
POEM: Pattern-Oriented Explanations of CNN Models
Vargha Dadvar

University of Waterloo
vdadvar@uwaterloo.ca

Lukasz Golab
University of Waterloo
lgolab@uwaterloo.ca

Divesh Srivastava
AT&T Chief Data Office
divesh@research.att.com

ABSTRACT
Deep learning models achieve state-of-the-art performance in many
applications, but their prediction decisions are difficult to explain.
Various solutions exist in the area of explainable AI, for example
to understand individual predictions or to approximate complex
models using simpler interpretable ones. We contribute to this
body of work with POEM: a tool that produces pattern-oriented
explanations of image classification models. POEM explains models
that learn hierarchies of concepts, such as Convolutional Neural
Networks that detect shapes and objects in images. For example,
POEM may identify a pattern of the form “if bed then bedroom”,
indicating that if an image contains a bed and the model pays
attention to this region of the image during inference, then the
model classifies the image as a bedroom. We present the modular
design of POEM, followed by examples of POEM’s use in model
auditing and detecting errors in training data.

PVLDB Reference Format:
Vargha Dadvar, Lukasz Golab, and Divesh Srivastava. POEM:
Pattern-Oriented Explanations of CNN Models. PVLDB, 15(12): 3618-3621,
2022.
doi:10.14778/3554821.3554858

1 INTRODUCTION
Deep learning models achieve state-of-the-art performance in many
applications, including computer vision and natural language pro-
cessing. However, these models are complex and usually do not
give human-interpretable explanations of their decisions. The lack
of explainability may prevent users from trusting the models. This
creates a critical barrier to adoption, especially in high-stakes ap-
plications such as healthcare and in places such as the European
Union where algorithmic explainability is required by law.

Solutions to this problem include methods to explain individual
predictions, for example, by quantifying the importance of the
features to the model’s decision [14, 15]. Another approach is to use
surrogate models, which are interpretable models such as decision
trees that can approximate black-box models [4, 6, 10]. As our
contribution towards explainable AI, we present POEM: a tool
that produces pattern-oriented explanations of image classification
models.

We focus onmodels that learn hierarchies of concepts. One exam-
ple is a Convolutional Neural Network (CNN), which is commonly
used in computer vision. A CNN consists of multiple layers that
detect shapes, textures and objects in images. For example, suppose

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 12 ISSN 2150-8097.
doi:10.14778/3554821.3554858

we wish to explain a given CNN that classifies images of rooms
into kitchens and bedrooms. The goal of POEM is to associate the
detected concepts with the model’s prediction decisions. POEM out-
puts patterns of concepts in the form of rules. For instance, POEM
may identify a pattern of the form “if bed then bedroom”, indicating
that if an image contains a bed and the model pays attention to this
region of the image during inference, then the model classifies the
image as a bedroom rather than a kitchen.

We give an overview of CNNs in Section 2. Then, in Section 3, we
present the modular architecture of POEM. The first step, “Concept
Identification”, finds the concepts learned by the given model. In the
second step, “Concept Attribution”, POEM locates these concepts
in the input images and associates the concepts with prediction
decisions. The third step, “Concept Pattern Mining” produces inter-
pretable rules linking concepts to prediction decisions. As we will
explain in Section 3, the novelty of POEM is in the use of state-of-
the-art components in the first two steps and the use of new rule
mining and visualization methods (that have not yet been applied
to explain image classification models) in the third step.

In Section 4, we demonstrate POEM using a sample CNN model
and dataset. We show how the concept patterns produced by POEM
enable model auditing. POEM also allows users to visualize the
concepts learned, display images that were classified correctly or
incorrectly, and display images that are exceptions to the discovered
concept patterns. Furthermore, we show how concept patterns can
serve as data quality assessment tools to identify mislabelled images
in training data (e.g., those labelled as bedrooms that should be
labelled as kitchens).

