
Hu-Fu: A Data Federation System for Secure Spatial Queries

Xuchen Pan†, Yongxin Tong†, Chunbo Xue†, Zimu Zhou#, Junping Du�, Yuxiang Zeng‡,
Yexuan Shi†, Xiaofei Zhang§, Lei Chen‡, Yi Xu†, Ke Xu†, Weifeng Lv†

†State Key Laboratory of Software Development Environment, Beihang University, China
†Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, China

#Singapore Management University �Beijing University of Posts and Telecommunications
‡The Hong Kong University of Science and Technology §University of Memphis

†{panxuchen, yxtong, xuechunbo, skyxuan, xuy, kexu, lwf}@buaa.edu.cn, #zimuzhou@smu.edu.sg,
�junpingd@bupt.edu.cn, ‡{yzengal, leichen}@cse.ust.hk, §xiaofei.zhang@memphis.edu

ABSTRACT

The increasing concerns on data security limit the sharing of data

distributedly stored at multiple data owners and impede the scale

of spatial queries over big urban data. In response, data federation

systems have emerged to perform secure queries across multiple

data owners leveraging secure multi-party computation. However,

existing systems are designed for relational data. They are highly

inefficient on spatial queries and limited in usability. In this demon-

stration, we introduce Hu-Fu, the first data federation system for

secure spatial queries with high efficiency and usability. Hu-Fu is

designed from the perspectives of the query user and the data owner

for high usability and decomposes a spatial query into as many

plaintext operators and as few secure operators as possible for high

efficiency. We demonstrate the deployment and usage of Hu-Fu via

cross-company taxi-calling, a popular smart city application.

PVLDB Reference Format:

Xuchen Pan, Yongxin Tong, Chunbo Xue, Zimu Zhou, Junping Du, Yuxiang

Zeng, Yexuan Shi, Xiaofei Zhang, Lei Chen, Yi Xu, Ke Xu, and Weifeng Lv.

Hu-Fu: A Data Federation System for Secure Spatial Queries. PVLDB,

15(12): 3582 - 3585, 2022.

doi:10.14778/3554821.3554849

PVLDB Artifact Availability:

The source code, data, and technical report have been made available at

https://github.com/BUAA-BDA/Hu-Fu.

1 INTRODUCTION

Efficient and secure processing of spatial queries over big urban data

is crucial to scale up smart city applications. Urban-scale spatial

datasets are often distributedly owned by multiple parties, where

sharing raw data among parties or uploading raw data to a third

party (e.g., a cloud) is prohibitive due to legal regulations (e.g., GDPR

[9]) or commercial reasons.

An emerging concept of secure queries over distributed data

is data federation, which consists of multiple data owners, who

manage their data autonomously. A query user can perform secure

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 12 ISSN 2150-8097.
doi:10.14778/3554821.3554849

queries across data of all owners in a data federation. The concept

[1, 10] advances conventional federated databases [6] by protecting

the query execution via secure multi-party computation (SMC).

Despite recent data federation systems for relational data [1, 10],

they are unfit for spatial queries in smart city applications. On the

one hand, directly extending these systems to spatial data can be

inefficient. For example, a kNN query on a data federation can be at

least two orders of magnitude slower than a plaintext query, where

secure operations take up over 90% of the time cost [8]. On the other

hand, these systems are limited in usability. Data owners in smart

city applications may have different schemas and heterogeneous

databases, which are not supported by prior systems [1, 10].

In this paper, we propose Hu-Fu, a data federation system for

secure spatial queries with high efficiency and usability. Hu-Fu

mainly optimizes five basic secure spatial queries, which we call

federated spatial queries, including federated range query/counting,

kNN query, distance join, and kNN join. It follows the semi-honest

adversary assumption in [1, 10] but eliminates the need for an

honest broker and can support a data federation of ten data owners

[8]. In terms of efficiency, Hu-Fu is up to 4 orders of magnitude

faster and 5 orders of magnitude lower in communication than

[1, 10] with spatial extensions. For high usability, Hu-Fu allows

data owners to modify its local table schemas for schema mapping

across owners and adapts to multiple spatial database systems, e.g.,

PostGIS, MySQL, SpatiaLite, Simba, GeoMesa, and SpatialHadoop.

