
EasyDR: A Human-in-the-loop Error Detection&Repair Platform
for Holistic Table Cleaning

Yihai Xi
Beijing Jiaotong University

Beijing, China
xiyihai@bjtu.edu.cn

Ning Wang
Beijing Jiaotong University

Beijing, China
nwang@bjtu.edu.cn

Xinyu Chen
Beijing Jiaotong University

Beijing, China
ChenXinyu@bjtu.edu.cn

Yiyi Zhang
Beijing Jiaotong University

Beijing, China
Zhangyiyi@bjtu.edu.cn

Zilong Wang
Beijing Jiaotong University

Beijing, China
21120413@bjtu.edu.cn

Zhihong Xu
Beijing Jiaotong University

Beijing, China
21120430@bjtu.edu.cn

Yue Wang
Beijing Jiaotong University

Beijing, China
21125254@bjtu.edu.cn

ABSTRACT
Many tables on the web suffer from multi-level and multi-type
quality problems, but existing cleaning systems cannot provide a
comprehensive quality improvement for them. Most of these sys-
tems are designed for solving a specific type of error, so that we
need to resort to a number of different cleaning tools (one per error
type) to get a high quality table. In this demonstration, we propose
a human-in-the-loop cleaning platform EasyDR for detecting and
repairing multi-level&multi-type errors in tables. The attendees
will experience the following features of EasyDR: 1) Holistic error
detection&repair. Users are able to perform a holistic table cleaning
in EasyDR where machine algorithms are responsible for error de-
tection while human intelligence is leveraged for error repairing. 2)
Human-in-the-loop table cleaning. EasyDR performs an all-round
quality diagnosis for the table, and automatically generates crowd-
sourcing cleaning tasks for the detected errors. To simplify cleaning
tasks for crowdsourcing workers, EasyDR provides two task opti-
mization techniques including domain-aware table summarization
and difficulty-aware task order optimization. 3) Customizable clean-
ing mode. EasyDR provides a declarative language for users to
customize cleaning tasks flexibly, e.g., selecting target errors, re-
stricting the cleaning scope, defining the cooperation mode for
machine and crowd.

PVLDB Reference Format:
Yihai Xi, Ning Wang, Xinyu Chen, Yiyi Zhang, Zilong Wang, Zhihong Xu,
and Yue Wang. EasyDR: A Human-in-the-loop Error Detection&Repair
Platform for Holistic Table Cleaning. PVLDB, 15(12): 3578 - 3581, 2022.
doi:10.14778/3554821.3554848

*Ning Wang is the corresponding auther.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 12 ISSN 2150-8097.
doi:10.14778/3554821.3554848

1 INTRODUCTION
Relational tables on the web are rich sources of structured data for
collecting and analyzing data, but there exist various data quality
problems due to the lack of strict constraints. Generally, there are
two levels of quality problems in a web table, i.e., schema-level
errors and instance-level errors. Schema-level errors exist in table
schema such as table title, subject column (one entity column that
can determine the values of other columns), and column names.
Instance-level errors lie in tuples where each one describes some
facts of an instance in the subject column. To obtain a high quality
web table, we need to perform a holistic cleaning task including
error detection and data repair for the above two levels of errors.

Existing cleaning systems are mainly divided into three cate-
gories. Machine-based systems such as HoloClean [6] and CleanM
[3] rely on integrity constraints or external data sources to clean
errors. Human-based systems like CrowdFill [5] leverage human
intelligence to do cleaning tasks. Hybrid human-machine systems
such as KATARA [2], Corleone [4] and HOP [1] combine human
intelligence and machine algorithms for cleaning. Although there
are lots of cleaning systems, they still have three limitations to
perform a holistic cleaning for tables.

First, existing cleaning systems are not scalable for multi-level&
multi-type errors. Most of them are designed for solving a specific
type of error and cannot settle other types of quality problems
in tables. Thus, to get a high quality table, we need to resort to a
number of different cleaning tools - one per error type. In addition,
existing systems usually focus on instance-level errors while ig-
noring schema-level ones. In fact, the quality of a table depends
on the quality of both schema and instance in the table, and the
complete and correct schema information can guide the detecting
and repairing for instance-level errors. Thus, it is important to do
the holistic table cleaning for multi-level&multi-type errors.