2 CONVOLUTIONAL NEURAL NETWORKS
We begin with an overview of CNNs for image classification. For
black-and-white images, the input consists of a two-dimensional
matrix of pixel intensities in the image. For colour images, the
input consists of three such matrices, corresponding to the pixel
intensities of the three primary colours. The output consists of the
most likely class label for the given image.

To make a prediction, the input features pass through multiple
layers in the network. Some of these layers are convolutional, whose
purpose is to transform the input pixels in a way that can detect
shapes and objects. These transformations are done using filters,
and the output of a filter is called an activation map.

An activationmap is a two-dimensional numeric array indicating
the locations within a given image that were activated by the filter.
For example, a simple filter may identify pixels in an image that
correspond to straight lines. We say that an activation map is highly
activated if at least one of its elements has a high value (above some
threshold, such as the 99-percentile of the filter’s activation values
over all the images in the given dataset).

3618

https://doi.org/10.14778/3554821.3554858
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3554821.3554858


Training a CNN is done by passing the training images through
the model, and updating the filters by backpropagating the pre-
diction errors. In this way, the filters learn to identify shapes and
objects in images that reduce the prediction error of the model.

The first few convolutional layers may identify simple patterns
such as edges and corners, and the subsequent layers are more likely
to detect more complex shapes. In POEM, as in previous work on ex-
planing CNNs [1, 2, 13, 14], we focus on the last convolutional layer.
This is where the network is likely to detect human-understandable
concepts in images.

3 SYSTEM OVERVIEW
POEM consists of three modules illustrated in Figure 1 and de-
scribed in detail below. Our current implementation of POEM is
geared towards CNNs; in future work, we will study extensions
to other network architectures in which it is possible to identify
concepts and attribute concepts to prediction decisions.

3.1 Concept Identification
In this step, the goal is to identify the concepts learned by the model.
In a CNN, this means identifying the shapes and objects detected
by the filters in the last convolutional layer.

There exist several methods to identify concepts in CNNs [1, 3,
5, 8, 11, 18]. In POEM, we use the latest version of a method called
Network Dissection [2]. This method first segments each image
in the given dataset into concepts present in the image, such as
objects, object parts, textures, and colours. This is done using a
semantic segmentation model called Unified Perceptual Parsing [17],
which is pretrained to identify a wide range of such concepts. We
then pass each image through the CNN, and we measure the pixel
overlap between these concepts and the filter activation maps. This
process maps a filter to the most likely concept it is detecting. We
show three examples in Figure 1, with beds, stoves and headboards,
respectively, mapped to three filters.

This concept identification process can also be applied to CNN
models used in specialized domains such as medical image analysis,
by pretraining the segmentation model to identify concepts that
are meaningful in the target domain.

Among the related work, ERIC [16] requires manual inspection
of activation images to identify filter-concept mappings, which is
not scalable. ACDTE [4] outputs unlabeled clusters of activated
regions, which are not guaranteed to correspond to concepts. A
system that more closely resembles our pipeline is CNN2DT [10],
but it uses an earlier network dissection method [1] that relies on a
separate proxy dataset with pre-labeled concepts. As a result, the
concepts identified by CNN2DT may not exist in the dataset used
when explaining the model.

3.2 Concept Attribution
For each image, the goal of this step is to attribute the most likely
concepts that played a role in the model’s prediction decision. For
this, the concept must exist in the image. Additionally, we want
to ensure that the network paid attention to this concept when
making the prediction.

More precisely, we attribute a concept to an image if: 1) the
concept is present in the image; 2) a filter mapped to this concept (in

the Concept Identification step described above) is highly activated
when the image is passed through it; and 3) there is significant
overlap between the location of the concept in the image and the
highly activated area in the related filter activation map.

Related approaches such as ERIC and CNN2DT do not check
conditions 1 and 3 above, leading to false positives compared to
our method. The semantic segmentation model mentioned earlier
allows us to locate concepts in images and check these additional
conditions. To check the concept-activation overlap, we first resize
each filter activation map to the size of the input image, and we
superimpose the map onto the image. We then check that at least
50% of the highly activated area is covered by the concept found
in the image. Finally, we discard the weakest concepts, which are
those activated in less than 1 percent of the images in the given
dataset.

