
Meta’s Next-generation Realtime Monitoring and Analytics
Platform

Stavros Harizopoulos, Taylor Hopper, Morton Mo, Shyam Sundar Chandrasekaran,
Tongguang Chen, Yan Cui, Nandini Ganesh, Gary Helmling, Hieu Pham, Sebastian Wong

Meta Platforms, Inc.
Menlo Park, CA

kraken-paper@fb.com

ABSTRACT
Unlike traditional database systems where data and system avail-
ability are tied together, there is a wide class of systems targeting
realtime monitoring and analytics over structured logs where these
properties can be decoupled. In these systems, responsiveness and
freshness of data are often more important than perfectly complete
answers. One such system is Meta’s Scuba [2].

Historically, Scuba has favored system availability along with
speed and freshness of results over data completeness and durability.
While these choices allowed Scuba to grow from terabyte scale to
petabyte scale and continue onboarding a variety of use cases, they
also came at an operational cost of dealing with incomplete data
and managing data loss.

In this paper, we present the next generation of Scuba’s archi-
tecture, codenamed Kraken, which decouples storage management
from the query serving system and introduces a single, durable
source of truth. This enables tangible improvements to system fault
tolerance and query performance while still respecting tolerable
bounds of client observed data freshness. We also describe the
journey of how we deployed Kraken into full production as we
gradually turned off the older system with no user-visible down
time.

PVLDB Reference Format:
Stavros Harizopoulos, Taylor Hopper, Morton Mo, Shyam Sundar
Chandrasekaran, Tongguang Chen, Yan Cui, Nandini Ganesh, Gary
Helmling, Hieu Pham, Sebastian Wong. Meta’s Next-generation Realtime
Monitoring and Analytics Platform. PVLDB, 15(12): 3522 - 3534, 2022.
doi:10.14778/3554821.3554841

1 INTRODUCTION
Scuba [2] is Meta’s structured log analytics platform with tens of
thousands of datasets, used by thousands of users daily. Engineers
and data scientists use Scuba to debug large distributed systems, vi-
sualize system performance, and derive operational insights, among
many other use cases.

Realtime monitoring and analytics systems occupy a unique
point in system design space which in turn has enabled Scuba
to make unique system tradeoffs. For example, the original archi-
tecture sacrificed data availability by ignoring stragglers at query

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 12 ISSN 2150-8097.
doi:10.14778/3554821.3554841

time in order to achieve better query performance, and relaxed data
durability guarantees to simplify the design and speed up ingestion.

The original Scuba system was deployed at Meta1 over 12 years
ago. While the type of scenarios for which Scuba is a good fit
has remained relatively unchanged, the number of users and use
cases on Scuba have grown significantly since then. This growth
in workloads and deployment size, and the consequent increase in
the operational load has motivated a re-examination of some of the
original tenets of the Scuba design as the system has evolved to
handle this increase in scale.

In this paper, we first describe a major rearchitecture (codenamed
Kraken) of Scuba, made to address said increase in system scale.
We (a) describe a new data ingestion pipeline that eliminates view
divergence between geographically isolated deployments of Scuba
(covered in Section 3.1), (b) explain how we used a combination
of a globally consistent backup and control messages to separate
the control plane functionalities from compute nodes in order to
minimize the resource contention impact of data management op-
erations on user queries and achieve a single source of truth, and (c)
summarize how the query path of the system was adapted in order
to accommodate these changes while still supporting fast query
response times of less than 100ms at P50.

We then cover some of the aspects of how the migration onto
this new architecture was accomplished in place with no user-
visible time nor planned data-loss such as (a) the incremental mi-
gration and performance validation steps that were undertaken
as we moved from a model where data was ingested in a single
data center location to multiple data center locations, (b) how data
ingested by the new and previous architecture were merged in a
user-transparent fashion, and (c) how we verified we were resilient
to the the new fault domains introduced by the shift from a single
region to geographically distributed architecture.

We finally demonstrate Kraken’s ability to recover after 10% of
nodes in a deployment are taken offline during during fault injection
testing as well as highlight the reductions in latency and network
utilization on the query path with the Kraken architecture.

The paper is structured as follows. In Sections 2 - 3, we provide
an overview of the problem space and the tradeoffs made in the
original system. In Section 4, we provide a deep dive into the Kraken
architecture. Sections 5 and 6 cover productionization and experi-
mentation. We describe related work in Section 7 and conclude in
Section 8.

1Previously known as Facebook.

3522

https://doi.org/10.14778/3554821.3554841
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3554821.3554841

2 TENETS OF DATA PROCESSING AT SCALE
Over the last two decades, an ever increasing number of companies
started accumulating vast amounts of data, from text files to logs, to
various docs, to web pages, all the way to event data from web apps,
mobile apps, and online games (user clicks, sign ups, etc.). To cope
with scale, new generations of systems targeting analytical use
cases appeared, ranging from the commodity hardware based MPP
Data Warehouses of the mid-2000s (Greenplum [31], Vertica [19],
ParAccel [6], Aster [10]), to the scale out SQL engines of mid-2010s
(Impala [17], Presto [28], F1 Query [27]), and from modern OLAP
systems (Pinot [15], Druid [32], Clickhouse [7], Napa [3], Procella
[5]) to modern cloud Data Warehouses (Snowflake [8], BigQuery
[12], Redshift [13])—we cover some of these systems in Section 7.

The continuing shift of CPU/memory/storage/network trends
led to the re-emergence of columnar storage [1], used by most of
the above-mentioned systems. Open storage formats like ORC and
Parquet gained in popularity and contributed to the rise of Data
Lake and Lakehouse [33] architectures. A new ecosystem grew
rapidly with the openness of these architectures, and new use cases
started flourishing, ranging from Data Science and Interactive Data
Exploration to Machine Learning, and from Advanced Analytics
to Monitoring, Realtime Dashboards and Operational Intelligence.
These use cases represent a wide spectrum of analytical use cases
andwe cluster them in the following three classes of data processing
platforms:

(1) Realtime Monitoring and Analytics
(2) Modern OLAP
(3) Data Warehousing
The focus of this paper is on the first category, but we also

provide in this section additional context behind the motivation and
design space of all three categories to further highlight the tradeoffs
when building systems for speed and scale. Note that other classes
of systems such as transactional (OLTP) databases, key value stores,
specialized systems for time series (Gorilla [26]), and log/text search
(Elasticsearch [9]) are left out from this discussion.

2.1 Design space
When it comes tomodern analytical data processing systems, whether
for Monitoring, OLAP, or Data Warehousing, different designs typ-
ically pick a set of tradeoffs along six broad axes:
[Query Performance] Dashboards and interactive data explo-
ration ideally need sub-second query latency time to maintain
responsiveness, whereas certain apps and systems may require
even lower response times (tens of milliseconds). Complex queries
(containing many joins, UDFs) on large datasets can take minutes
to hours but it is still important to speed up these queries as they
often dictate the downstream landing time. While query complexity
and dataset size can adversely impact performance, there are ways
to trade off cost and freshness by creating secondary structures
(indexes, MVs) or using expensive storage (RAM, SSD).
[Freshness] For certain applications like monitoring, realtime
analytics (e.g., understanding the virality/engagement of content
immediately after a post), or providing realtime feedback to ML
models, having data available for querying seconds after it gets
generated is crucial. On the other end of the spectrum, certain batch
jobs typically execute overnight, so waiting for an hour or more

Figure 1: Design space for data processing platforms

before starting the job is typical. Freshness often conflicts with
all other axes as working against a deadline means that there are
limited opportunities for optimizations such as compaction and
materialization or techniques such as mirroring/replication.
[Availability] Different applications can tolerate various levels
of unavailability and this is usually reflected on their SLOs/SLAs.
A batch workload can tolerate a failover duration of a few hours
if a disaster event (entire datacenter down) is expected to be rare,
whereas a monitoring system not only needs to continue operating
normally when one or even two datacenters are down, but it also
needs to provide best-effort availability in the presence of wide
outages even if that means incomplete data. The number of replicas
and the type of replication (synchronous vs. asynchronous) can
affect targets set for hardware footprint and freshness.
[Dataset size] At the one end of the spectrum, storing exabytes
of data in a resource efficient manner means that data needs to
reside on HDDs with an erasure-coding scheme for durability and
one online copy for dealing with outages (in addition to an offline
copy for disaster recovery). Adding more replicas or moving data
to faster storage can improve availability and performance but can
quickly become detrimental to resource efficiency.
[Resource efficiency] As mentioned above, there is a high correla-
tion between hardware selection and dataset size, availability, and
performance. Other than the type and size of storage (RAM vs. SSD
vs. HDD), there is a tradeoff to make in the type of nodes (scaling
up vs. scaling out) as well as the provisioned network bandwidth
and IOPS.
[Features] The final category is a wide bucket that includes all
user facing features and capabilities of a platform, such as types
of queries supported, ability to execute custom code, support for
complex workflows including backfills, support for nested and/or
custom data types, integrations with other systems such as work-
load managers and schedulers, privacy checkers, and tools like
forecasting and alerting.