Second, human and machine are not well combined to provide a
holistic cleaning solution including error detection and data repair.
Some errors are easy to detect but may be hard to repair by ma-
chine, especially for the multi-modal tables consisting of words and

3578

https://doi.org/10.14778/3554821.3554848
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3554821.3554848

Figure 1: The Architecture of EasyDR

images. In fact, machine-based methods are good at error detection
while humans are good at data repair especially for machine-hard
problems such as image recognition. However, it is difficult to guar-
antee the cleaning task quality by crowdsourcing platform for most
workers are not experts in data cleaning.

Third, it is inconvenient for users to leverage crowdsourcing
to do cleaning tasks in existing systems. To design a human in-
telligence task (HIT) for cleaning one error in the table, the user
needs to think about various aspects including setting task type,
designing question content, and arranging table presentation.

To address these challenges, we propose a human-in-the-loop
cleaning platform EasyDR for detecting and repairing multi-level
and multi-type quality errors in tables. It has the following features:

Holistic and scalable error detection&repair. EasyDR is de-
signed to perform a comprehensive quality improvement for tables.
First, EasyDR provides an unified error detection and repair solution
for tables. In EasyDR, machine algorithms are mainly responsible
for error detection while human intelligence is leveraged for re-
pairing machine-hard errors. Second, EasyDR is scalable to settle
multi-level&multi-type quality problems. It provides plug-and-play
service for new detection algorithms and settles emerging quality
problems by embedding new cleaning tasks into our platform.

Human-in-the-loop table cleaning. Given a pending table,
EasyDR will perform an all-round quality diagnosis, and then au-
tomatically generate cleaning tasks for machine and crowd. To
improve the cleaning quality by crowd, we propose two task opti-
mization techniques including domain-aware table summarization
and difficulty-aware task order optimization to simplify cleaning
tasks and help crowd workers clean errors effectively and efficiently.

Customizable cleaning mode. To help users easily settle vari-
ous quality problems in tables, we design a Table Cleaning Language
(TCL) in EasyDR to customize the cleaning tasks flexibly. We also
provide a click&clean approach, where users just need to click the
mouse on a detected type of error and EasyDR automatically starts
the cleaning work. Both of the TCL and click&clean approach are
user-friendly, because users only need to decide on what type of
error to clean rather than how to design specific cleaning tasks.

2 SYSTEM OVERVIEW
EasyDR is composed of two main components: web service and
server, as shown in Fig.1.

Web service. To help users perform a holistic cleaning for tables,
we provide four main functions in the web interface: 1) demonstrat-
ing the result of quality diagnosis including the proportion of each
type of error in the pending table; 2) guiding users to do cleaning
tasks for detected errors - one click per error type; 3) providing task
optimization options for users to optimize the generated HITs; 4)
presenting repaired values in the original table in real time.

Server.An end-to-end detection and repair pipeline is supported
by four modules:

(1) Auto-Diagnosis module performs a quality diagnosis for the
pending table including an overall quality assessment and the de-
tection of different types of errors. EasyDR integrates some popular
detection algorithms into the Algorithm Library. At present, it sup-
ports the detection of schema-level errors including: 1) inappropri-
ate table title, 2) missing subject column, 3) missing/inappropriate
column name, and instance-level errors including: 1) missing at-
tribute value, 2) inconsistent attribute value (including outliers),
3) duplicate tuples. For scalability, it also provides an API for new
detecting and repairing algorithms to join EasyDR.

(2) Task Generation module is designed to enable users to trigger
a cleaning task through a TCL or a click&clean button. We design
a task-centric cleaning approach where a list of cleaning tasks are
identified by EasyDR for mapping each task to a single function.
When a function is called by a TCL or a click&clean button, EasyDR
will execute the function to generate corresponding cleaning tasks.
If there exists the repairing algorithm for one type of error, EasyDR
can use the algorithm to repair part of the errors or provide candi-
date answers for crowd workers. For the machine-hard errors left,
EasyDR will generate HITs based on a set of mapping rules about
the elements of the HIT such as UI template.

(3) Task Optimization module provides two crowdsourcing task
optimization techniques. For schema-level errors, it performs domain-
aware table summarization that presents notable tuples with broad
coverage and high diversity of domains to help workers understand

3579

Figure 2: A Screenshot of EasyDR

table topic and repair the schema-level errors easily. For instance-
level errors, it recommends optimized task execution order from
easy to difficult to help workers learn experience from easy tasks
and be more experienced for the similar but more difficult tasks.

