, and more importantly, the underlying reasons for
OLAP queries.

Studied Problem. Given two different plans of the same query, P;
and Py, Pj.cost < Py.cost while Pj.runtime > Py.runtime, report the
differences between different plans and the reasons behind them.
Challenges & Our Solution. There are three challenges in build-
ing an automatic tool to solve the above problem:

Challenge 1. To find out the parts (operator or subtree) of two plans
with different implementations, they must have the same semantics.
In Figure 1, the ‘Sort’ node in P, is added during the optimization
to satisfy the order requirement of ‘MergeJoin’ while it is not in
‘HashJoin’ of P;. Different from Py, there is no explicit ‘Sort” oper-
ation on t1.a in P;. We need to find out which operation in Py is
equivalent to it.

Challenge 2. If multiple differences exist between two plans, the
proposed tool should be able to figure out which one is more impor-
tant, such that it give a more actionable report for the developers.
In Figure 1, there are two differences, i.e., the join operator and the
data access method on t1. We need to know which one is the main
reason that results in different runtime.

Challenge 3. The proposed tool should be extensible. With the de-
velopment of an optimizer, new difference type, possible reasons,
and operators could be introduced. The proposed methods must
conveniently support the new features as well.
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Figure 1: Two different plans of the query select * from t1 join
t2 where t1.a=t2.a and t1.a < 4 order by t1.a. An index tla is
built on ¢1’s attribute a.

To this end, we have developed an automatic detection and
inference tool, AutoDlI, to help the optimizer development team
quickly find the reasons why a sub-optimal plan is generated. Al-
though we demonstrate AutoDI on TiDB [6], an open source dis-
tributed HTAP database, it is generally applicable to other databases
with the trivial efforts on extension, e.g., introducing their own
operator notations, collecting the plans from their APIs. Inspired by
the manual analysis process, AutoDI consists of two main modules,
Difference Finder and Inference. The former finds where the two
plans are different, and the latter tries to obtain the reasons why
the differences come out. To our best knowledge, this is the first
attempt to help optimizer developers analyze the reasons of plan
regression and we hope it can attract more community efforts on
this topic to enhance automatic detection and analysis.

2 RELATED WORK

Optimizer Analysis & Test. Leis et al. [7] study the impact of
three optimizer modules, i.e., cardinality estimation, cost model,
and plan enumeration algorithm on selecting an optimal plan. They
find that the errors in cardinality estimation are usually the reason
for bad plans. Perron et al. [9] conduct a similar study and propose
a re-optimization method to improve the accuracy of cardinality
estimation. In [5, 8, 10], the authors try to propose a new metric
as an indicator of optimizer quality for a workload during the
optimizer test. All these metrics are based on the estimated cost
rank and runtime rank of the possible plans.

Related Tools. Many database vendors have their own tools for
users to avoid plan regression or a sub-optimal plan [1-4, 11] in a
production system. For example, Oracle provides the SQL Tuning
Advisor [3], where users can submit one or more SQL statements as
input to the advisor and receive advice or recommendations for how
to tune the statements, e.g., updating statistics, building indexes,
along with a rationale and expected benefit. SQL Server provides
Compare Showplan [2] to highlight the different subtrees of two
plans with the same color. Users can further click the operator to
obtain the detailed comparisons, e.g., cardinality of the operator
and runtime. However, it does not give any analysis on the reasons
why the differences comes out.

Difference. Different from [7], AutoDI tries to dig out main reasons
for a certain query. Furturemore, AutoDI points out which operators
are problematic and the possible reasons on them. In contrast to
the above tools targeted for database users, AutoDI targets for
the optimizer developers to investigate the reasons why a plan
regression happens. It significantly relieves their labor-intensive
work on discovering the reasons behind the sub-optimal plans.
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Figure 2: An Overview of AutoDI

3 BACKGROUND AND TOOL DESIGN
3.1 Background

3.1.1  Existing Differences. After investigating several database sys-
tems, we find there are four typical types of differences: 1) different
data access paths (DADIff), e.g., full table scan vs. index scan; 2)
different operator implementations (ImpDiff), e.g., hash join vs.
merge join; 3) different join orders (JODiff), e.g., A > B > C vs.
A »a4 C x4 B; 4) different operator orders (OODiff), e.g., whether
union is under join. OODIff rarely occurs and is mainly determined
by the logical optimization.