At the algorithm level, Hu-Fu decomposes a federated spatial

query into as many plaintext operators and as few secure operators

as possible without compromising security to improve efficiency,

and all the operations to be independent of the data owner’s envi-

ronment to easily adapt to heterogeneous databases. At the system

level, Hu-Fu implements a query rewriter with novel query decom-

position and an easy-to-use query interface with SQL support at the

query user side, and a secure engine with efficient secure operator

implementations as well as an adapter for heterogeneous databases

at the data owner side.

We demonstrate the design and usage of Hu-Fu from the perspec-

tives of both a data owner and a query user. From the data owner

perspective, attendees can publish local table schemas to Hu-Fu for

data federation construction. From the query user perspective, at-

tendees can connect to multiple data owners and execute federated

spatial queries. We showcase Hu-Fu via cross-company taxi-calling,

a prevailing smart city application.

3582

https://www.acm.org/publications/policies/artifact-review-and-badging-current

Data Owner 1

Setting

Adapter

Secure Engine

Query

Plaintext Operator
Data

Owner
Side

Query User

Query Interface

Query Rewriter
Query Plan

Query User Side SQL

…

Data
Owner

Side

Secure/Plaintext Final
Operators Result

Local
Result

Data Owner 2 Data Owner n

Figure 1: Illustration of Hu-Fu architecture.

2 HU-FU OVERVIEW
Hu-Fu is an efficient, easy-to-use data federation system for spatial

queries. This section presents its overall architecture and workflow.

2.1 Architecture
Hu-Fu consists of both the data owner side and query user side (see

Fig. 1). A data owner can set security constraints such as which

tables are accessible by the query users and whether the attributes

in the tables need to be protected by security techniques. A query

user only knows the table schema shared by data owners, and

issues federated spatial queries to Hu-Fu for the querying results.

We explain the components of Hu-Fu on each side below.

Data Owner Side (Sec. 3). The data owner side of Hu-Fu consists

of a secure engine and an adapter.

• Secure Engine (Sec. 3.1). It defines and implements a set of

secure operators to execute federated spatial queries. The secure

engine first checks whether the operators sent by the query user

sidemeet the security constraints set by the data owner, then calls

the adapter to execute the plaintext operators in the database,

and finally assembles the local result with the secure operators.

• Adapter (Sec. 3.2). This module executes plaintext operators

as spatial queries in the local database. To support a data fed-

eration with heterogeneous databases, the adapter implements

different plaintext operators for different databases, e.g., PostGIS,

SpatiaLite, MySQL, GeoMesa, Simba and SpatialHadoop.

Query User Side (Sec. 4). The query user side of Hu-Fu includes

a query interface and a query rewriter.

• Query Interface (Sec. 4.1). It provides the query user a unified

global schema of the multiple tables from different data owners

(horizontal sliced). The query interface also supports federated

spatial queries written in SQL.

• Query Rewriter (Sec. 4.2). This module decomposes federated

spatial queries into a series of plaintext and secure operators

defined by the data owner side of Hu-Fu. The plaintext operators

are performedwithin each owner’s local database by the adapters,

while the secure operators involve SMC protocols across owners,

which are implemented by the secure engine.

2.2 Workflow
Consider Hu-Fu with a query user and 𝑛 data owners (see Fig. 1).

The query user issues a federated spatial query in SQL to the Hu-Fu

user side. The query is first parsed by the query interface into a

query plan. Then the query rewriter transforms the query plan into

a sequence of plaintext and secure operators. These operators are

then sent to the data owner side for execution. First, the adapter

executes plaintext operators on the underlying spatial databases

of each data owner to get the local results. Afterward, the secure

engine collects the local results and performs the secure operators

for the final result, which is returned to the user.

3 SYSTEM DESIGN: DATA OWNER SIDE
The data owner side of Hu-Fu defines and implements the operators

and interfaces on top of the heterogeneous databases of individual

data owners for efficient and easy-to-use federated spatial query

execution. These functionalities are achieved by the secure engine

and the adapter, as explained below.

3.1 Secure Engine
The secure engine defines and implements the secure operators.

It is also responsible for checking the security constraints of the

operators from the query user side.

Secure Operators. The secure operators securely assemble local

results returned by plaintext operators across multiple data owners.

The secure engine defines and implements three secure operators:

secure summation, secure comparison, and secure set union.