The output of this step is a transformed dataset of images, repre-
sented by their important concepts as features, and the CNN model
predictions as the class label. We show three examples in Figure 1.

3.3 Concept Pattern Mining
To find patterns relating concepts to model predictions, such as the
examples in Figure 1, we apply an ensemble of rule mining methods
on the concepts produced in the Concept Attribution step.

Related work [4, 10, 16, 18] uses decision trees and the rules
extracted from them (i.e., the root-to-leaf paths) to explain the rela-
tionships between concepts and predictions. In POEM, in addition
to CART (Classification and Regression Trees), we support two re-
cent rule mining methods: Explanation Tables [7] and Interpretable
Decision Sets (IDS) [12].

Explanation tables consist of a set of patterns that together maxi-
mize the information about the distribution of the class label. Unlike
decision trees, patterns from explanation tables can overlap and
are geared toward informative and concise data explanation rather
than out-of-sample predictive power.

IDS finds a set of rules by balancing several optimization criteria
such as support, confidence and conciseness. IDS was designed to
be an interpretable classifier, and we use each rule independently
for explanation.

3.4 Web Interface
Figure 2 shows POEM’s Web interface. We explain the interface
features below, and in Section 4 we will show how to use POEM to
explain CNNs.

There are three panels: settings on the left, patterns at the top,
and images at the bottom. A user begins a session in the settings
panel, by selecting a dataset, a CNN model, and the desired rule
mining methods and their settings. These settings are prepopulated
with default values and include the minimum support threshold
for each method. For CART, the minimum support corresponds to
the minimum fraction of examples in each leaf of the tree. These
parameters indirectly control the total number of patterns to find
using each method.

After pressing the “Compute Patterns” button, the patterns panel
shows the output. Each rule consists of the concepts, the correspond-
ing prediction made by the selected model, a support fraction (what
fraction of the examples in the selected dataset match the concepts

3619



Figure 1: Overview of POEM

in the rule), a confidence fraction (how many examples having the
concepts mentioned in the rule are predicted as shown in the rule),
an accuracy fraction (how many examples having the concepts
mentioned in the rule and predicted as in the rule are predicted
correctly based on the ground-truth labels), a score (details below),
the method that produced the rule, and a set of options for further
analysis. For example in Figure 2, pattern 1, found by IDS, states
that in 19% of the images (as indicated by support), the presence
of a bed results in the model predicting a bedroom rather than a
kitchen or living-room. Furthermore, as indicated by a confidence
of 99%, this combination of concepts results in a prediction of a
bedroom 99% of the time, and 99% of such examples are predicted
correctly as bedrooms by the model, as shown by the accuracy.

By default, the rules are ordered using a score, computed as
support × confidence

rule size , where rule size refers to the number of concepts.
This sort order highlights concise and confident patterns that cover
a large subset of the data. However, the user can also sort the rules
by support, confidence, accuracy or the method.

In contrast to similar tools such as CNN2DT, which only visualize
the top activated images for each concept, POEM allows users to
view different categories of images related to each pattern to extract
further insights about the CNNmodel and the data. For this purpose,
we can select a pattern from the list, and then choose one of the
coloured buttons that appear, as shown for pattern 1 in Figure 2.
The following options are available for each pattern:

• Matching images (green button) match both the concepts
and the prediction shown in the given rule. For example for
pattern 1 in Figure 2, matching images are those attributed
to the concept ‘bed’ and predicted as bedrooms.

• Non-matching images (yellow button) match the concepts
mentioned in the given rule but not the prediction. For pat-
tern 1 in Figure 2, non-matching images are those attributed
to the concept ‘bed’ but predicted as either kitchens or liv-
ing rooms. This happens when confidence is less than 100%,
indicating that the model’s predictions were sometimes
different than the label stated in the rule.

