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ABSTRACT
Kernel density visualization (KDV) has been widely used in many

geospatial analysis tasks, including traffic accident hotspot detec-

tion, crime hotspot detection, and disease outbreak detection. Al-

though KDV can be supported by many scientific, geographical,

and visualization software tools, none of these tools can support

high-resolution KDV with large-scale datasets. Therefore, we de-

velop the first versatile programming library, called LIBKDV, based

on the set of our complexity-optimized algorithms. Given the high

efficiency of these algorithms, LIBKDV not only accelerates the

KDV computation but also enriches KDV-based geospatial analytics,

including bandwidth-tuning analysis and spatiotemporal analysis,

which cannot be natively and feasibly supported by existing soft-

ware tools. In this demonstration, participants will be invited to use

our programming library to explore interesting hotspot patterns

on large-scale traffic accident, crime, and COVID-19 datasets.
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1 INTRODUCTION
Kernel density visualization (KDV) [9, 10, 13] is an important tool

for geospatial analytics, which has been extensively used in many

location-based applications. Some representative examples include

traffic accident hotspot detection [17, 22], crime hotspot detec-

tion [15, 19], and disease outbreak detection [14, 23]. Due to its

wide range of applications, KDV is supported by default in many

popular geographical software tools, e.g., QGIS [7] and ArcGIS [1],

scientific computing tools, e.g., Scipy [21], Statsmodels [20], and

Scikit-learn [18], and visualization tools, e.g., KDV-Explorer [12]

and Deck.gl [3]. Despite this, none of these tools can be scalable to

support high-resolution KDV (e.g., 1280 × 960) for large-scale loca-

tion datasets (e.g., one million data points) due to the high computa-

tional cost. Besides, the computational cost limits the applicability

of using the off-the-shelf software tools to support advanced (or

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 15, No. 12 ISSN 2150-8097.

doi:10.14778/3554821.3554855

more complex) geospatial analytics, e.g., bandwidth-tuning analysis

and spatiotemporal analysis, which involves computing multiple

KDVs in one batch.

To overcome this issue, we ask a question: Can we develop the
first library that can reduce the worst-case time complexity for sup-
porting different types of KDV-based geospatial analytics? In order

to answer this question, we develop the first complexity-optimized

programming library, called LIBKDV, by adopting the new camp of

KDV algorithms, including SLAM [13] and SWS [11], in our recent

studies. Better still, we fully parallelize our KDV algorithms, SLAM

and SWS, to further optimize the efficiency of LIBKDV.

With the complexity-optimized LIBKDV, we enable more ad-

vanced geospatial analytics which cannot be natively and feasibly

supported by existing software tools, especially for using large-

scale datasets and high resolutions. In this paper, we use LIBKDV

to demonstrate two representative examples of KDV-based geospa-

tial analytics, which are summarized as follows.

Bandwidth-tuning analysis: The visualization quality of KDV

significantly depends on the bandwidth parameter b [10] (which

will be discussed in detail in Section 2.1). If we choose a small band-

width b (cf. Figure 1a), we cannot detect any hotspot region (i.e.,

undersmoothing). On the other hand, the hotspot regions tend to

be very large (i.e., oversmoothing) if we choose a large bandwidth

b (cf. Figure 1c). To obtain the hotspot map with the most suitable

bandwidth b (cf. Figure 1b), domain experts need to generate multi-

ple KDVs with different bandwidths, i.e., b1, b2,..., bL , and choose

the most suitable one [10, 24].

(a) Small b (b) Moderate b (c) Large b

Figure 1: Traffic accident hotspot maps in New York using
different bandwidths b.
Spatiotemporal analysis: Many geographical phenomena (e.g.,

disease outbreak) depend on both location and time. Using Figure 2

as an example, observe that the COVID-19 pandemic in Hong Kong

is more serious in December 2020 and January 2022. Therefore,

it would be interesting to understand how the hotspots change

with respect to different timestamps [14, 15, 17]. To achieve this
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goal, domain experts can leverage a more complex spatiotemporal

kernel density function (which will be discussed in Section 2.1)

to generate time-dependent hotspot maps which correspond to

different timestamps, i.e., t1, t2,..., tT [11].