• Secure Summation. It calculates
∑𝑛
𝑖=1 𝑣𝑖 , where 𝑣𝑖 is a number

held by data owner 𝑖 . We implement the operator based on [4] to

avoid leaking 𝑣𝑖 to any data owner 𝑗 (𝑖 ≠ 𝑗) nor the query user.

• Secure Comparison. It compares a user given value 𝑘 with
∑𝑛
𝑖=1 𝑣𝑖 , and 𝑣𝑖 is a number held by data owner 𝑖 . We implement

the operator by extending [3]. It ensures that either 𝑣𝑖 or
∑𝑛
𝑖=1 𝑣𝑖

is confidential to any data owner 𝑗 (𝑖 ≠ 𝑗) and the query user.

• Secure Set Union. It computes the union of spatial objects from

owners
⋃𝑛

𝑖=1 𝑆𝑖 (𝑆𝑖 is the object set in owner 𝑖) without leaking
the ownership of any object of owner 𝑖 to owners 𝑗 (𝑖 ≠ 𝑗) nor
the query user. We implement the operator based on [5].

We select dedicated SMC protocols to implement each secure oper-

ator for high efficiency and support more than two parties. More

detailed definition and implementation can be found in [8].

Security Constraint Checking. The security constraints deter-

mine which tables can be accessed by the query user side and which

attributes in the tables require security technique protection.

Data owners set the security constraints on the owner side and

send them to query users along with the published table schemas.

The basic operators should comply with these constraints. However,

these basic operators may be forged by adversaries to violate these

security constraints to access the prohibited tables or bypass secu-

rity operations. Thus, the security engine will check each operator

received and compare the tables and attributes that the operator

needs to access with security constraints set by the data owner. The

operators will be rejected if any constraint violation is found.

3.2 Adapter
The adapter defines and implements the plaintext operators. It also

facilities easy construction of a data federation by providing inter-

faces to modify local table schemas.

Plaintext Operators. The plaintext operators can be executed

locally in the databases of each data owner without security con-

cerns. The adapter of Hu-Fu defines only two plaintext operators:

3583

plaintext range query, and plaintext range counting, because they

are simple and supported by almost all spatial data systems. The

plaintext operators are implemented by calling the corresponding

queries on local databases, which harnesses the optimization of

spatial queries brought by spatial databases. For example, in the

PostGIS adapter, a plaintext range counting on table taxi with the

center 𝑝 and radius 𝑟 is implemented by calling the SQL below.

SELECT COUNT (*) FROM taxi

WHERE ST_DWithin(p, taxi.location , r);

To adapt to other spatial databases, the data owner only needs to

re-implement the two plaintext operators.

Interface to Publish Table Schemas. To facilitate data federation

construction, Hu-Fu adapter provides interfaces for data owners

to modify the local table schemas before publishing them to query

users. This function is necessary because the tables representing the

same information may have different schemas across data owners,

while unified schemas are needed for querying. When publishing a

schema, the adapter allows modifying the name of the schema and

its attributes, and each attribute can be assigned security constraints

or marked as hidden. Consequently, data owners can negotiate a

unified schema for the data federation (example in Sec. 5.2.1).

4 SYSTEM DESIGN: QUERY USER SIDE
The query user side of Hu-Fu is responsible to parse the federated

spatial queries input by the query user and generate efficient feder-

ated spatial query plans without compromising security. These func-

tionalities are achieved by the query interface and query rewriter,

as explained below.

4.1 Query Interface
The query interface integrates schemas published by different own-

ers into unified global schemas and supports federated spatial

queries in SQL format over these global schemas.

UnifiedGlobal Schema.The query interface collects all the schemas

published by the data owners and combines multiple schemas with

the same attributes along with the security constraints into a sin-

gle global schema (see Sec. 5.2.2), which is then used to perform

federated spatial queries.

Federated Spatial Queries in SQL. The query interface extends

the SQL parser of Calcite [2] to support spatial queries in SQL.

To improve usability, we add two keywords: DWithin and kNN for
federated range query/counting and federated kNN query. For ex-

ample, a federated kNN query with point 𝑝 and parameter 𝑘 on a

global schema taxi can be written in SQL as

SELECT * FROM taxi WHERE kNN(p, taxi.location , k);

4.2 Query Rewriter
For efficient query execution, the query rewriter decomposes a

federated spatial query into as many plaintext operators and as few

secure operators as possible without compromising security. With

the basic operators defined in Sec. 3, the query rewriter classifies

common federated spatial queries (range query, range counting,

distance join, kNN, kNN join) into two categories: radius-known

queries and radius-unknown queries. More importantly, the query

rewriter designs novel decomposition plans for these two categories

of queries, as described below.