2.2 Warehousing vs. OLAP vs. Monitoring
Fig. 1 shows the design space along the above-mentioned six axes
for the three classes of data processing platforms we outlined earlier.

For Data Warehousing, the non-negotiable tenets are resource
efficiency, ability to scale to the largest of data sizes, and extended
support for a wide variety of use cases (complex pipelines, custom
code applications, batch queries) whereas some sacrifices can be
made in Availability, Freshness, and Query Performance. For avail-
ability, typically a primary region followed by secondary region

3523

Figure 2: High level components for analytical systems

that can be switched within tens of minutes is acceptable, whereas
query performance will depend on the type of queries and can
range from seconds to hours. To achieve good performance, tech-
niques such as partitioning and compaction can add to the total
time to land data and so freshness is typically in the 15 min to an
hour range, with certain applications (near realtime) approaching a
few minutes. Pushing the envelope in the latter axes (for example,
through more expensive storage) would mean that the first three
axes would have to give up something.

Modern OLAP systems such as Napa [3], Druid [32], Pinot [15],
and Clickhouse [7] follow a more balanced approach by targeting
modest data sizes, medium resource efficiency, and a selected list of
features, while improving performance, freshness, and availability.
Dataset sizes for these applications are in the TB range, and total size
of a cluster is typically in the TB or low PB range. To achieve high
performance, these systems typically resort to the use of indexes or
materialized views, or restrict the types of queries they can support.
To achieve good freshness, they integrate directly with the ingestion
system and try to perform as much functionality asynchronously as
possible, such as compaction or replication. Among these systems,
Napa is taking a further step of allowing clients to configure their
own tradeoffs among performance, freshness, and resource cost.

Realtime monitoring and analytics systems sit directly opposite
to the tradeoffs made by Data Warehousing systems. Availability,
freshness, and performance are of utmost importance as any lapse
in any of these axes can negatively impact the utility of the system.
Quickly debugging with the latest data during a SEV2 or allowing
a creator to quickly assess the virality of their post are all scenarios
where speed of reaction is key. In these use cases it is often accept-
able to restrict the dataset sizes and the number of features while
taking a hit in the resource efficiency of the system, as long as the
first three categories are met at their max point.

Fig. 2 shows the high level components that are common across
the three classes of systems mentioned above. Data typically flows
from an ingestion service feeding off from a message bus, like Kafka
[18], which acts as a durable, highly available buffer architected in
a way that can help the system deal with transient failures and tran-
sient load spikes. From there, certain systems may opt for write-side
optimizations such as updating Materialized Views or Indexes, be-
fore making data available in a read-optimized format. The primary
store is responsible for providing durable, consistent, and highly
available storage to the querying service. Most systems will per-
form further optimizations (suchs as more rounds of compaction) or

2SEV: site event, noting severe disruption or unavailability of a service.

downstream transformations and write back to the store. The query-
ing service may have different degrees of coupling with storage
and may also apply different types of read-side optimizations.

Next, we describe the tradeoffs that we have chosen over the
years for Meta’s realtime monitoring and analytics platform, Scuba,
focusing on the tradeoff of data vs. system availability, and motivate
the need to redesign the system.

3 REVISITING SCUBA TRADEOFFS
As a realtime monitoring and analytics system, Scuba occupies
a unique point in tradeoff space. In this section, we first outline
Scuba’s design and focus on the tradeoffs that it made and differen-
tiated it from other systems (3.1) and then motivate the need for
rearchitecting the system (3.2).

3.1 Scuba tradeoffs
There are five main types of tradeoffs that we applied to Scuba to
scale over the years, from TBs of data to low PBs, while maintaining
freshness, performance, and availability targets:
[Massive fanout tree architecture] Scuba followed an aggrega-
tion tree topology [2, 24] that over the years settled for just three
levels: a lower level of up to thousands of leaf nodes, a middle
level of tens of aggregators, and a top level of a root node. Unlike
MPP engines and Warehouses where peer-to-peer communication
quickly runs into quadratic network overhead, an aggregation tree
can scale to tens of thousands of nodes. The tradeoff taken in this
case is that there is no support for joins, as shuffling would have re-
quired sizeable communication overhead, and hence no support for
global sorting. The benefit is that aggregation-projection-selection
queries can run fast as the computation is spread among thousands
of nodes.
[Memory is used mostly for caching] Scuba uses most of the
memory on the leaf nodes for two types of caching: block-fragment
caching (column fragments within a block that were recently ac-
cessed) and intermediate result caching. The latter form is par-
ticularly effective as many queries apply a time-shifting window
and many per-block aggregations or selections can be reused. The
tradeoff is that query result size and scratch space are limited (for
example, Scuba restricts the number of GROUP BY groups to 400K).
[Single zone map on time]Modern warehouses and OLAP sys-
tems employ a wealth of techniques to prune data and save on
computation: from zone maps [25] to bloom filters and indexes,
and from sort keys to distribution keys (for co-locating joins). All
these mechanisms come with computational overhead, typically
during ingestion. Scuba instead opts for just a single zone map on
the time column: for most monitoring applications, this turns out
to be highly effective.
[Flat and flexible schema] Although Scuba ingests JSON data
that can be arbitrarily nested, it flattens it at the top level to avoid
ingestion overhead. This makes parsing and columnar block assem-
bly fast and shifts the processing overhead to query time, for those
queries that need to dig deeper into nested fields (but this happens
after several blocks of data have already been pruned by the query
filters). Scuba also foregoes the use of a centralized catalog which

3524

would induce overhead every time there is a schema change. In-
stead, all columns are ingested as they appear in the input stream,
and the schema is built and validated on the fly, at query time.
[Best effort data availability and durability] The final tradeoff
of Scuba is that it opted for best effort data durability and availabil-
ity. Each Scuba deployment is a geographically isolated deployment
that independently consumes data from the message bus and only
stores a single copy of the data. While this loose form of replication
has no synchronization overhead at all, different deployments can
easily go out of sync as nodes fail, causing different gaps in data on
different deployments and possibly data loss. Since data availability
is imperfect by design, Scuba also deals with straggler nodes (leaf
nodes that are slow) by ignoring those nodes and returning incom-
plete data (the end users receive an indication of how complete
the input to their query was–Scuba will typically process at least
98-99% of input data). This effectively bounds the impact of any tail
latency issues to the leaf query processing timeout. While these
choices make query and ingestion particularly fast, incomplete
query results become an inevitability in the system.

3.2 Motivation for redesign
The original Scuba system that was described in [2] was an in-
memory row store that would suffer data loss even when a node
restarted. As more use cases were onboarded and grew, support for
flash-backed columnar storage allowed for fast restarts [11] and
better performance. To improve system and data availability, new
(independent) deployments were added in geographically varied
datacenter locations. Compared to Fig. 2, Scuba sidesteps write-side
optimizations and support for durability and consistency. It addi-
tionally performs compaction directly on the storage nodes (and
no other transformation) and as a form of read-side optimization
on the query serving path it utilizes its massive-fanout tree archi-
tecture to parallelize aggregations across thousands of nodes. All
Scuba deployments, including ingestion, are completely indepen-
dent; queries are sent to all deployments and the response with the
best data availability is selected.

As the total size of a Scuba deployment crossed into the PB range,
serving tens of thousands of datasets, there were significant oppor-
tunities for improvement that motivated rethinking the architecture
of the system. We group these opportunities into two categories,
user-facing and reduction in operational overhead.

3.2.1 User facing opportunities. The number one priority of Scuba
is to empower its users to better analyze data. The quality of the
insights is only as good as the quality of the data from which they
were derived. Specifically, we found that Scuba users could be better
served by:
Improved consistency.With every node failure, there would be
gaps in a dataset and these gaps would be different on each de-
ployment. On top of that, having independent ingestion to each
deployment (which follows at-most-once semantics) means that
the deployments also receive slightly different versions of the data.
Since Scuba returns each time the query with the best data availabil-
ity, users are exposed to different results that can vary significantly
(depending on the filters used) even when submitting the same
query twice.

Improved durability. One partial mitigation to the consistency
problem is to pin queries to a specific deployment and smooth
out transient failures by submitting the same query multiple times.
While this is not a practical choice for most of our users (and it
also defeats the purpose of having an always fresh and speedy data
store), it does not solve the problem as permanent node failures
resulting into permanent data loss. For clients who need to access
the entire dataset we would need to provide better durability.
Increased retention. The coupling of compute, storage, storage
management, and ingestion means that the only way to provide
more retention to users is to increase the size of the entire deploy-
ment (Scuba allows sampling with a ratio that can be configured
differently for older data but this is orthogonal to the user requests
for more overall space). The opportunity here is to find a way to
utilize resource-efficient storage (HDDs) in a decoupled way that
does not affect the performance of queries that do not need the
extra retention.