• Wrongly-predicted images (red button) match the concepts
and the model’s prediction shown in the given rule, but
have a different label in the dataset. For pattern 1 in Figure
2, wrongly-predicted images are those which are attributed
to the concept ’bed’, were predicted as bedrooms, but are
labelled in the given dataset as kitchens or living rooms.

Choosing one of the above options displays the requested images
in the images panel, as shown at the bottom of Figure 2. In the
images panel, it is also possible to choose a specific concept from
a selected rule, which displays the images with the related filter’s

activation areas highlighted on the image. For example, in Figure 2,
the images matching pattern 1 are displayed, with their bed concept
activations highlighted. This allows us to check the correspondence
between the concepts in images and the highly activated areas of
the CNN filters.

3.5 Implementation
We implemented the POEM backend using Python and its scientific
libraries, while the web application is based on JavaScript libraries
VueJS as the frontend and NodeJS as the backend. For network dis-
section, we used the code from the project’s Github page1 with some
modifications. We also used the Github code2 for unified perceptual
parsing as the semantic segmentation model. For explanation tables,
we obtained the code from the authors, while for IDS, we used the
Github code3, and for CART we used the implementation from the
Scikit-learn package.

4 EXAMPLE: RECOGNIZING BEDROOMS,
KITCHENS AND LIVING ROOMS

In this section, we describe one example of using POEM to ex-
plain an image recognition model. In this example, we analyze the
concepts learned in the last convolutional layer of the ResNet-18
CNN model [9] for the task of indoor place classification. We use
the Places dataset [19], which includes images from 365 classes.
For pattern analysis, it makes sense to focus on a few classes to
be compared against each other, which is why we only consider
bedrooms, kitchens and living rooms in this example. The Places
dataset contains 5000 images for each of these classes.

We use a ResNet-18 model pretrained on the entire Places dataset,
but we replace the output layer of the model to match the three
target classes. We then fine-tune the model on the bedroom, kitchen
and living room images, with only the output layer being trained,
and the rest of the network being used as a fixed feature extractor.
The resulting model has a 92.4% prediction accuracy in distinguish-
ing between the images of the three selected classes.

Figure 2 shows the patterns. We only show patterns that indicate
the presence of concepts. We see that concepts such as bed in
bedrooms, work surface in kitchens, and sofa in living rooms lead
to almost certain predictions by the model. This indicates that the
model is mostly using the right concepts for its decisions.

Notably, these patterns do not just reflect the presence of con-
cepts in images, which could lead to a data correlation trap, but
also indicate that the model is likely to be looking at these concepts

1https://github.com/davidbau/dissect
2https://github.com/CSAILVision/unifiedparsing
3https://github.com/lvhimabindu/interpretable_decision_sets

3620



Figure 2: POEM interface showing the rules for bedroom vs. kitchen vs. living room

in images. This is because we check multiple criteria to attribute
concepts to images to make sure the CNN filters pay attention to
the concepts, as explained in Section 3.2.

To confirm that the concepts in images correspond to the related
highly activated areas in the model, we can view the matching
images for each pattern. In the bottom panel of Figure 2, we see
that beds are present in the images matching pattern 1, and the
filter activations overlap with either an entire bed or part of a bed.

We can then examine patterns that do not have 100% confidence
or 100% accuracy. For example, we may want to know why images
attributed to a tile in pattern 4 were not predicted as kitchens in
14% of the cases. We select the non-matching button for pattern 4
to see examples of such images. By examining these images, we can
find out whether the dataset includes images of bedrooms or living
rooms with tiles, or images mislabeled as bedrooms or living rooms.
We may also find examples that are more complex for the model to
predict, possibly because of a lack of distinguishing concepts.

REFERENCES
[1] D. Bau, B. Zhou, A. Khosla, A. Oliva, and A. Torralba. 2017. Network Dissection:

Quantifying Interpretability of Deep Visual Representations. In Computer Vision
and Pattern Recognition.

