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ABSTRACT

Data analytics often make sense of large data sets by generalization:
aggregating from the detailed data to a more general context. Given
a dataset, misleading generalizations can sometimes be drawn from
a cherry-picked level of aggregation to obscure substantial sub-
groups that oppose the generalization. Our goal is to detect and
explain cherry-picked generalizations by refining the correspond-
ing aggregate queries. We demonstrate OREOQ, a system to compute
a support score of the given statement to quantify the quality of
the generalization; that is, whether the aggregated result is an ac-
curate reflection of the data. To better understand the resulting
score, our system also identifies significant counterexamples and
alternative statements that better represent the data at hand. We
will demonstrate the utility of OREO for investigating generaliza-
tions, by interacting with the VLDB’22 participants who will use
the OREO interface for statement validation and explanation.
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1 INTRODUCTION

Statements based on aggregate query results over datasets are com-
monly used by data scientists when analyzing large datasets. These
statements, which we refer to as generalizations, allow analysts
to represent, and convey, a high-level understanding of the data.
For example, given a dataset of people with height and gender, we
may arrive at a generalization that, on average, men are taller than
women. Of course we know there are many exceptions — in pair-
wise individual comparisons, we will find many women taller than
men. Nevertheless, the generalization may still be a “reasonable”
conclusion from the data.

Misleading statements could be made intentionally, e.g., by cherry
picking generalization levels to obscure the information of sub-
groups opposing the statement. Examples can be found in many

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 15, No. 12 ISSN 2150-8097.
doi:10.14778/3554821.3554846

3570

statements made by politicians. Poorly constructed generaliza-
tions, also called “hasty generalizations”, may occur even in “ob-
jective” arenas like science and medicine, where they could affect
the decision-making processes. For instance, doctors have over-
diagnosed ADD and ADHD for years after making generalizations
to age, sex, and the maturity of the children [4]. Undesirable gener-
alizations might convey misleading information even if the state-
ments are technically supported by the data.
To illustrate this problem we consider the following example.

Example 1.1. Nowadays, there are rising concerns over ageism
in tech companies, which may lead to developers older than 35
feeling "over the hill" in the workplace [3]. We consider an extract
from Stack Overflow, containing answers of users to the Stack
Overflow developers survey, presented in Table 1. For simplicity,
we consider only the Gender, Age (discretized), Role, and Salary
attributes and construct an "Aged Over 35" attribute to indicate
the age group of each respondent. The aggregate results indicate
that respondents under 35 earn more on average compared with
respondents over 35. However, this is not the case for significant
sub-groups, e.g., designers and DB administrators. In view of these
significant exceptions, the generalization on its own might not be
an appropriate representation of the data.

To this end, we have previously designed a scoring framework [13]
to quantify the quality of generalizations. Given a generalization
derived from an aggregate query, the main idea is that we refine the
query using conjunctions of predicates to explore the sub-groups
for evidence of support. Our model assigns a score in the range of 0
to 1 to a given statement, where intuitively, the score of a statement
reflects the degree to which the aggregate result represents the
underlying data. To provide the user a better understanding of the
resulting score, we could provide counterexamples, i.e., disclosing
significant parts of the data opposing the statement. We could also
refine the statement to obtain alternatives that better represent the
data. In [13], we proposed algorithms to perform such tasks.

Given this toolbox of options developed in [13], we need to or-
ganize these options in a cohesive system that serves the needs
of a user. It is this systems challenge that we undertake in this
demonstration. We propose to demonstrate our solution, which
we have implemented in a system called OREO (for “detectiOn of
cheRry-pickEd generalizatiOns”). OREO provides an interactive UI
that allows the users to examine the quality of statements based
on aggregate queries. We provide an easy-to-use statement builder,
which allows the users to explore their own generalized statements
by specifying main statement components. To help the users better
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Table 1: Example data set.

ResID | Gender | Age Aged Over 35 | Role Salary

Male 25-34 yearsold | No Developer | 94K

Male 25 - 34 yearsold | No DB Admin | 11K

Female | 25-34yearsold | No Developer | 86K

Female 18 - 24 years old | No Designer 19K

Male 35 - 44 years old | Yes Developer | 13K

Male 45 - 54 years old | Yes DB Admin | 18K

Female 35 - 44 years old | Yes Developer | 14K

oo || G| x| | o| =

Female 35 - 44 years old | Yes Designer 40K

understand the resulting score of a given statement, OREO gener-
ates counterexamples. Moreover, OREO can be used to generate
possible high-scoring alternatives to low-score statements.