3.1.2  Possible Reasons. We can classify the possible reasons into
two categories: 1) Code-level of the optimizer, which includes sta-
tistics model, cardinality estimation module, cost model, plan enu-
meration algorithm, and logical operator implementations. 2) The
optimizer’s input parameters, such as the used hint set and the built
indexes. Most database systems have provided the idea of hint for
users to specify the optimizer’s behaviors.

3.2 Tool Design

The overview of AutoDl is presented in Figure 2, which mainly
consists of three modules: Preprocessing, Difference Finder, and In-
ference. AutoDlI takes two different plans of the same query, and the
case type as the inputs, and it outputs a report about the reasons
behind their differences.

3.2.1 Preprocessing. To locate the differences between two plans
effectively and efficiently, we introduce the preprocessing module
to regularize two plans and generate the nodes’ signatures. Plan
Regularization will handle two cases. If the plan regression hap-
pened in different optimizer versions, we re-cost and run the plan
from an old version in the new one to make the two plans compara-
ble and construct a new test pair. For special case, e.g., in Figure 1,
the ‘Sort’ node can be added with an enforced order property or
implicitly implemented by other operators, e.g., ‘Index Scan’. The
parent node will absorb the added nodes. In Figure 1, ‘MergeJoin’
will absorb ‘Sort’, and then two join nodes can be compared.
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Figure 3: Three Different Plans of One Query. H]J, IJ, IX and
FS are hash join, index Join, index scan, and full table scan

respectively.

To quickly find the differences, we introduce two signature types,
logical signature and physical signature. If two nodes have the same
logical signature, their outputs (the sub-plans with the two nodes
as roots) must be the same. If two nodes have the same physical
signature, their implementations (the sub-plans with the two nodes
as roots) must be the same. We also build a signature map for the
second plan of AutoDI input to quickly locate the node for a given
logical signature.

3.2.2 Difference Finder. With the plans annotated with logical
signatures and physical signatures, Difference Finder tries to find
the parts where the logical signature is the same while the physical
signature is different.

Here, we design a top-down manner algorithm. Each time, we
analyze a node pair from two plans. We first check the logical
signature. If the logical signatures of two nodes are the same, we
then check their physical signatures. If the physical signatures are
still the same, we know these two sub-plans are the same and do
not need to analyze the descendant nodes. If the physical signatures
are different, we further check whether the implementations of two
nodes are different or the difference comes from their descendant
nodes, and report the differences for the latter. However, if the
logical signatures are different, we can conclude the difference is
JODiff: Then, we use signature map to find the next node pair with
the same logical signatures to analyze.

Example 3.1. We use the plans P1-P3 in Figure 3 to show our
search process. Let n denote a node in the plan tree, n.ls be the
logical signature of n, n.ps be the physical signature of n. n.nt and
n.op are the node type and node physical operator respectively. In
the first case, we try to find the differences between P; and P;:

1) We first compare ng.ls in P; with ng.lIs in Py, and ng.ps in P;
with ng.ps in Py. We find that logical signatures are the same while
physical signatures are different.

2) We check whether ng.nt and ng.op are the same in these two
plans. In this case, they are both join and hash join. We can infer that
the different parts of these two plans must appear in the subtrees.
3) We compare nj in Py and Pp. Same as ny, logical signatures are
the same while physical signatures are different.

4) When checking nj.nt and nj.op, we find that they have different
implementations and report ImpDiff.

5) We continue to check the children of ny, because other differences
may exist in the subtrees, e.g., the data access path, which is one of
the differences presented in Sec. 3.1. Also, we find both data access
paths on table A and table B are different and report DADIff.

6) After visiting all nodes in the left child of ny, we conduct the
same process on its right child, ny. They are the same in both plans.

When comparing P and P3, we follow the same steps above, and
find out that the logical signatures of n; (also shown in ny) in P;
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Rule { Rule4ImpDiff {
ruleld: “ImpDiff”
ruleld actionList: {ce4imp, cm4imp}
actionFlag: {1, 1}
actionList }
actionFlag func cedimp(node1, node2) {...}

}

func cmdimp(node1, node2) {...}

Figure 4: The Rule-Action Framework and an Example of
ImpDiff

and P are different which means they choose a different join order,
and hence we report JODIff. After the different logical signature,
i.e., join order (mostly), is found from one node, we use the logical
signature map of P3 to find the candidate nodes with same logical
signature of nodes under ng in P;. Here, we quickly locate the leaf
nodes of the plan and report the different access paths on table A
and B, i.e., two DADIffs.