[2] D. Bau, J.-Y. Zhu, H. Strobelt, A. Lapedriza, B. Zhou, and A. Torralba. 2020.
Understanding the role of individual units in a deep neural network. Proceedings
of the National Academy of Sciences (2020).

[3] Z. Chen, Y. Bei, and C. Rudin. 2020. Concept whitening for interpretable image
recognition. Nature Machine Intelligence 2 (12 2020), 1–11.

[4] R. El Shawi, Y. Sherif, and S. Sakr. 2021. Towards Automated Concept-based
Decision Tree Explanations for CNNs. In EDBT 2021 24th International Conference
on Extending Database Technology.

[5] R. Fong and A. Vedaldi. 2018. Net2Vec: Quantifying and Explaining howConcepts
are Encoded by Filters in Deep Neural Networks. arXiv preprint arXiv:1801.03454
(2018).

[6] N. Frosst and G. E. Hinton. 2017. Distilling a Neural Network Into a Soft Decision
Tree. ArXiv abs/1711.09784 (2017).

[7] K. El Gebaly, G. Feng, L. Golab, F. Korn, and D. Srivastava. 2018. Explanation
Tables. IEEE Data Engineering Bulletin 41 (2018), 43–51.

[8] A. Ghorbani, J. Wexler, J. Zou, and B. Kim. 2019. Towards Automatic Concept-
based Explanations. In Advances in Neural Information Processing Systems, Vol. 32.
Curran Associates, Inc.

[9] K. He, X. Zhang, S. Ren, and J. Sun. 2015. Deep Residual Learning for Image
Recognition. arXiv:arXiv:1512.03385

[10] S. Jia, P. Lin, Z. Li, J. Zhang, and S. Liu. 2020. Visualizing Surrogate Decision
Trees of Convolutional Neural Networks. J. Vis. 23, 1 (feb 2020), 141–156.

[11] B. Kim, M. Wattenberg, J. Gilmer, C. Cai, J. Wexler, F. Viégas, and R. Sayres. 2018.
Interpretability Beyond Feature Attribution: Quantitative Testing with Concept
Activation Vectors (TCAV). In ICML.

[12] H. Lakkaraju, S. Bach, and J. Leskovec. 2016. Interpretable Decision Sets: A
Joint Framework for Description and Prediction. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD
’16). Association for Computing Machinery, New York, NY, USA, 1675–1684.

[13] A. Mahendran and A. Vedaldi. 2016. Visualizing Deep Convolutional Neural
Networks Using Natural Pre-Images. International Journal of Computer Vision
120 (12 2016).

[14] R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra. 2017.
Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Lo-
calization. In 2017 IEEE International Conference on Computer Vision (ICCV).
618–626.

[15] K. Simonyan, A. Vedaldi, and A. Zisserman. 2013. Deep Inside Convolu-
tional Networks: Visualising Image Classification Models and Saliency Maps.
arXiv:arXiv:1312.6034

[16] J. Townsend, T. Kasioumis, and H. Inakoshi. 2021. ERIC: Extracting Relations
Inferred from Convolutions. In Computer Vision – ACCV 2020. Springer Interna-
tional Publishing, 206–222.

[17] T. Xiao, Y. Liu, B. Zhou, Y. Jiang, and J. Sun. 2018. Unified Perceptual Parsing for
Scene Understanding. In European Conference on Computer Vision. Springer.

[18] Q. Zhang, Y. Yang, H. Ma, and Y. N. Wu. 2018. Interpreting CNNs via Decision
Trees. arXiv:arXiv:1802.00121

[19] B. Zhou, A. Lapedriza, A. Khosla, A. Oliva, and A. Torralba. 2017. Places: A 10
million Image Database for Scene Recognition. IEEE Transactions on Pattern
Analysis and Machine Intelligence (2017).

3621

https://arxiv.org/abs/arXiv:1512.03385
https://arxiv.org/abs/arXiv:1312.6034
https://arxiv.org/abs/arXiv:1802.00121