Decomposing Radius-Known Queries. Federated range query,

range counting and distance join (which can be decomposed into

multiple federated range queries) belong to radius-known queries.

Assuming a data federation with 𝑛 data owners, federated range

query/counting can be decomposed into 𝑛 plaintext query/counting

to retrieve the local results, and then uses secure summation/set

union to assemble the final result.

Decomposing Radius-Unknown Queries. The radius-unknown

queries consist of federated kNN query and kNN join (which can be

broken into multiple federated kNN queries). For a federated kNN

query, we first use binary search to obtain a radius (denoted by

𝑡ℎ𝑟𝑒𝑠) and then retrieve the spatial objects within this radius. Note

that obtaining the exact counting result during the binary search

via secure summation may leak extra information. For example, the

query user can get the number of objects within a range, which

reveals the federation’s data distribution. Hence, we only judge

whether the counting result is larger than 𝑘 and adopt a secure

comparison instead. As long as 𝑡ℎ𝑟𝑒𝑠 is between the 𝑘𝑡ℎ and the

(𝑘 + 1)𝑡ℎ nearest distance, we use a secure set union to retrieve the

objects within 𝑡ℎ𝑟𝑒𝑠 distance, which is exactly the 𝑘 nearest objects.

The following example illustrates how a federated kNN query is

decomposed into plaintext and secure operators and executed.

3 > k 1 < k 2 = k

Figure 2: Example of federated kNN query.

Example 1. Consider a federated kNN query with query point

(2, 2) and 𝑘 = 2 over 3 data owners in Fig. 2. The objects marked

with the same color belong to the same owner. The query rewriter

decomposes the query intomultiple rounds of radius-known queries.

In the first round, a plaintext range counting with center (2, 2) and
radius 2 is sent to each owner and a secure comparison with 𝑘 is

performed across owners. Then we get 3 objects, which is greater

than 𝑘 . So in the second round, the radius decreases to 1 and is re-

sent to owners for plaintext range counting and secure comparison.

Then we get 1 objects, which is smaller than 𝑘 . Thus in the third

round, the radius increases to 1.5, where the range counting result

equals to 𝑘 and the search terminates. Finally, a plaintext range

query with center (2, 2) and radius 1.5 plus a secure set union are

performed to get the 2 objects.

5 DEMONSTRATION
The demonstration consists of two parts: (i) the deployment of

Hu-Fu and (ii) its application in cross-company taxi-calling, a com-

mon smart city application [7]. We demonstrate Hu-Fu to attendees

from both the data owner and the query user perspectives.

5.1 Hu-Fu Deployment
We provide a web application startup script for both the owner and

user sides. (i) Data owners need to pass in some parameters (e.g.,

database type and connection parameters) to connect to the under-

lying database at initialization. Each owner can connect to different

types of databases by specifying the corresponding database type.

Then the data owner can view local data in the data owner page of

3584

Figure 3: Owner side of Hu-Fu.

Figure 4: User side of Hu-Fu.

Figure 5: Example of federated spatial query.

Hu-Fu web application (Fig. 3). (ii) A query user can directly launch

the script and explore the user side functionality in the query user

page of Hu-Fu web application (Fig. 4).

5.2 Use Case: Cross-Company Taxi-Calling
The demonstration uses cross-company taxi-calling to showcase

Hu-Fu. In this application, multiple taxi companies act as data

owners, and passengers are query users. The attendees can explore

the functionality of Hu-Fu from both the owner and user sides.

5.2.1 Data Owner Perspective. A data owner (e.g., a taxi company)

uses Hu-Fu owner side to view local tables and publish local table

schemas to Hu-Fu for federated spatial queries. As illustrated in

Fig. 3, the owner side presents the local table schemas in panel 1©,

visualizes the spatial data of local tables in panel 2©, and supports

publishing local table schemas to Hu-Fu in panel 3©.