3.2.2 Reduction in operational overhead. As usage and deployment
size of Scuba continue to grow, managing the system becomes more
challenging for teams operating the system. The operational burden
of the system could be reduced by:
Simplified host draining. Without any replication or backup
mechanism, any planned downtime for hosts (e.g., to upgrade the
OS or perform hardware replacement) meant that the operators
need to drain the hosts (move the data to a different set of hosts).
This was a fragile and error-prone process that would significantly
benefit from a robust automation.
Improved node stability. With coupled read and write paths, an
ingestion load spike or an increased compaction activity could easily
overwhelm those nodes that were dealing with heavy read traffic,
leading to an imbalanced system and need for manual intervention
from the operator on call. Separating the concerns could lead to a
more balanced and stable system.
Independent scalability of storage and compute.While scaling
independently storage and compute has been the cornerstone of
modern cloud Warehouses like Snowflake [8], for a multitenant,
coupled system like Scuba we needed to examine one by one the
requests from our largest users, whether they were requests for
more computational resources or more space, and come up with
the best strategy for efficient resource increase and allocation.

To pursue the above opportunities and ensure the stability and
growth of Meta’s realtime monitoring and analytics platform for
years to come, we took on the challenge of re-architecting Scuba
and replacing it with a new system without any user-facing down
time. Next, we describe the design and implementation of the new
architecture, Kraken, which brings significant changes to the previ-
ous Scuba architecture.

4 KRAKEN ARCHITECTURE
We structure the description of Kraken around the lifecycle of
data: from client submission to user queries. In Section 4.1, we
first discuss the components used to build the new architecture.
In Section 4.2, we describe a new ingestion pipeline that improves
consistency and efficiency for data processing. Section 4.3 - 4.6
expand on how data is partitioned, stored, and managed. Finally,

3525

Section 4.7 - 4.8 describe how the data is ultimately used to serve
users’ queries.

4.1 Building blocks
4.1.1 Scribe. Scribe [16] is a distributed message queue that ag-
gregates data written to Kraken into per-dataset streams called
categories. Each category is backed by multiple LogDevice [21] logs.
Scribe provides a streaming API to its readers (called tailers) to
consume from all logs at once. Scribe does not guarantee a strict
output order for messages, so multiple readers of the same category
may receive different views of the same underlying messages.

4.1.2 Turbine. Turbine [23] is a streaming application manage-
ment service that provides the runtime environment, scaling, and
checkpoint storage and distribution, for Kraken tailers. Based on
the ingestion rate of a category, there may be dozens or hundreds
of tailers consuming from it simultaneously. Turbine uses Shard
Manager [20] to ensure tailers of the same category are geograph-
ically distributed. It also uses Zeus, a distributed metadata store
with a ZooKeeper [14] API, to provide at-most-once semantics for
tailers.

4.1.3 LogDevice. LogDevic [21] is a component of the ingestion
pipeline. Each LogDevice cluster hosts multiple logs identified by
log ID. Each message in the cluster is uniquely identifiable by its log
ID and log sequence number (LSN)3, where the LSN is guaranteed
to be monotonically increasing.

Kraken’s LogDevice cluster is provisioned across five physically
isolated clusters spread across multiple datacenter locations. Each
message in the cluster is replicated synchronously across at least
three randomly selected physical clusters before it is acknowledged.
Appends to individual LogDevice logs are linearizable.

Every log in the cluster has a fixed capacity, limited by the phys-
ical disk space on the machine, Kraken uses a space-based reten-
tion mechanism to keep the size of the log in check. A message is
trimmed when it is backed up to a globally replicated BLOB storage
service (Section 4.1.4). When a log gets full, for example, as a result
of a system failure in the backup process, LogDevice will reject
incoming messages. This signals to the writers (in this case, the
Kraken tailers) to retry, and applies back pressure to the ingestion
pipeline.

4.1.4 BLOB Storage. Kraken uses a BLOB storage service similar
to Amazon S3. Kraken uses this to store a backup of all the data on
leaf nodes. Data in the BLOB storage is synchronously replicated
with read-after-write consistency.

The metadata of the BLOBs, including their logical paths, is
stored in a fast key-value store (ZippyDB [22]) with a read-aside
cache. This enables efficient ranged enumeration of directories. This
additionally allows the metadata to be retrieved separately from
the BLOBs.

Kraken uses the BLOB storage to store data, for three purposes:
(1) Backup. The BLOB storage serves as durable storage for

all data. In case of server failure, the shards served by the

3LogDevice may choose to combine multiple user messages into one LogDevice mes-
sage and assign an offset to each of the user messages. As a result, the user message is
identified by the three-tuple of log ID, LSN, and offset.

server are moved to other servers, which will download the
backup and resume serving the shards.

(2) Staging area. The BLOB storage allows Kraken to separate
the management of data from the data plane. Auxiliary
services such as the Compaction Service write results into
the BLOB storage, and notify leaf nodes of the existence of
new blocks with control messages written into the same
LogDevice log (Section 4.4).

(3) Checkpoint storage. For any given shard, the set of all
data is the union of those in the backup, and those in its
corresponding LogDevice log. Kraken stores the combina-
tion of log ID and LSN, known as the checkpoint, of a shard
as metadata (Section 4.3). The server serving the shard
can therefore reconstruct all of the shard’s state by first
downloading the backup, and re-reading from LogDevice
for all new data written after the checkpoint in the shard’s
metadata.

4.1.5 Shard Manager. Kraken uses Shard Manager [20] to manage
shard assignment to servers, route requests to servers, load balance
shards, and handle fail-over for several services in Kraken. Kraken
servers implement a simple interface with addShard and dropShard
functions; Shard Manager communicates shard assignment through
a series of calls to these interface functions to Kraken servers.

addShard. This signals that a shard is to be added to the server.
Depending on the server’s role in the system, it performs different
actions in preparation to serve the shard.

dropShard. This signals that a shard is to be dropped from the
server. This is the opposite of addShard.

Load balancing. The servers keep track of and publishes per-
formance metrics, such as CPU utilization, for each shard. These
metrics are consumed by Shard Manager to make decisions on load
balancing. Shard Manager triggers shard movement (via a series of
calls to addShard and dropShard) when it detects load imbalance
beyond a configurable threshold.

Fail-over. When a server loses connection to the Shard Manager
service, it immediately stops serving the shard to prevent duplicated
actions from being taken in the case of a network partition. When
Shard Manager detects that a server is down it adds the shard to
another server after a configurable amount of time.

Routing. Shard Manager keeps an updated shard map for the
servers. The shard map can be used to route requests to different
shards. For example, an aggregator uses the shard map to fan out a
read request to leaf nodes (Section 4.7.1).

4.2 Ingestion
Fig. 3 shows the overall ingestion architecture of the system. Client
machines across Meta’s infrastructure submit samples of interesting
events to Scribe [16].

Kraken’s tailers run on the Turbine platform (Section 4.1.2), read
incoming samples from Scribe and transform batches of them into a
columnar storage format (Section 4.3) called RowBlocks. To keep in-
gestion realtime new RowBlocks are created with minimal batching
on the order of seconds.

A RowBlock is first associated with a 64-bit random unique ID
generated by concatenating a 32-bit random integer with a 32-bit

3526

timestamp. Once created, the RowBlock and its globally unique ID
becomes an immutable record of the data.

RowBlocks are then randomly assigned to a partition of a dataset.
A dataset partition is deterministically mapped into a number of
shards. The mapping procedure is discussed in more detail in Sec-
tion 4.3.1. Once partitioned and mapped, the RowBlock becomes
an immutable record of data and is the unit of operation of the rest
of the ingestion pipeline.

The Kraken tailers write RowBlocks to a LogDevice [21] cluster
with the same number of logs as number of shards; that is, one
log per shard. The LogDevice cluster serves as the throughput
optimized staging area for the RowBlocks, as well as the transport
for data management control messages. The logs are read by two
services:

(1) Kraken backend leaf nodes. The leaf nodes store data and
make it immediately available for user queries. Section 4.7
describes the query processing in more details.

(2) Backup and compaction service. This is an auxiliary service
that compacts smaller RowBlocks into larger ones, and
backs them up in durable storage (Section 4.5).

4.3 Data Layout
4.3.1 Sharding. Kraken uses two different sharding mechanisms
on the data plane and control plane. On the data plane, a dataset is
partitioned according to a configurable number of partitions. On
the control plane, each dataset partition is mapped onto a shard.

A dataset starts with 32 partitions when it is first created, and
may scale up to 8,192 partitions depending on the amount of data
in the dataset. The number of partitions for a dataset is stored and
distributed in realtime by a central configuration repository [29].