3.2.3 Inference. This module aims to obtain the possible reasons
behind the differences found. We introduce a rule-action framework
to make it extensible, e.g., for a new difference, which is shown in
Figure 4. Each difference type has a corresponding rule. In each rule,
the actionList includes a list of actions for the possible reasons, and
actionFlag is a 0/1 array. We execute the i" action if the i*” value in
actionFlag is 1. When a new difference type is introduced, we only
need to define a new rule and implement its related actions. When
a new possible reason for a difference type comes, we just need to
add a new action in its actionList and set its flag in actionFlag. For
each difference, we call the actions for it to obtain the reason.

Ranking of Multiple Differences. We analyze some plan regres-
sion cases and make two observations. 1) In most cases, there are
few main differences, i.e., the runtime gap between the nodes is
close to the runtime gap of two plans. 2) The nodes in the most
crucial difference have a higher level than the nodes in other dif-
ferences. Motivated by the above observations, we introduce a
parameter « to define the crucial differences. Suppose two different
plans of one query are P; and Py, where P;.rt is smaller than P,.rt.
P.rt indicates the runtime of plan P. A difference diff could be a
crucial difference if (diff.n;.rt-diff-np.rt) is larger than o (P;.rt-Pa.rt).
We sort possible crucial differences in descending order of diff.level
and use C to indicate the sorted set. A difference with the smaller
rank in C has a larger probability as the most crucial difference.

4 DEMONSTRATION DETAILS

We plan to present AutoDlI in three aspects: 1) we introduce Au-
toDI design including the three components, 2) we present the
whole process to adopt AutoDI to analyze the plan regression, 3)
we present how to use AutoDI to analyze one workload. To achieve
this, we provide an interactive web interface as a front-end for Au-
toDI. Through this demo, we adopt JOB benchmark to test TiDB [6],
and collect the queries where the default plans are sub-optimal.
Note that AutoDI can be general to other database systems with
the trivial extensions.

Step 1 - Tool Design Introduction. First, we present the design of
AutoDI. This includes the AutoDI’s framework, the utility of each
component, and how each component works especially, how these
components can overcome three challenges mentioned in Sec. 1.
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Figure 5: User interface of our demonstration

Step 2 - AutoDI Life Cycle. Next, we go through the life cycle of
AutoDI to show how it works. We divide it into three sub-steps:
Step 2.1 Users need to load the new plan regression cases by click-
ing the ‘Load’ button in Figure 5. Here, users need to 1) enter the
workload ID, 2) assign a unique ID to the new regression case, and
3) load two plans for this plan regression case. With the workload
ID, we can conduct an analysis on the all regression cases in it.
Step 2.2 We present how users can use AutoDI to find the differ-
ences. Firstly, users need to specify the regression case ID by typing
it or clicking the ‘View’ button, where we will show all the regres-
sion cases that have been loaded. After that, the two query plans
will be presented in the plan windows. We show the plan in a tree
structure, which is easier for user to understand it. The estimated
row count, actual row count, estimated cost and the actual runtime
are also presented. With such information, users can check whether
the latter report on differences and reasons are acceptable. At last,
users only need to click the ‘Diff” button and AutoDI analyzes the
two plans by calling Preprocessing and Find Differences components.
The difference report is displayed in a table as shown in Figure 5,
including difference ID (Diff ID), difference type (Diff Type), dif-
ference details (Details), difference level, and runtime. In Details
column, we show the operator names where one difference is found.
In this way, users can quickly locate the difference in the plan tree.
Step 2.3 After differences are obtained in the previous step, users
can click the ‘INFER’ button and AutoDI triggers Inference com-
ponent to find out the reasons behind all differences. The result is
displayed in a table and sorted by the importance of the differences
according the rule in Sec. 3.2.3. Thus, the result orders of Find Dif-
ference and Inference are different in Figure 5.

Step 3 - Workload Analysis. If one workload has multiple plan
regression cases, users can click the ‘Workload Analysis’ button
to dig into it. Users type the workload ID and then click the ‘Ana-
lyze’ button. The whole analysis process in Step 2 is triggered for
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each plan regression case in the workload. After obtaining all the
differences and reasons, summaries on this workload plan regres-
sion are displayed. Users can figure out the challenges from these
summaries.
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