(4) Quality Control module takes on task assignment and truth in-
ference for improving the overall result accuracy. HITs are assigned
to workers based on the task model and the optimized execution
order of tasks. Several truth inference methods are provided to
deal with different types of cleaning tasks. In addition, we design a
novel decision-making (DM) model to deal with special tasks with
uncertain number of answers such as a mix of single-choice and
completion question, which makes our platform more scalable for
emerging cleaning tasks.

3 DEMONSTRATION OVERVIEW
Fig.2 is a screenshot of the front-end of EasyDR. The user can
observe the detection and repair pipeline with the following steps:

Step 1 (Holistic quality diagnose.) First, the user can upload
a table by “Upload” button (see Fig.2-1). We have prepared a low
quality table containing 60 ball players. Then, EasyDR performs an
all-round quality diagnosis for the table after clicking “Diagnose”
button. EasyDR also provides a “Check Errors” panel for the user
to select the error types to be detected.

After the diagnosis, the overall quality level of the table and
the proportion of different errors are presented by a pie chart (see
Fig.2-3). In EasyDR, we design four levels as Top, High, Mid, Low
to evaluate the quality of table according to error severity in the
table, which takes into account both the number of errors and the

error type with a weighted score based on its importance in the
table. If the user wants to further observe one specific error type,
she just needs to click the error in the pie chart to make all errors
of this type exposed in the table. For example, after clicking the
error of missing value in the pie chart, all missing attribute values
in the table are exposed in blue (see Fig.2-2).

Step 2 (Customizable table cleaning.) EasyDR lists all de-
tected errors at the bottom left of interface (see Fig.2-4). The user
can click the “Clean” button for the type of error that she wants
to clean, then EasyDR will automatically call the cleaning func-
tion to generate cleaning tasks with default settings. Users can set
some simple parameters for the cleaning tasks. Button “Machine
help” is used to control whether our platform uses repairing algo-
rithms to clean errors directly or provides candidate answers for
crowds. Button “Summary” controls whether our platform uses
the table summarization technique to optimize the cleaning tasks
for schema-level errors. Button “Example” controls whether our
platform optimizes the execution order of instance-level cleaning
tasks and provides examples for crowd workers. However, if the
user wants to customize the cleaning task, she can express cleaning
needs by TCL from the language entry (see Fig.2-5).

Step 3 (Crowdsourcing tasks delivering.) Fig.3 shows an auto-
generated cleaning task for filling in missing column name. The
candidate answers come from the machine repairing algorithm,
and our platform also provides a blank box for workers to fill in
the answer if she does not agree with those candidates. The task
has been optimized by our summarization technique with default
setting (summary size = 3). Obviously, the tuples in the task are

3580

Figure 3: An Example of Auto-generated Cleaning Task

filled with notable entities and can cover significant domains in the
table, which are more helpful than random tuples for inferring the
missing column name. The attendees will be encouraged to finish
those tasks as crowd workers.

Step 4 (Results monitoring.) When a cleaning task is finished,
the repaired values will be shown in the original table with a check
mark on the left, and the color of the check mark is corresponding
to the color of the error in the pie chart. For example, after finishing
the completion task in Fig.3, the repaired column name “Name” is
shown in the table (see Fig.2-2) with a check mark in purple.

4 CORE TECHNIQUES
1 Table cleaning language. The syntax of table cleaning language
is shown in the box. The symbols [] and | denote optional elements
and option between elements, respectively. Operator CLEAN se-
lects the target error type to be cleaned, FROM determines the
target table,WHERE restricts the cleaning scope,MODE OF de-
fines cleaning tasks for machine and crowd, and OPTIMIZED BY
chooses the optimization technique.

CLEAN <ERROR> FROM <TABLE>
[WHERE <SCOPECLAUSE>]
[MODE OF <TASKCLAUSE>]
[OPTIMIZED BY <OPTCLAUSE>]
<SCOPECLAUSE>::=col(<Beg>,<End>)|row(<Beg>,<End>)|

(col(<Beg>,<End>),row(<Beg>,<End>))
<TASKCLAUSE>::=<CROWDTASK>|<HYBRIDTASK>
<CROWDTASK>=crowd(<Type> [, <TruthInfer>, <Require>])
<HYBRIDTASK>=machine(<Algorithm>,REPAIR|CANDIDATE),