The mapping of a dataset partition to a shard is deterministic,
by the following equation:

ShardId =

(
hash (FormalizedPartitionName) + PartitionId2

)
rem NumShards

where FormalizedPartitionName is simply a string concatenation of
the name of the dataset and its partition ID, and NumShards is the
total number of shards, which is chosen to be a prime number. This
mapping scheme minimizes the probability of multiple partitions
of the same dataset being mapped to the same shard.

Given that most data in Kraken age out over relatively short
time frames (days to weeks), Kraken does not shuffle data around
shards. Instead, if the number of partitions for a dataset needs to be
increased, the new number is simply written to the configuration
for that dataset. Over time, incoming data will, by random chance,
be assigned to the new partitions (and therefore mapped to new
shards), while the older data in existing partitions (and shards) age
out over time. Ultimately the dataset reaches an equilibrium among
its partitions.

4.3.2 BLOB Storage. Listing 1 shows the directory structure in the
BLOB storage service (Section 4.1.4), where backups of all Row-
Blocks are stored. scuba_backup/tree is the root of the logical
container.

Listing 1: Backup directory structure

scuba_backup / t r e e / sha rd s
+−− . . .
+−− 20349 (metadata : shard che ckpo in t)
| +−− ad_met r i c s −−8190
| | +−− 18446727280387347253 −4294967295
| | +−− 18446727280387347391 −4294967295
| | +−− 18446727280387347571 −4294967295
| | +−− 18446727280387347783 −4294967295
| | +−− 18446727280387347976 −4294967295
| | +−− 18446727280387348999 −4294967295
| | +−− 18446727280387350120 −4294967295
| | +−− 18446727280387350907 −4294967295
| | +−− 18446727280387352058 −4294967295
| | +−− 18446727280387353029 −4294967295
| | +−− (o t h e r RowBlocks)
| +−− (o t h e r d a t a s e t p a r t i t i o n s)
| +−− z i p p y d b _ r e p l i c a _ s t a t e _ d b g −−1115
+−− (o t h e r sha rd s)
+−− 99991

The top level directories correspond to the shards. The LogDevice
checkpoints (Section 4.1.3) are persisted as metadata on the top-
level shard directories.

In each shard directory are the dataset partitions, each its own
directory, laid out lexicographically according to their formalized
partition name.

In each dataset partition directory are individual RowBlock files.
The RowBlocks are named using the following format:

rowblock_name = lsn + offset

where 𝑥 is the bitwise inversion of 𝑥 .
RowBlocks are named this way such that they are naturally

sorted in reverse chronological order. With efficient metadata-based
ranged enumeration (Section 4.1.4), this allows fast retrieval of
recent RowBlocks (or their metadata), as they are used more often
by both Kraken and auxiliary systems (Sections 4.5, 4.6).

4.4 Control Plane
An important component of any modern OLAP system is to not
only be able to serve queries using stored data, but also to manage
them appropriately.

Historically, Scuba leaf nodes have also been responsible for
performing management duties on the data they store and serve
(Section 4.6). This led to two issues:

(1) Inconsistency. Since different deployments have different
views on the data (Section 4.2), they end up performing
slightly different operations on the data. This further leads
to auditing difficulties when required.

(2) Resource contention. The data management operations
take up a significant portion of the system resources, of-
ten in a bursty fashion during which regular user query
workloads may be negatively affected.

3527

Figure 3: Kraken architecture

The new architecture separates the management and storage of
data into independent services (Sections 4.5, 4.6 and 4.7). It mul-
tiplexes data management control messages, with data messages
(RowBlocks), on the same LogDevice logs.

Messages in LogDevice logs may be one of several types:
(1) Data. This type of message carries fresh RowBlocks (with

unique IDs; Section 4.2) in their payloads.
(2) Heartbeat. This type of message has no payload. They are

only used by nodes to detect possible disconnection from
the network.

(3) Compaction. This type of message is sent by the Backup
Compaction service (Section 4.5) to signal multiple smaller
RowBlocks have been compacted into a larger block. These
messages carry the handle to the larger block in BLOB
storage, as well as the list of IDs of the RowBlocks being
replaced by the new RowBlock.

(4) Update. This type of message is sent by the Update service
(Section 4.6) to signal that a RowBlock has to be replaced
or dropped. These messages carry the handle to the new
RowBlock in BLOB storage, as well as the ID of the old
RowBlock being replaced or dropped.

All messages (except heartbeats) are associated with RowBlock
unique IDs, so that any data management operations are idempotent
when consumed.

4.5 Remote Backup and Compaction
An important optimization in both Scuba and Kraken is the com-
paction of RowBlocks [11]. A compaction operation merges several
smaller RowBlocks into one larger RowBlock. Compaction of Row-
Blocks provides two main benefits:

(1) Storage efficiency. Since RowBlocks use dictionary com-
pression [11], the more samples contained in a RowBlock,
the better the compression.

(2) Disk IO. Since each RowBlock contains more data, fewer
RowBlocks need to be loaded in order to process the same
query. This reduces the number of disk I/O operations.

Further, the decoupling of compute nodes from backup and com-
paction operations ensures that data management operations are
not in the critical path for serving queries (Section 4.4). Leaf nodes
can always serve fresh data without waiting for compaction to
occur. This guarantees that queries will return the most recent data.

In Kraken, the Backup and Compaction Service (BCS) is respon-
sible for both backup and compaction of all the RowBlocks. The
remote backup on BLOB storage takes place as shown in Fig. 4.
After the tailers write partitioned, mapped RowBlocks into its cor-
responding LogDevice log (Section 4.2), the service consumes them
from the logs.

Shard Manager manages the shard assignment to servers that
are part of this Service. A BCS node starts up by reading from
the LogDevice logs corresponding to the shards it was assigned.
In Fig. 4, Leaf Node 1 reads RowBlocks (𝑅1, 𝑅2, 𝑅3, 𝑅4) from log
1 and uses them to serve user queries. In parallel, BCS Node 1
reads the same RowBlocks from log 1, batches RowBlocks from the
same dataset partition, compacts them into larger RowBlocks, and
uploads them to BLOB storage.

BCS Node 1 then appends notification 𝑁1 to the same log 1,
which is later received by the Leaf Node 1 (Section 4.4). This
notification will provide the handle of the compacted RowBlock
on BLOB storage, as well as all constituent RowBlocks (𝑅1, 𝑅2, 𝑅3,
𝑅4) from which the compacted RowBlock was merged. The leaf
will download this RowBlock from BLOB storage and replace the
constituent RowBlocks with the merged RowBlock 𝑅𝑚 .

Since multiple dataset partitions may be mapped to the same
shard, BCS creates a queue for each dataset partition it encounters
in the log. In Fig. 4 is mapped to Shard 1, so it parses LogDevice
data messages (Section 4.4) from the corresponding log to extract

3528

the RowBlocks and enqueues them in the corresponding dataset
partition queue.

BCS periodically flushes the queues, compacting all RowBlocks
in the queue using dictionary compression, and uploads the com-
pacted RowBlock to BLOB storage. The flushing configuration is de-
termined by multiple factors such as the total size of the RowBlocks,
the sample count, and the time window to buffer the RowBlocks.

Finally, BCS writes the LogDevice checkpoint under the shard
directory as metadata (Section 4.3.2). The checkpoints are used
by both BCS itself, as well as leaf nodes, to rebuild their state
when they restart. Since all RowBlock operations are marked by
unique RowBlock IDs, both backup and compaction operations are
idempotent. If a node in BCS fails between writing the compacted
RowBlock and persistence of the checkpoint, it can simply redo the
same compaction on the same batch of RowBlocks, since appends
to individual LogDevice logs are linearizable.

Figure 4: Backup Compaction Service architecture

4.6 Data Management
In general, data ingested in to Kraken is immutable. Kraken does
not provide functionality for point deletes or updates. Each Kraken
dataset is configured with a user-specified retention, and data out-
side of this retention is automatically deleted. Additionally, Kraken
supports time-range based deletion for both the entire dataset, or
for a set of columns. Due to Kraken’s columnar storage format,
these operations are less computationally expensive to support
compared to point operations.

The service responsible for supporting these operations is the
Update Service. The Update Service has two primary responsibili-
ties. First, it will perform the operation against the source of truth
data stored in Manifold. Second, it will notify Kraken leaves that
an update has occurred and that they must re-synchronize their
data. This Update Service is also used by a Pruner service that is
responsible for ensuring that datasets adhere to their retention
policy. The Update Service supports three operations over Kraken
datasets.

Delete Time Range. Given a time range, all data in the dataset
within that time range is deleted.

Subsample Time Range. Given a time range, all data in the
dataset within that time range is subsampled. This is an optional
feature for Kraken datasets that allows users to configure a subsam-
pling policy as a part of retention for older data enabling users to
observe trends over longer periods of time while storing less data.