(a) May 2020 (b) December 2020

(c) April 2021 (d) January 2022

Figure 2: Spatiotemporal hotspot maps for COVID-19 cases
in Hong Kong.

Table 1 summarizes the main differences between LIBKDV and

the existing software tools. Observe that LIBKDV is more efficient

and versatile. In this paper, we first overview the technical details

of LIBKDV in Section 2. Then, we discuss the functionality and ben-

efits of LIBKDV in Section 3. Lastly, we discuss the demonstration

plan in Section 4.

Table 1: Comparisons of different software tools.
X Natively support △ Partially support × Cannot support

Versatility

Software Time-complexity Bandwidth-tuning Spatiotemporal

tool reduction analysis analysis

QGIS No X ×

ArcGIS No X ×

KDV-Explorer No △ ×

Deck.gl No △ ×

Scipy No △ ×

Statsmodels No △ ×

Scikit-learn No △ ×

LIBKDV (ours) Yes X X

2 TECHNICAL OVERVIEW OF LIBKDV
In this section, we first formally define the problems in Section 2.1

that are related to the two analysis tasks. Then, we review the SLAM

and SWS methods in Sections 2.2 and 2.3, respectively, which can

reduce the time complexity for solving the problems in Section 2.1.

After that, we discuss how to parallelize our methods, SLAM and

SWS, to further improve the efficiency of LIBKDV in Section 2.4.

Lastly, we discuss the technical novelty of LIBKDV against other

software tools in Section 2.5.

2.1 Problem Definitions
We formally define KDV in Problem 1.

Problem 1. Given a region with X ×Y pixels and a set of n spatial
data points P = {p1, p2, ..., pn }, we color each pixel q based on the ker-
nel density function FP (q) (cf. Equation 1), where b and K (b)

space(q, p)

denote the bandwidth and spatial kernel (cf. Table 2), respectively.

FP (q) =
1

n

∑
p∈P

K
(b)
space(q, p) (1)

Recall that domain experts need to perform bandwidth-tuning

analysis, i.e., generate KDVs with multiple bandwidths and choose

the most suitable one (cf. Figure 1). Therefore, we further define

this bandwidth-tuning problem (cf. Problem 2).

Problem 2. Given a set of L bandwidths, b1, b2,..., bL , we need to
generate KDV (i.e., solve Problem 1) for each bandwidth.

Observe from Figure 2 that domain experts also need to obtain

multiple hotspot maps with respect to different timestamps (or

time-dependent KDVs). Here, we formally define this problem (cf.

Problem 3).

Problem 3. Given a set of T timestamps, i.e., T = {t1, t2, ..., tT },
a region with X × Y pixels, and a set of n spatiotemporal data points
P̂ = {(p1, tp1 ), (p2, tp2 ), ..., (pn, tpn )}, we adopt the spatiotemporal
kernel density function FP̂ (q, ti ) (cf. Equation 2) to determine the
color of each pixel q for each timestamp ti ∈ T , where bs and bt
denote the bandwidths of spatial and temporal kernels, respectively.

FP̂ (q, ti ) =
1

n

∑
(p,tp)∈P̂

K
(bs )
space(q, p) · K

(bt )
time(ti , tp) (2)

As a remark, the commonly-used spatial and temporal kernels

are summarized in Table 2.

2.2 SLAM
In our preliminary work [13], we propose the state-of-the-art solu-

tion, called SLAM, to improve the efficiency for generating KDV (cf.

Problem 1), which is briefly illustrated in Figure 3. Observe that this

approach only takes O(X + n) time to evaluate the kernel density

function values FP (q) for all pixels q in a row. Since there are Y
rows in the region, the time complexity for using SLAM to generate

KDV is O(Y (X + n)), which is significantly lower than the existing

solutions (e.g., KDV-Explorer [12] with O(XYn) time).