<CROWDTASK>
<OPTCLAUSE>::=summary(<Size>)|order(<Space>,<Latency>)

Specifically, <SCOPECLAUSE> consists of two functions col()
and row(), and fields <Beg> and <End> correspond to the begin
and end index number of columns or rows. If the clause is not
specified, the cleaning task will be performed on the overall table;
otherwise, it is performed on the specified column(s) and row(s).
<TASKCLAUSE> consists of two cleaning modes, i.e., <CROWD-
TASK> refers to cleaning errors by crowdsourcing while <HYBRID-
TASK> refers to repairing by the cooperation of machine and crowd.
Function crowd() comprises of <Type> for the type of HIT (e.g.,
choice task) , <TruthInfer> for the truth inference method, and <Re-
quire> for the number of answers required. For <HYBRIDTASK>,

the <Algorithm> is provided for either repairing the errors (<Re-
pair>) or giving candidate answers (<Candidate>). <OPTCLAUSE>
consists of two optimization functions, where summary() summa-
rizes the table by the value of <Size> and order() optimizes an
execution order of tasks under constraints <Space> and <Latency>.
2 Domain-aware table summarization. Table summarization [7]
aims to provide a concise and informative table overview and assist
workers to clean the table. In EasyDR, we capture the properties
of notability and domain to provide a high quality table summary.
First, we propose a fine-grained ranking of entities based on their
significance in the real world. We observe that notable entities
get stronger relationship with others in the table. Consequently,
we map entities in the table to knowledge bases and construct an
entity link graph to calculate the notability of each entity. Second,
we derive clusters of similar entities based on domain loss, which
measures the coverage and significance of domains in a summary.
Then, clusters are adjusted to improve entity gain reflecting the
domain diversity of the summarization. Finally, we select entities
in the centroid of each cluster to form a broad-coverage and high-
diversity summary consisting of notable entities.
3 Difficulty-aware task order optimization. The difficulty of
cleaning tasks is influenced by many factors such as task type and
worker expertise. In EasyDR, we seek a more general evaluation
method based on the task notability while being independent of the
worker model, for most crowdsourcing platforms cannot provide
the worker information for the consideration of privacy. With the
task difficulty, we optimize the execution order of cleaning tasks
from easy to difficult, and let the cleaned tasks be examples for the
succeeding tasks to make them understandable. Specifically, we con-
struct a task order graph to represent the execution order of tasks,
where each vertex denotes one task and each direct edge represents
the execution sequence of two tasks. However, the topological exe-
cution order of tasks will introduce the latency and tasks should
take up little space due to the page size of computers or phones.
To meet the constraints, we propose difficulty loss to evaluate the
importance of each task sequence in the graph for reducing task
difficulty. Then we use a heuristic algorithm to find the optimized
order of tasks that minimizes the overall difficulty of the task order
graph while satisfying two constraints.

ACKNOWLEDGMENTS
This work is supported by the National Key R & D Program of
China (2018YFC0809800).

REFERENCES
[1] C. Chai, L. Cao, G. Li, J. Li, Y. Luo, and S. Madden. Human-in-the-loop outlier

detection. In SIGMOD, pages 19–33, 2020.
[2] X. Chu, J. Morcos, I. F. Ilyas, M. Ouzzani, P. Papotti, N. Tang, and Y. Ye. Katara:

A data cleaning system powered by knowledge bases and crowdsourcing. In
SIGMOD, page 1247–1261, 2015.

[3] S. Giannakopoulou, M. Karpathiotakis, B. C. Gaidioz, and A. Ailamaki. Cleanm:
An optimizable query language for unified scale-out data cleaning. In VLDB, 2017.

[4] C. Gokhale, S. Das, A. Doan, J. F. Naughton, N. Rampalli, J. Shavlik, and X. Zhu.
Corleone: Hands-off crowdsourcing for entity matching. In SIGMOD, pages 601–
612, 2014.

[5] H. Park and J. Widom. Crowdfill: Collecting structured data from the crowd. In
SIGMOD, pages 577–588, 2014.

[6] T. Rekatsinas, X. Chu, I. F. Ilyas, and C. Ré. Holoclean: Holistic data repairs with
probabilistic inference. In VLDB, pages 1190–1201, 2017.

[7] Y. Xi, N. Wang, S. Hao, W. Yang, and L. Li. Pocketview: A concise and informative
data summarizer. In ICDE, pages 1742–1745, 2020.

3581