Delete Columns. Given a time range and a set of columns, all
data in the specified columns within that time range is deleted.

Given the directory structure in Section 4.3.2, these operations
can be distributed in parallel across each dataset partition. Once
the operation is complete on a given partition, a message is written
to the LogDevice log for that specific partition, indicating the Row-
Blocks that need to be either re-synchronized or deleted from the
leaf nodes containing that partition. The Update Service re-uses
the same LogDevice log (Section 4.4) as the ingestion pipeline, so
this log can be viewed by leaf nodes as an ordered change log for
all modifications to the dataset partition.

4.7 Queryable Storage Nodes
The leaf nodes are the queryable data storage nodes in Kraken.
Fig. 3 shows how data is ingested into 3 geo-replicated Kraken
leaf deployments. Each global shard is assigned to exactly one
leaf node per region so that each regional cluster has exactly one
full copy of all Kraken data. These shards are assigned by Shard
Manager [20] based on resource requirements of the shards and
resource availability of the hosts. A leaf node only subscribes to
the LogDevice [21] logs for the shards it owns. Data ingested into
the leaf nodes becomes immediately available for queries.

4.7.1 Query Path. A user query first reaches a root node, which
is a specialized compute node for query distribution and result set
aggregation. A root node maintains up-to-date copies of datasets
partitioning configuration, and shard assignments. Upon receiving
the query, it first retrieves the dataset name, then it will create
𝑁Partitions sub-requests, one per dataset partition. By performing
the deterministic mapping from table partitions to shards (described
in Section 4.3.1) and looking up shard assignments, the root node
will find the 𝑁Partitions destination leaf nodes containing all data in
the requested dataset. The root node waits for partial result sets to
be returned from the leaf nodes, aggregating them into the final
result set, and returns it to the user.

While the query architecture is largely retained from legacy
Scuba, the stronger consistency guarantees afforded by Kraken
enabled much finer-grained fan-out control in the aggregation tree.
This allowed us to decrease fan-out factor for smaller datasets to
reduce the effect of stragglers, and increase the factor for larger
datasets to increase parallelism.

4.7.2 Shard data bootstrap. During shard assignment, as part of
load balancing or fail-over (described in Section 4.1.5), a leaf node
will have to bootstrap a local copy of the data corresponding to
the assigned shard. To do this, leaf nodes download a snapshot of
data from BLOB storage and subsequently resume tailing from the
appropriate LogDevice log at the appropriate LSN.

4.8 Nessie: interface with the Warehouse
Each table in Scuba usually comes with a relatively short retention
to store the most recent data. However, there are use cases where

3529

years of data is required to keep for investigation or analysis. To
overcome the retention limits and leverage the power of Meta’s
Data Warehouse (e.g., batch processing framework, rich SQL se-
mantics), we built and deployed alongside Kraken a feature called
virtual retention (codenamed Nessie, see also Fig. 3). Nessie was
designed and implemented to extend Kraken by enabling inter-
operability between Kraken and the Warehouse. Specifically, the
data stream from a dataset’s category in Scribe is converted into
the Warehouse’s data format and dumped into each table regu-
larly. After data lands into the Warehouse, users are able to access
the dataset using Scuba’s UI. Virtual retention enables monitoring
and analysis on out of retention Kraken data in a transparent way.
Specifically, when a query arrives at the Kraken proxy, it is split into
two queries automatically. The first query goes to Kraken deploy-
ments and accesses the data within the dataset’s original retention,
whereas the second query is sent to Nessie, a standalone cluster
that modified the Kraken leaf code to read directly fromWarehouse
storage. After the proxy gets the results from both queries, it merges
these two results into one and the Scuba UI presents the chart to the
user designating the parts that were retrieved from the extended
retention.

5 PRODUCTIONIZATION
Since Scuba is a production system used by thousands daily and
heavily relied on by various automation, it is simply not an option
to shut down Scuba while we roll out the new components. In this
section, we describe how we prototyped, deployed, and rolled out
the new Kraken architecture, with zero user-facing downtime.

The deployment of the backend was relatively straightforward:
we simply deployed the new binary in a different datacenter acces-
sible only by the developers. Similarly, new auxiliary services, such
as the Backup Service (Section 4.5), are deployed as standalone jobs.

Moving the data onto the new deployment, however, required
careful planning and orchestration. The following sections elabo-
rate on how we migrated the ingestion pipeline and the data. They
also expand on how we validated the new architecture as it is being
deployed, so it would meet the users’ expectations when the legacy
system was decommissioned.

5.1 Global Tailer Migration
Prior versions of Scuba had enhanced data availability through the
addition of new Scuba deployments performing independent inges-
tion and data storage. As previously noted (Section 3.2), this led to
divergent views of data between deployments with long term user-
facing inconsistencies and operational overhead. To address this, a
core goal for the Kraken migration was the move to a single-writer
model, with a single set of global tailer jobs distributed across mul-
tiple geographically separated data center regions. A single set of
tailer jobs processes ingested data and writes RowBlocks to the stag-
ing area and backup, with leaf hosts hosting local replicas of these
RowBlocks across Scuba deployments. Supporting this migration,
while continuing to serve existing Scuba users, required focusing
on a few key concerns, so that Scuba could continue meeting targets
for reliability without any interruption in service.

5.2 Performance
Kraken shifted the Scuba ingestion stack from a region-local pro-
cessing model to a fundamentally distributed processing model, in
which cross-datacenter network latency can impact overall through-
put. Global tailers perform cross-DC operations in two cases for
writes:

(1) Appending RowBlocks to LogDevice logs for downstream
consumption (Section 4.4). This incurs cross-region replica-
tion of the RowBlock data in LogDevice.

(2) Updating checkpoint storage in ZippyDB, since writes are
replicated to three regions.

As an early test of the impact of cross-region latency on Scuba
tailers, one of the existing Scuba deployments was migrated to Zip-
pyDB storage with replication distributed across three data center
regions. This provided on-going validation that tailer processing
was not bound by checkpoint latency under a full production work-
load and fluctuations. RowBlock writing to LogDevice was added
later, with tuning to maximize batching of the writes for through-
put.

5.3 Data Migration
Another obstacle of a seamless migration to the new architecture
was the physical movement of data. While many Scuba datasets
limit data retention times to the orders of days or weeks, some
datasets require retention lasting months or years. Fully migrating
all usage to Kraken required supporting both retention categories.
For datasets with shorter retention, we could simply write fresh
data to both Kraken and legacy Scuba, and then move over the read
path once the Kraken data met the configured retention time. For
datasets whose retention exceeds the timeline for productionization,
it was necessary to copy any historical data directly from storage
from legacy Scuba.

5.3.1 Fresh data. To avoid data duplication and minimize data loss,
this meant that both Kraken and existing Scuba tailers must see the
same view of the ingested data, which, due to limits on ordering
guarantees for Scribe readers, meant that a single set of tailers must
populate both. One of the existing Scuba deployments was selected
and moved to a new global tailer job, writing RowBlocks to both
LogDevice for Kraken and the existing Scuba leaf nodes.

5.3.2 Historical data. Since fresh data becomes indistinguishable
from historical data once it’s persisted on Scuba, naively copying
from legacy Scuba would result in duplicates. We introduced a
versioning mechanism in legacy Scuba to mark any RowBlocks that
existed prior to the copying. The version number of a RowBlock is
stored as part of the header of the RowBlock.

Prior to copying a dataset, the tailers will be instrumented to
write any new RowBlocks with a new version. This means any
un-versioned RowBlock, or RowBlock with lower versions already
persisted by legacy Scuba, will be distinct from the ones with the
newer version. During copying, any RowBlockwith the new version
is ignored. This ensures that historical data is not duplicated in the
migration of historical data.

3530

5.4 Fault Tolerance
At internet scale, various types of disasters (natural, human, soft-
ware, etc.) that take entire datacenters offline may occur. As Meta’s
main debugging tool, Scuba faces a unique challenge: often times,
other teams that maintain the very infrastructure on which Scuba
depends, rely on Scuba to troubleshoot their systems.

With a single source of truth, the Kraken architecture allows for
more strategic redundancy. While the backend is still fully deployed
redundantly in 3 datacenter regions, other components are more
geographically distributed. For example:

(1) Scuba tailers (Section 4.2) are distributed across five data-
centers. Under the previous Scuba architecture, a datacenter
outage would render the entire Scuba deployment in the
impacted datacenter offline. In Kraken, the impacted jobs
in the datacenter will be moved automatically to other dat-
acenters by Shard Manager (Section 4.1.5).

(2) Tailer state is persisted in a ZippyDB deployment replicated
across five datacenters with strong consistency.

(3) Scuba’s LogDevice cluster is geographically distributed
across five datacenters (Section 4.1.3).