…

…

… … …… …

𝑋

…… … …… …

𝑌

𝑂(𝑋 + 𝑛)

𝑂(𝑋 + 𝑛)

𝑂(𝑋 + 𝑛)

…
…

Figure 3: Brief illustration of SLAM, using the region with
X × Y pixels. Computing the kernel density function values
for all pixels with the same color (e.g., red) takes O(X + n)
time.

Compared with our previous work [13], we further extend

SLAM to support the bandwidth-tuning problem (cf. Problem 2)

in LIBKDV. Since SLAM only takes O(Y (X + n)) time to generate

each KDV regardless of the bandwidth value, we can adopt SLAM

to generate KDVs with multiple bandwidths, i.e., b1, b2,..., bL , with
O(LY (X +n)) time. Although this extension is simple, this approach

can outperform the state-of-the-art method, SAFE [10], which takes

O(XY (L + n logL)) time (X is normally larger than L, e.g., X = 640

and L = 20 in [10]).
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Table 2: Commonly-used spatial and temporal kernels, where dist(q, p) and dist(ti , tp) denote the Euclidean distance functions.

Name Spatial kernel (K (b)
space

(q, p)) Temporal kernel (K (b)
time

(ti , tp)) Ref.

Epanechnikov

{
1 − 1

b2
dist (q, p)2 if dist (q, p) ≤ b

0 otherwise

{
1 − 1

b2
dist (ti , tp)2 if dist (ti , tp) ≤ b

0 otherwise

[14, 15]

Quartic

{
(1 − 1

b2
dist (q, p)2)2 if dist (q, p) ≤ b

0 otherwise

{
(1 − 1

b2
dist (ti , tp)2)2 if dist (ti , tp) ≤ b

0 otherwise

[16, 22]

2.3 SWS
Unlike generating KDVs (cf. Problems 1 and 2), we cannot sim-

ply extend SLAM for supporting the spatiotemporal analysis (cf.

Problem 3) as the spatiotemporal kernel density function FP̂ (q, ti )
(cf. Equation 2) is more complex compared with the kernel den-

sity function (cf. Equation 1). Therefore, we adopt our preliminary

work [11], called SWS, to handle this analysis task. Figure 4 briefly

summarizes the idea of SWS. Observe that SWS can compute the

spatiotemporal kernel density function values for all pixels of the

same spatial position with T timestamps in O(T + n) time. Since

there are XY pixels for each visualization, SWS can generate T
hotspot maps (cf. Figure 4) withO(XY (T +n)) time, which is better

than the existing solutions [14–16] (with O(XYTn) time).

… …

… …

time
𝑡1 𝑡2 𝑡𝑇−1 𝑡𝑇

…

… …

…

… …

…

… …

Figure 4: Brief illustration of SWS withT timestamps, using
the region with X ×Y pixels. Computing the spatiotemporal
kernel density function values for all pixels with the same
color (e.g., red) takes O(T + n) time.

2.4 Parallelization of Our Methods
In this section, we extend our previous studies [11, 13] by consid-

ering how to parallelize our methods, SLAM and SWS, to further

improve the efficiency of LIBKDV for solving Problems 1 to 3.

Parallelization of SLAM: In Figure 3, observe that we do not need
to share the resources for computing different rows (e.g., row 1 and

row 2) of pixels. Therefore, we adopt the round-robin approach to

assign each thread to handle each row of pixels, which can fully

parallelize our SLAM method.

Parallelization of SWS: Similarly, we adopt the round-robin ap-

proach to assign each thread for handling the same color pixels

(with T timestamps) in Figure 4, e.g., thread 1 for the red color

pixels and thread 2 for the yellow color pixels. Based on the same

reason, we can also fully parallelize our SWS method.

2.5 Technical Novelty of LIBKDV
Recall that LIBKDV can reduce the worst-case time complexity

for generating a single KDV (cf. Problem 1) and handling both

the bandwidth-tuning analysis (cf. Problem 2) and spatiotemporal

analysis (cf. Problem 3), which cannot be achieved by the existing

tools. In the section, we elaborate more about the underlying reason

for this issue.