We note that while we provide the theoretical foundations and
algorithms underlying the demonstrated system in [13], this demon-
stration presents OREO usability and its suitability for end-to-end
deployment. In the rest of this demo description, we first present
the technical background of our framework in Section 2, including
the problem formulation and algorithms. We then provide the sys-
tem details, including the system overview and the user interface
in Section 3. In Section 4, we overview our demonstration plan.

Related work. While a rich vein of research [6, 10-12, 14, 15] has
been devoted to computational fact-checking aiming to compare the
claims against existing facts based on structured data, most of them
formulate the correctness of the statement based on the dataset
query results. Wu et al. [14, 15] explore data perturbation and
provide an efficient framework to model claims as parameterized
queries for robustness and accuracy evaluation. Jo et al. [10-12] aim
at verifying aggregate data summaries from relational databases
with a natural language interface. However, simply modeling the
appropriateness of the generalization level via a single aggregate
query or the perturbation of parameterized queries is not enough.
As indicated in our motivating example, the query results might
not be an accurate reflection of the real scenario. OREO provides a
tool, which not only focuses on maliciously false claims but also on
the cherry-picking scenario, where the aggregate results could be
true but misleading. Related work of the cherry-picking statement
detection includes [6], which focuses on evaluating cherry-picked
trendlines, where “unreasonable” trends could be derived from
falsely chosen endpoints.

2 TECHNICAL BACKGROUND

We provide a overview of our theoretical foundations of the devel-
opment of OREO (see [13] for more details). We demonstrate the
ideas using the example in Section 1.1.

2.1 Model

We start by presenting the notion of statements based on aggregate
queries and then discuss their score, which reflects the degree to
which the result of aggregation represents the underlying data.

Partition query. Let 7 be a table with a set of n attributes. A
partition query Q is an aggregate query. We denote by Q(7") the
query result, and by Q.cond and Q.attr the attribute sets in the
WHERE and GROUP BY expressions of Q, resp. The following query,
denoted by Q, is an example of a partition query.

3571

SELECT Aged_over_35, avg(Salary)
FROM T
GROUP BY Aged_over_35

Here, Q(7") consists of two groups (corresponds to aged under (g1)
or over (g2) 35), Q.cond = 0 (as no WHERE clause), and Q.attr =
{Aged_over_35}.

Statement. A statement is a total order comparison of aggregate
values of two or more groups obtained by a partition query. We
define a statement using a partition query and a Boolean function
indicating the comparisons of some groups in Q(7"). We say that a
statement holds if the conditions specified by the Boolean function
are satisfied. An example of a statement associated with Q is: (S)
“The average salary of respondents aged under 35 is higher than
that of respondents aged over 35". This statement is defined using
the following Boolean function:

1, ifagg(g1) — agg(gz) > 0
0, otherwise

fo(T) = {

Query refinement. Refining a partition query allows us to
determine how well the underlying data is reflected by the query.
For instance, the statement S is supported by the results of the query
Q, but does not reflect the fact that it is not the case for database
administrators and designers. We consider typical OLAP operations
drill-down and slice [8] to get partitions of the groups. Drill-down
is performed by adding attributes to Q. attr. Slice is performed by
adding conjunctions of attribute-value assignments to Q. cond. We
define the sets of partition attributes Agrp and Ay, eq. The Agrp
attributes are used to refine the GROUP BY clause, and the Ay, eq
attributes are used to refine the WHERE clause. Once provided the
set of partition attributes by the users, OREO uses a default setting.
Partition attributes that are in the same conceptual dimensions of
Q.attr are added to Agyp. Attributes having unique values, e.g.,
res ID in Table 1, are ignored. The rest are added to Apyeq-

Statement Score. The score of a statement measures how well it
reflects the data. To define this score, we iterate over all possible
refinements of the query Q and consider the size of the sub-groups
as their potential influence on the score. To this end, we define the
weight of a refinement query, and the support of a statement.