Throughout the productionization of the Kraken architecture,
we routinely employed two types of testing to validate the fault
tolerance of the system: (1) drain tests, and (2) Chaos Monkey-style
[4] fault injection testing.

Drain tests artificially introduce geographical shard placement
restrictions. With the help from Shard Manager (Section 4.1.5), dur-
ing a drain test, we force shards to evacuate from a datacenter. This
ensures that the system has enough capacity in other datacenters
to accept the shards. At the same time, we monitor the system’s
throughput to make sure that it does not degrade beyond users’
expectations.

Fault injection testing introduces faults at tactical places in
the system. Several types of faults were used to ensure that Scuba
is resilient under non-critical failures, and fails gracefully when
critical dependencies fail. Faults include network outages (similar to
natural disasters), and application level failures (similar to software
bugs in systems Scuba depends on).

6 EXPERIMENTS
In this section we present comparisons of Kraken with the original
Scuba architecture. Additionally, we present quantitative measure-
ments of new capabilities offered by Kraken.

We selected a total of 204 datasets from different size classes,
and analyzed the system’s performance on these datasets using
100% of production traffic from employees over a period of two
consecutive weeks. The query traffic comprised a mix of automated
and human-driven workloads.

The typical datasets in each size class and their characteristics
are listed in Table 1. 200 of the datasets were selected at random
from size class 𝑇5, and one dataset was selected from each of size
classes 𝑇1 to 𝑇4.

6.1 Query
We first examined the query latency of Kraken compared to the
legacy architecture. Stronger consistency guarantees made possible

Table 1: Datasets used in the experimental study

Dataset Size (GB) # Shards # Records # Columns
𝑇1 150,000 8,192 1.27 T 3,500+
𝑇2 50,000 8,192 869 B 578
𝑇3 1,000 1,024 46 B 88
𝑇4 500 128 17 B 12
𝑇5 50 32 1 B 10

by the single source of truth in Kraken enabled finer-grained con-
trol on fan-out factors in the aggregation tree. This allowed us to
minimize the effect of stragglers for datasets smaller than 𝑇3, and
increase parallelism for datasets in larger size classes. Both factors
contributed to P50 latency improvements ranging from 19.6% to
71.3% when comparing Kraken’s query performance against that of
the legacy Scuba. Fig. 5 shows the P50 query latency of the Kraken
architecture compared to legacy Scuba for datasets of in each size
class.

Figure 5: P50 query latency for datasets in each size class

Another important consideration for aggregation-tree based data
processing systems (Section 4.7) is the network bandwidth among
the nodes. Datacenter operators need to balance utilization of the
network bandwidth among competing services. The new architec-
ture achieves a 50% reduction in network utilization, due to the
reduction in the fan-out factors for datasets smaller than 𝑇3. Fig. 6
compares the bytes used to communicate among nodes in the ag-
gregation tree for a typical two-week period for both architectures.

6.2 Ingestion
A crucial service level indicator for Scuba’s ingestion pipeline is
the freshness of data served to users, as most troubleshooting and
debugging use cases require realtime access to fresh data. With a
more complex ingestion pipeline, we built a facility to trace the
end-to-end ingestion latency for datasets.4

4End-to-end ingestion latency is defined as the difference between the time Scribe
(Section 4.1.1) persists the event and the time Scuba leaf nodes persist the event.

3531

Figure 6: Network utilization by aggregation tree communi-
cation comparison

Overall, the average ingestion latency for the system is 8.22 s,
whereas the P50 latency is 7.8 s. Table 2 shows the average and
different percentiles of ingestion latency for datasets in the system.

Table 2: Ingestion latency for datasets in each size class

Dataset Average P50 P99
𝑇1 17.5 s 17.9 s 24.9 s
𝑇2 13.8 s 13.7 s 20.7 s
𝑇3 11.4 s 11.4 s 18.2 s
< 𝑇3 17.3 s 16.8 s 20.7 s
All datasets in system 8.22 s 7.8 s 16.1 s

6.3 Recovery
An important feature of the Kraken architecture is the ability to
restore missing data from source of truth. (Section 4.5) The time
to recover missing data is therefore a key metric we measure by
running routine fault injection tests (Section 5.4). One such test
simulates complete network outage on 10% of a deployment, then
measures the time taken for other servers in the same deployment to
restore backups from the source of truth, and make them available
for reading.

Fig. 7 shows the recovery process for one of the fault injection
tests that took 10% of the leaf nodes in a deployment offline. The
𝑦-axis shows the number of shards available for reads. At the be-
ginning of the test, approximately 10% of the shards were lost. The
system gradually recovered from the failure by moving the shards
to other servers.

Over 6 runs of the same test in different deployments across a
period of 6 months, the average recovery time from losing 10% of
servers is approximately 180 minutes.

7 RELATEDWORK
Both Rockset [30] and Napa [3] offload compaction to perform op-
timizations at write time via creation of materialized views, which

Figure 7: Recovery progress from fault injection testing

improves read-time performance at the cost of additional compute
and IO. Napa takes this a step further and enables clients to trade
off these write-side optimizations based on their requirements for
cost, freshness and query performance. Unlike Napa, Kraken does
not expose these concepts as client modifiable configuration param-
eters and instead elects to enable users to explicitly constrain their
workloads by allowing them to configure an optional sampling
policy at ingest time as discussed in [2].

Druid [32], Pinot [15], and Clickhouse [7] all support various
forms of streaming and batch ingestion with ingestion speeds ap-
proaching real-time to nodes which share the dual responsibility
of data storage and compute. Unlike these systems, data ingested
into Kraken can be simultaneously ingested into multiple systems
like Meta’s Data Warehouse via a singular ingestion API if desired.
This is done to take advantage of the different characteristics of the
various systems and query results from the various systems can be
stitched together and presented in a single UI.

Both Procella [5] and Kraken append data into logs for subse-
quent processing (i.e compaction) at ingest time. To improve data
freshness, Procella opts for a scheme where data is dual written
to best effort durable in-memory buffers and durable remote stor-
age. Data in the in-memory buffers is made immediately queryable
while data in remote storage is queryable after the background pro-
cess of compaction is complete. Kraken on the other hand persists
all data to durable storage after a small batching window before
allowing data to be queryable.

Dremel’s [24] original tree aggregation architecture is the closest
system to Scuba’s/Kraken’s leaf architecture for serving queries.
Unlike realtime monitoring systems, Dremel does not have strict
targets for freshness and query performance and instead focused
on interactive performance of large datasets with full support for
nested data. BigQuery [12], which was originally based on Dremel,
later expanded the engine to support full joins and other features
commonly found in cloud Data Warehouses (UDFs, MVs, etc.).

Modern SQL engines (Impala [17], Presto [28], F1 Query [27])
paved the way for decoupling compute from storage and allowed
scaling data processing to exabytes of data. Supporting the full spec
of SQL means that these engines need to employ a sophisticated
optimizer and also need to be able to redistribute data on the fly to
support any type of join and aggregation which limits the scalability

3532

of the clusters. Systems of this nature are present in Meta’s Data
Warehouse and data in Kraken ismade queryable with these engines
via the Nessie interface.

8 CONCLUSION
In this paper we described the design, implementation, and deploy-
ment of Meta’s next generation realtime monitoring and analytics
platform, Kraken, which succeeded Scuba [2] after more than a
decade in production. We discussed the unique considerations of
the design space for modern analytical data processing systems
at scale and motivated the need for revisiting the original trade-
offs behind Scuba’s design. The new Kraken architecture handled
increased scale by improving on system characteristics such as
eliminating best effort data durability in the prior architecture. We
separated the storage management subsystem from the leaf nodes
that also serve queries and introduced a new deterministic parti-
tioning scheme which made it possible for the system to have a
single source of truth, that is simultaneously not on the critical
path of query serving. This enabled the system to be available and
real-time as well as mitigated undesirable characteristics of the pre-
vious architecture such as view divergence between geographically
isolated deployments.

The Kraken rearchitecture was accomplished in place with no
user-visible down time via careful planning and orchestration to
migrate system components such as the ingestion pipeline without
planned data loss. With Kraken in production, we have observed
immediate and tangible improvements to system fault tolerance and
query performance while still respecting tolerable bounds of client
observed data freshness. Over the long term, we anticipate that the
Kraken architecture will enable further improvements to be made
to the system such as enabling knobs for tuning data availability at
query time as well as enabling more flexible and efficient topologies.

ACKNOWLEDGMENTS
Rearchitecting and fully deploying to production Meta’s next gen-
eration platform for realtime monitoring and analytics has been a
long journey and it would not have been possible without the help
of many people including current and past team members, as well
as our partner teams. We are also grateful to Gautam Shanbhag,
Karen Pieper, and Munir Bandukwala for their continued support.