Although many efficient methods have been incorporated into

the off-the-self software tools to improve the efficiency for comput-

ing KDV, all these methods only exploit the optimization opportu-

nity for the location data points, but not pixels. As an example, both

Scikit-learn [18] and KDV-Explorer [12] incorporate the bound

functions into a tree structure (e.g., kd-tree) to filter the data points.

However, it is non-trivial to develop complexity-optimized algo-

rithms for this approach since the location data points may not

exhibit any property. Instead, LIBKDV is the first software tool to

explore the regularity of pixels (e.g., all pixels in the same row have

the same y-coordinate in Figure 3) to share computation, which can

successfully reduce the worst-case time complexity for supporting

KDV-based geospatial analysis.

3 FUNCTIONALITY AND BENEFITS OF
LIBKDV

LIBKDV is a python package that is available online for supporting

different types of KDV-based geospatial analysis tasks, including

bandwidth-tuning analysis (cf. Figure 1) and spatiotemporal analy-

sis (cf. Figure 2). Figure 5 shows howwe call LIBKDV for generating

the hotspot map in the Atlanta crime dataset, which follows these

three steps.

Step 1 (Load dataset):We need to load the location dataset, which

stores both the spatial coordinates and time in each row, into our

library.

Step 2 (Compute): Users need to first initialize the parameters (e.g.,

choose the analysis task and set the number of pixels in the x-axis

and y-axis). Then, LIBKDV adopts the corresponding algorithm in

Section 2 to generate hotspot maps. More details for setting the

parameters to support different geospatial analysis tasks can be

found in our Github repository: https://github.com/libkdv/libkdv

Step 3 (Plot): We adopt Kepler.gl [5], a WebGL empowered high-

performance web application, to plot the hotspot maps, which are

based on the density values generated by our LIBKDV.

Figure 5: Using LIBKDV to generate the hotspot map in the
Atlanta crime dataset.

Observe from Figure 5 that we only need to write three lines

of python codes for using our LIBKDV to generate hotspot maps.

Therefore, LIBKDV is an easy-to-use software package for which
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the developer can easily integrate into their systems. Furthermore,

since LIBKDV is more efficient compared with other python pack-

ages, e.g., Scikit-learn, users can call our functions instead of the

KDV functions in these libraries.

4 DEMONSTRATION PLAN
In our demonstration, we use the Jupyter Notebook to show three

key features of our LIBKDV, which are summarized as follows.

Efficiency of LIBKDV: To demonstrate that LIBKDV is the most

efficient tool, we will first pre-install all the software tools (cf. Ta-

ble 1) in a laptop. Then, we will prepare the python script which

calls our LIBKDV and these tools for large-scale location datasets

(e.g., New York traffic accident dataset [6]). Audience can notice the

time gaps between LIBKDV and other tools, by running the python

script.

Figure 6: Using the sliding bar (in the dashed white box) to
display multiple KDVs.
LIBKDV for bandwidth-tuning analysis:Wewill use four large-

scale location datasets, namely Atlanta crime dataset [2], Seattle

crime dataset [8], New York traffic accident dataset [6], and Hong

Kong COVID-19 dataset [4], for demonstrating this feature. In our

python script, we specify 5 to 20 bandwidths for each dataset and

invoke Kepler.gl (cf. Figure 6) to display multiple KDVs. Audience

can move the sliding bar (cf. the dashed white box in Figure 6)

to visualize the changes of hotspot maps with respect to different

bandwidths (cf. Figure 1) so that they can identify the most suitable

one during the demonstration.

LIBKDV for spatiotemporal analysis: Like the demonstration

for the bandwidth-tuning analysis, we adopt the same datasets and

use the sliding bar (cf. Figure 6) to display multiple KDVs for this

demonstration. By default, we choose 32 timestamps, i.e., T = 32,

for each dataset (cf. Problem 3). In this demonstration, we show

three case studies, which correspond to the crime hotspot detection,

traffic accident hotspot detection, and COVID-19 hotspot detection.

Audience can discover the hotspot patterns with respect to different

timestamps (e.g., the spatial distribution and the waves of COVID-

19 cases in Hong Kong).
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