The weight of a refinement query. Given Ay, and a parti-
tion query Q, a refinement expression r is an expression containing
attribute-value assignments (from Ap,¢q), to be added to Q.cond.
We denote by Q" the refined query obtained by adding r to the
WHERE clause of Q. A possible refinement expression to be added
to the WHERE clause of Q is r = {Gender = Male}. Intuitively, the
weight of a refinement is the proportion of the sub-groups that
qualify. In our example, the weight of Q" is the fraction of male
respondents, i.e. %

The support of a statement. Given an attribute set AC Ay,
we denote by Q4 the refinement query obtained by adding the at-
tributes in A to Q.attr. By adding attributes into Q.attr, we partition
each group ¢; CQ(7") into multiple sub-groups. We then perform
cross-group comparisons to compute the support. Intuitively, the
support of a statement is the fraction of the sub-group comparisons
that support the statement. For example, by adding the attribute
set A = {Age} to Q.attr, we refine each group in Q into two sub-
groups. The total number of sub-group combinations considered



for the support computation is 4. The comparisons of different
age ranges that satisfy the statement are ([25-34], [35-441),
([25-34], [45-541) and ([18-24], [45-541). Therefore, the
support of the statement w.r.t. A is % = 0.75 (three out of four
comparisons hold).

The score of a statement. The score of a statement consid-
ers all refinement queries obtained by either modifying Q.cond or
Q.attr using the sets of partition attributes. Intuitively, the score
reflects the population of sub-groups supporting the generalization.
A higher score indicates a better reflection of the data. In our ex-
ample, the score of S is 0.672. Note that although the generalized
aggregation supports the statement, it still gets a relatively low
score since a large fraction of sub-groups opposing the statement.

2.2 Problem Formulation

In OREO we address the following three problems:

Statement validation: Given a statement S, and the partition
attribute sets A,,eq and Agrp compute the score of S.

In case the statement score is low, the user may wish to: (i) un-
derstand which parts of the data do not "agree with the statement”,
and (ii) refine the statement s.t. the new refined statement better
represents the data but is "as close as possible" to the original query.
We thus formalize the additional two problems:

Counterargument identification: Intuitively, sub-groups (of
the groups considered by the statement) that do not align with
the statement reduce the statement’s score. Their sizes are used to
quantify the effect on the score. In this problem, we identify the set
of the most general sub-groups and report the top-k of them.

Statement refinement: Given a threshold 7 and a statement S
s.t. score(S) < t, find the set of the most general statements that
correspond to refinements queries of Q with a score higher than 7.

2.3 Algorithms

OREO employs the algorithms in [13] to handle the above-mentioned
problems. Given a generalized statement and the sets of partition
attributes, the algorithm for efficient score computation is based
on a hierarchy over refinement queries and a dedicated data struc-
ture. Our algorithm uses a Hasse diagram named query refinement
hierarchy (QRH) that represents a partial order over the refine-
ment queries. Enumerating the refined sub-groups in a bottom-up
fashion, allows for the reuse of computational results. The score
computation algorithm traverses over all refinement queries. There-
fore, identifying the counterarguments can be done alongside the
score computation using extra bookkeeping. To ensure high effi-
ciency in terms of memory consumption, to keep track of the set of
counterarguments, we use the inverted index technique [9]. Finding
the set of the most general alternatives via statement refinement
requires computing the scores for all candidate refinement queries.
A naive solution may apply a top-down breadth-first search over
the QRH, utilizing the score computation algorithm to evaluate the
score of each candidate query. To reduce execution times, we devel-
oped a recursive score computation method to avoid the repeated
application of the score computation algorithm.

3 SYSTEM DETAILS

We have implemented OREO using Python and Flask.
System overview. As shown in Figure 1, OREO contains a user
interface and three major components: dataset preparation, query
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Figure 1: Overview of OREO.

builder, and statement builder. Given a data file uploaded by the
data users, the dataset preparation component generates the data
preview and prepares the dataset D for validation. The users can use
the query builder and statement builder to construct the aggregate
statement to validate (see details below). OREO then constructs the
query refinement hierarchy (QRH) mentioned in Section 2.3 for
efficient (score, counterarguments, and query refinement) computa-
tion. OREO uses the default settings described in Section 2.1 for the
input partition attribute sets Apyq and Agrpand return the state-
ment score, top-k counterarguments and alternative statements to
the system user.