REFERENCES
[1] Daniel Abadi, Peter Boncz, Stavros Harizopoulos, Stratos Idreos, and Samuel

Madden. 2013. The Design and Implementation of Modern Column-Oriented
Database Systems. Foundations and Trends® in Databases 5, 3 (2013), 197–280.
https://doi.org/10.1561/1900000024

[2] Lior Abraham, John Allen, Oleksandr Barykin, Vinayak Borkar, Bhuwan Chopra,
Ciprian Gerea, Daniel Merl, Josh Metzler, David Reiss, Subbu Subramanian,
Janet L. Wiener, and Okay Zed. 2013. Scuba: Diving into Data at Facebook. Proc.
VLDB Endow. 6, 11 (aug 2013), 1057–1067. https://doi.org/10.14778/2536222.
2536231

[3] Ankur Agiwal, Kevin Lai, Gokul Nath Babu Manoharan, Indrajit Roy, Jagan
Sankaranarayanan, Hao Zhang, Tao Zou, Min Chen, Jim Chen, Ming Dai, Thanh
Do, Haoyu Gao, Haoyan Geng, Raman Grover, Bo Huang, Yanlai Huang, Adam Li,
Jianyi Liang, Tao Lin, Li Liu, Yao Liu, Xi Mao, Maya Meng, Prashant Mishra, Jay
Patel, Rajesh S R, Vijayshankar Raman, Sourashis Roy, Mayank Singh Shishodia,
Tianhang Sun, Justin Tang, Junichi Tatemura, Sagar Trehan, Ramkumar Vadali,
Prasanna Venkatasubramanian, Joey Zhang, Kefei Zhang, Yupu Zhang, Zeleng
Zhuang, Goetz Graefe, Divyakanth Agrawal, Jeff Naughton, Sujata Sunil Kosalge,
and Hakan Hacıgümüş. 2021. Napa: Powering Scalable Data Warehousing with

Robust Query Performance at Google. Proceedings of the VLDB Endowment
(PVLDB) 14 (12) (2021), 2986–2998.

[4] Michael Alan Chang, Bredan Tschaen, Theophilus Benson, and Laurent Vanbever.
2015. Chaos Monkey: Increasing SDN Reliability through Systematic Network
Destruction. SIGCOMM Comput. Commun. Rev. 45, 4 (aug 2015), 371–372. https:
//doi.org/10.1145/2829988.2790038

[5] Biswapesh Chattopadhyay, Priyam Dutta, Weiran Liu, Ott Tinn, Andrew Mc-
Cormick, Aniket Mokashi, Paul Harvey, Hector Gonzalez, David Lomax, Sagar
Mittal, Roee Aharon Ebenstein, Nikita Mikhaylin, Hung ching Lee, Xiaoyan
Zhao, Guanzhong Xu, Luis Antonio Perez, Farhad Shahmohammadi, Tran
Bui, Neil McKay, Vera Lychagina, and Brett Elliott. 2019. Procella: Unify-
ing serving and analytical data at YouTube. PVLDB 12(12) (2019), 2022–2034.
https://dl.acm.org/citation.cfm?id=3360438

[6] Yijou Chen, Richard L. Cole, William J. McKenna, Sergei Perfilov, Aman Sinha,
and Eugene Szedenits. 2009. Partial Join Order Optimization in the Parac-
cel Analytic Database. In Proceedings of the 2009 ACM SIGMOD International
Conference on Management of Data (Providence, Rhode Island, USA) (SIGMOD
’09). Association for Computing Machinery, New York, NY, USA, 905–908.
https://doi.org/10.1145/1559845.1559945

[7] ClickHouse. 2022. ClickHouse - Fast Open-Source OLAP DBMS. https://web.
archive.org/web/20220621010451/https://clickhouse.com/.

[8] Benoit Dageville, Thierry Cruanes, Marcin Zukowski, Vadim Antonov, Artin
Avanes, Jon Bock, Jonathan Claybaugh, Daniel Engovatov, Martin Hentschel,
Jiansheng Huang, AllisonW. Lee, AshishMotivala, Abdul Q. Munir, Steven Pelley,
Peter Povinec, Greg Rahn, Spyridon Triantafyllis, and Philipp Unterbrunner. 2016.
The Snowflake Elastic Data Warehouse. In Proceedings of the 2016 International
Conference on Management of Data (San Francisco, California, USA) (SIGMOD
’16). Association for Computing Machinery, New York, NY, USA, 215–226. https:
//doi.org/10.1145/2882903.2903741

[9] Elasticsearch. 2022. Elasticsearch: The Official Distributed Search & Analytics
Engine | Elastic. https://web.archive.org/web/20220602153647/https://www.
elastic.co/elasticsearch/.

[10] Eric Friedman, Peter Pawlowski, and John Cieslewicz. 2009. SQL/MapReduce:
A Practical Approach to Self-Describing, Polymorphic, and Parallelizable User-
Defined Functions. Proc. VLDB Endow. 2, 2 (aug 2009), 1402–1413. https://doi.
org/10.14778/1687553.1687567

[11] Aakash Goel, Bhuwan Chopra, Ciprian Gerea, DhruvMátáni, JoshMetzler, Fahim
Ul Haq, and Janet Wiener. 2014. Fast Database Restarts at Facebook. In Proceed-
ings of the 2014 ACM SIGMOD International Conference on Management of Data
(Snowbird, Utah, USA) (SIGMOD ’14). Association for Computing Machinery,
New York, NY, USA, 541–549. https://doi.org/10.1145/2588555.2595642

[12] Google. 2022. BigQuery: Cloud Data Warehouse | Google Cloud. https://web.
archive.org/web/20220602225903/https://cloud.google.com/bigquery/.

[13] Anurag Gupta, Deepak Agarwal, Derek Tan, Jakub Kulesza, Rahul Pathak, Ste-
fano Stefani, and Vidhya Srinivasan. 2015. Amazon Redshift and the Case for
Simpler Data Warehouses. In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data (Melbourne, Victoria, Australia) (SIGMOD
’15). Association for Computing Machinery, New York, NY, USA, 1917–1923.
https://doi.org/10.1145/2723372.2742795

[14] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed. 2010.
ZooKeeper: Wait-Free Coordination for Internet-Scale Systems. In Proceedings
of the 2010 USENIX Conference on USENIX Annual Technical Conference (Boston,
MA) (USENIXATC’10). USENIX Association, USA, 11.

[15] Jean-François Im, Kishore Gopalakrishna, Subbu Subramaniam, Mayank Shrivas-
tava, Adwait Tumbde, Xiaotian Jiang, Jennifer Dai, Seunghyun Lee, Neha Pawar,
Jialiang Li, and Ravi Aringunram. 2018. Pinot: Realtime OLAP for 530 Million
Users. In Proceedings of the 2018 International Conference on Management of Data
(Houston, TX, USA) (SIGMOD ’18). Association for Computing Machinery, New
York, NY, USA, 583–594. https://doi.org/10.1145/3183713.3190661

[16] Manolis Karpathiotakis, Dino Wernli, and Milos Stojanovic. 2020. Scribe:
Transporting petabytes per hour via a distributed, buffered queueing system.
https://engineering.fb.com/2019/10/07/data-infrastructure/scribe/

[17] Marcel Kornacker, Alexander Behm, Victor Bittorf, Taras Bobrovytsky, Casey
Ching, Alan Choi, Justin Erickson, Martin Grund, Daniel Hecht, Matthew Jacobs,
Ishaan Joshi, Lenni Kuff, Dileep Kumar, Alex Leblang, Nong Li, Ippokratis Pandis,
Henry Robinson, David Rorke, Silvius Rus, John Russell, Dimitris Tsirogiannis,
Skye Wanderman-Milne, and Michael Yoder. 2015. Impala: A Modern, Open-
Source SQL Engine for Hadoop. In Seventh Biennial Conference on Innovative Data
Systems Research, CIDR 2015, Asilomar, CA, USA, January 4-7, 2015, Online Proceed-
ings. www.cidrdb.org. http://cidrdb.org/cidr2015/Papers/CIDR15_Paper28.pdf

[18] Jay Kreps, Neha Narkhede, and Jun Rao. 2011. Kafka: a Distributed Messaging
System for Log Processing. In Proceedings of NetDB’11 the 6th Workshop on
Networking Meets Databases. Association for Computing Machinery, New York,
NY, USA. https://books.google.com/books?id=QRecswEACAAJ

[19] Andrew Lamb, Matt Fuller, Ramakrishna Varadarajan, Nga Tran, Ben Vandiver,
Lyric Doshi, and Chuck Bear. 2012. The Vertica Analytic Database: C-Store 7
Years Later. Proc. VLDB Endow. 5, 12 (aug 2012), 1790–1801. https://doi.org/10.
14778/2367502.2367518