In Fig. 3, the data owner has published the schema of table

didi_current_location as didi_current_location_publish

to Hu-Fu in panel 3©. Attributes id, location, and licensenumber
in panel 1© are renamed to Id, Location, and LicenseNumber and
have security constraints, while the attribute phonenumber is hid-
den. Under the setting, query users can only perform spatial queries

on these three columns of the table through secure multi-party com-

putation. All other columns (e.g., phonenumber) and other tables

(e.g., dirver_info) are inaccessible to query users.

5.2.2 Query User Perspective. From the query user’s perspective

(Fig. 4), the user can connect to multiple taxi companies’ owner

side in panel 1©, construct global schemas by combining multiple

schemas from different companies in panel 2©, and issue federated

spatial queries over these global schemas in panel 3©.

As displayed in Fig. 4, the passenger has connected to three

companies in panel 1©, where each company is represented by

its IP address and the passenger can view the table schemas pub-

lished by these companies. The passenger has constructed a global

schema taxi_current_location by combining current location

table schemas from these companies in panel 2©. To get the nearby

taxis, the passenger has entered a federated kNN query in the panel

3©, and Hu-Fu has returned the nearest 5 taxis and visualized them

on the map. Fig. 5 illustrates the query from both the owner and

the user perspectives. The final results of the federated kNN query

come from the three data owners’ local data, which are marked

with dotted circles.

ACKNOWLEDGMENTS
We are grateful to anonymous reviewers for their constructive

comments. This work is partially supported by the National Key

Research and Development Program of China under Grant No.

2018AAA0101100, the National Science Foundation of China (NSFC)

under Grant No. U21A20516, 62192784, U1811463, 62076017, the

State Key Laboratory of Software Development Environment Open

Funding No. SKLSDE-2020ZX-07, and the Lee Kong Chian Fellow-

ship awarded to Zimu Zhou by Singapore Management University.

Yongxin Tong is the corresponding author.

REFERENCES
[1] Johes Bater, Gregory Elliott, Craig Eggen, Satyender Goel, Abel N. Kho, and

Jennie Rogers. 2017. SMCQL: Secure Query Processing for Private Data Networks.
PVLDB 10, 6 (2017), 673–684.

[2] Edmon Begoli, Jesús Camacho-Rodríguez, Julian Hyde, Michael J. Mior, and
Daniel Lemire. 2018. Apache Calcite: A Foundational Framework for Optimized
Query Processing Over Heterogeneous Data Sources. In SIGMOD. 221–230.

[3] Dan Bogdanov, Sven Laur, and Jan Willemson. 2008. Sharemind: A Framework
for Fast Privacy-Preserving Computations. In ESORICS. 192–206.

[4] Fatih Emekçi, Ozgur D. Sahin, Divyakant Agrawal, and Amr El Abbadi. 2007.
Privacy preserving decision tree learning overmultiple parties. Data&Knowledge
Engineering 63, 2 (2007), 348–361.

[5] Pawel Jurczyk and Li Xiong. 2011. Information Sharing across Private Databases:
Secure Union Revisited. In SocialCom/PASSAT. 996–1003.

[6] Amit P. Sheth and James A. Larson. 1990. Federated Database Systems for Man-
aging Distributed, Heterogeneous, and Autonomous Databases. ACM Computing
Surveys 22, 3 (1990), 183–236.

[7] Numerous Beijing Taxi Brands to Collectively Connect to Amap’s Ride-hailing
Platform to Enable Online Operation. 2021. https://aag.cc/newsinfo/517126.html

[8] Yongxin Tong, Xuchen Pan, Yuxiang Zeng, Yexuan Shi, Chunbo Xue, Zimu Zhou,
Xiaofei Zhang, Lei Chen, Yi Xu, Ke Xu, and Weifeng Lv. 2022. Hu-Fu: Efficient
and Secure Spatial Queries over Data Federation. PVLDB 15, 6 (2022), 1159–1172.

[9] Paul Voigt and Axel Von dem Bussche. 2017. The EU General Data Protection
Regulation (GDPR): A Practical Guide. Vol. 10. Springer International Publishing.

[10] Nikolaj Volgushev, Malte Schwarzkopf, Ben Getchell, Mayank Varia, Andrei
Lapets, and Azer Bestavros. 2019. Conclave: secure multi-party computation on
big data. In EuroSys. 3:1–3:18.

3585