User Interface. The users of OREO can either choose from the
preloaded datasets or upload their own data files. To identify the
statement for validation, OREO supports two input configurations.

Input: preloaded statements. As shown in Figure 2(a), the
users will first be able to explore some example statements derived
from real-world sources and examine their validation results. By
clicking on the gray buttons to the right of the selected statement,
the users can modify the corresponding partition query, Boolean
function, and partition attributes of the statement.

Input: manually-defined statements. Interested users could
insert their own statements by clicking on the “Add Statement”
button (see the bottom part of Figure 2(a)). The users can express
their statement using the statement builder shown in Figure 2(b).
As a generalized statement is derived by an aggregate query, the
users first use the query builder to specify the components of the
partition query, i.e. Q.attr, Q.cond, the aggregate function, and
the target attribute. Then the users click on the “Edit Comparison
Definition” button to specify the boolean function and the groups
in the aggregation results that they what to compare. They can
also input more complex partition queries in SQL format using the
“Advanced Mode” button. Then the users could choose the partition
attributes for query refinement from the below attribute list.

Output: validation results. After specifying the statement to be
investigated, OREO displays the statement scores computed by our
algorithm (as shown in Figure 2(a)). The users will then be invited
to further investigate the validation results by clicking on the pink
buttons to the left of the statement, OREO enables one to understand
the statement’s score better (e.g., by identifying which parts of the
data do not "agree with the statement"). In more detail, by clicking
on the “Counterarguments” button, OREO displays (in a popup
window) the top 5 counterarguments associated with the largest
sub-groups that do not align with the selected statement. The top 5
counterarguments for the 4-th statement are shown in Figure 2(a).
For instance, an example counterargument for this statement is that
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Figure 2: UI of OREO.

there are more female victims than males for black victims with
vehicles in neighborhoods with an average household income. The
participants can also generate alternative higher-scored statements
for poorly stated statements by clicking on the “Refine Statement”
button. To that end, OREO requires inserting a threshold. It then
performs the statement refinement task (as described in Section 2.2)
for the selected statement to obtain alternatives whose score is

higher than the threshold.
4 DEMONSTRATION PLAN

We demonstrate the operation of OREO over three real-world
datasets, which include multiple attributes and can be associated
with real-life statements: (1) Stack Overflow (SO) dataset: SO’s
annual developer survey [5] is a dataset that has more than 98K
records containing information such as the developers’ age, gender,
ethnicity, and income. (2) Police Killings (PK) dataset [1], con-
tains information regarding people killed by police and other law
enforcement agencies in the United States. The attributes detailed
people demographics (e.g., age, gender, ethnicity) as well as details
of the cases (e.g., cause of death). (3) Academia dataset. We use
the dataset of the academic staff at a well-known university. The
dataset contains information such as gender, academic rank, and re-
search direction (art/life/science/law), of over 1.2K academics hired
by the university in the period 1990 —2020. We derive the preloaded
statements from several sources, such as Stack Overflow user re-
ports [5], news and media websites, including The Guardian [2]
and FiveThirtyEight [7]. These statements represent insights about
technology trends (SO) or expose problems of contemporary society
(PK). For the Academia dataset, the statements were generated by
real-life analysts investigating gender gaps in university hiring.
We next use the police killings (PK) dataset and the example
statement “The majority of police killings in the U.S. have taken
away the lives of males." to demonstrate how to interact with OREO.

e Select the “police_killings.csv” as the dataset for validation.
o Use the statement builder to configure the statement for val-
idation. There is no Q.cond in the statement so we leave the
WHERE clause blank. For the Q.attr, we select the Gender
attribute from the drop-down menu. For the aggregate func-
tion and target attribute, we consider the COUNT aggre-
gation on the id attribute. We further specify the boolean
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function as Count(male) > Count(female) by clicking the
“Edit Comparison Definition” button.

o Select the partition attributes from the list. In this case, we
consider the City, State, Armed and Race ethnicity as the
partition attributes.

o The evaluation results will be the same as the 4-th preloaded
statement shown in Figure 2(a). We can explore the coun-
terarguments and alternatives by clicking the pink buttons.
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