3533

https://doi.org/10.1561/1900000024
https://doi.org/10.14778/2536222.2536231
https://doi.org/10.14778/2536222.2536231
https://doi.org/10.1145/2829988.2790038
https://doi.org/10.1145/2829988.2790038
https://dl.acm.org/citation.cfm?id=3360438
https://doi.org/10.1145/1559845.1559945
https://web.archive.org/web/20220621010451/https://clickhouse.com/
https://web.archive.org/web/20220621010451/https://clickhouse.com/
https://doi.org/10.1145/2882903.2903741
https://doi.org/10.1145/2882903.2903741
https://web.archive.org/web/20220602153647/https://www.elastic.co/elasticsearch/
https://web.archive.org/web/20220602153647/https://www.elastic.co/elasticsearch/
https://doi.org/10.14778/1687553.1687567
https://doi.org/10.14778/1687553.1687567
https://doi.org/10.1145/2588555.2595642
https://web.archive.org/web/20220602225903/https://cloud.google.com/bigquery/
https://web.archive.org/web/20220602225903/https://cloud.google.com/bigquery/
https://doi.org/10.1145/2723372.2742795
https://doi.org/10.1145/3183713.3190661
https://engineering.fb.com/2019/10/07/data-infrastructure/scribe/
http://cidrdb.org/cidr2015/Papers/CIDR15_Paper28.pdf
https://books.google.com/books?id=QRecswEACAAJ
https://doi.org/10.14778/2367502.2367518
https://doi.org/10.14778/2367502.2367518

[20] Sangmin Lee, Zhenhua Guo, Omer Sunercan, Jun Ying, Thawan Kooburat,
Suryadeep Biswal, Jun Chen, Kun Huang, Yatpang Cheung, Yiding Zhou, Kaushik
Veeraraghavan, Biren Damani, Pol Mauri Ruiz, Vikas Mehta, and Chunqiang
Tang. 2021. Shard Manager: A Generic Shard Management Framework for
Geo-Distributed Applications. In Proceedings of the ACM SIGOPS 28th Sym-
posium on Operating Systems Principles (Virtual Event, Germany) (SOSP ’21).
Association for Computing Machinery, New York, NY, USA, 553–569. https:
//doi.org/10.1145/3477132.3483546

[21] Mark Marchukov. 2018. LogDevice: A distributed data store for logs.
https://engineering.fb.com/2017/08/31/core-data/logdevice-a-distributed-data-
store-for-logs/

[22] Sarang Masti. 2021. How we built a general purpose key value store for Facebook
with zippydb. https://engineering.fb.com/2021/08/06/core-data/zippydb/

[23] Yuan Mei, Luwei Cheng, Vanish Talwar, Michael Y. Levin, Gabriela Jacques-Silva,
Nikhil Simha, Anirban Banerjee, Brian Smith, Tim Williamson, Serhat Yilmaz,
Weitao Chen, and Guoqiang Jerry Chen. 2020. Turbine: Facebook’s Service
Management Platform for Stream Processing. In 2020 IEEE 36th International
Conference on Data Engineering (ICDE). 1591–1602. https://doi.org/10.1109/
ICDE48307.2020.00141

[24] Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shiv-
akumar, Matt Tolton, and Theo Vassilakis. 2010. Dremel: Interactive Analysis
of Web-Scale Datasets. In Proc. of the 36th Int’l Conf on Very Large Data Bases.
330–339. http://www.vldb2010.org/accept.htm

[25] Guido Moerkotte. 1998. Small Materialized Aggregates: A Light Weight Index
Structure for Data Warehousing. In VLDB.

[26] Tuomas Pelkonen, Scott Franklin, Justin Teller, Paul Cavallaro, Qi Huang, Justin
Meza, and Kaushik Veeraraghavan. 2015. Gorilla: A Fast, Scalable, in-Memory
Time Series Database. Proc. VLDB Endow. 8, 12 (aug 2015), 1816–1827. https:
//doi.org/10.14778/2824032.2824078

[27] Bart Samwel, John Cieslewicz, Ben Handy, Jason Govig, Petros Venetis, Chanjun
Yang, Keith Peters, Jeff Shute, Daniel Tenedorio, Himani Apte, Felix Weigel,
David Wilhite, Jiacheng Yang, Jun Xu, Jiexing Li, Zhan Yuan, Craig Chasseur,
Qiang Zeng, Ian Rae, Anurag Biyani, Andrew Harn, Yang Xia, Andrey Gubichev,
Amr El-Helw, Orri Erling, Zhepeng Yan, Mohan Yang, Yiqun Wei, Thanh Do,
Colin Zheng, Goetz Graefe, Somayeh Sardashti, Ahmed M. Aly, Divy Agrawal,

Ashish Gupta, and Shiv Venkataraman. 2018. F1 Query: Declarative Querying at
Scale. Proc. VLDB Endow. 11, 12 (aug 2018), 1835–1848. https://doi.org/10.14778/
3229863.3229871

[28] Raghav Sethi, Martin Traverso, Dain Sundstrom, David Phillips, Wenlei Xie,
Yutian Sun, Nezih Yegitbasi, Haozhun Jin, Eric Hwang, Nileema Shingte, and
Christopher Berner. 2019. Presto: SQL on Everything. In 2019 IEEE 35th Inter-
national Conference on Data Engineering (ICDE). 1802–1813. https://doi.org/10.
1109/ICDE.2019.00196

[29] Chunqiang Tang, Thawan Kooburat, Pradeep Venkatachalam, Akshay Chander,
Zhe Wen, Aravind Narayanan, Patrick Dowell, and Robert Karl. 2015. Holistic
Configuration Management at Facebook. In Proceedings of the 25th Symposium
on Operating Systems Principles (Monterey, California) (SOSP ’15). Association
for Computing Machinery, New York, NY, USA, 328–343. https://doi.org/10.
1145/2815400.2815401

[30] Venkat Venkataramani and Dhruba Borthakur. 2022. Rockset: Real-time analytics
at Cloud Scale. https://web.archive.org/web/20220602005913/https://rockset.
com/.

[31] Florian M. Waas. 2008. Beyond Conventional Data Warehousing - Massively
Parallel Data Processing with Greenplum Database - (Invited Talk). In Business
Intelligence for the Real-Time Enterprise - Second International Workshop, BIRTE
2008, Auckland, New Zealand, August 24, 2008, Revised Selected Papers (Lecture
Notes in Business Information Processing), Malú Castellanos, Umeshwar Dayal,
and Timos Sellis (Eds.), Vol. 27. Springer, 89–96. https://doi.org/10.1007/978-3-
642-03422-0_7

[32] Fangjin Yang, Eric Tschetter, Xavier Léauté, Nelson Ray, Gian Merlino, and Deep
Ganguli. 2014. Druid: A Real-Time Analytical Data Store. In Proceedings of the
2014 ACM SIGMOD International Conference on Management of Data (Snowbird,
Utah, USA) (SIGMOD ’14). Association for Computing Machinery, New York, NY,
USA, 157–168. https://doi.org/10.1145/2588555.2595631

[33] Matei Zaharia, Ali Ghodsi 0002, Reynold Xin, and Michael Armbrust. 2021.
Lakehouse: A New Generation of Open Platforms that Unify Data Warehousing
and Advanced Analytics. In 11th Conference on Innovative Data Systems Research,
CIDR 2021, Virtual Event, January 11-15, 2021, Online Proceedings. www.cidrdb.org.
http://cidrdb.org/cidr2021/papers/cidr2021_paper17.pdf

3534

https://doi.org/10.1145/3477132.3483546
https://doi.org/10.1145/3477132.3483546
https://engineering.fb.com/2017/08/31/core-data/logdevice-a-distributed-data-store-for-logs/
https://engineering.fb.com/2017/08/31/core-data/logdevice-a-distributed-data-store-for-logs/
https://engineering.fb.com/2021/08/06/core-data/zippydb/
https://doi.org/10.1109/ICDE48307.2020.00141
https://doi.org/10.1109/ICDE48307.2020.00141
http://www.vldb2010.org/accept.htm
https://doi.org/10.14778/2824032.2824078
https://doi.org/10.14778/2824032.2824078
https://doi.org/10.14778/3229863.3229871
https://doi.org/10.14778/3229863.3229871
https://doi.org/10.1109/ICDE.2019.00196
https://doi.org/10.1109/ICDE.2019.00196
https://doi.org/10.1145/2815400.2815401
https://doi.org/10.1145/2815400.2815401
https://web.archive.org/web/20220602005913/https://rockset.com/
https://web.archive.org/web/20220602005913/https://rockset.com/
https://doi.org/10.1007/978-3-642-03422-0_7
https://doi.org/10.1007/978-3-642-03422-0_7
https://doi.org/10.1145/2588555.2595631
http://cidrdb.org/cidr2021/papers/cidr2021_paper17.pdf

