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ABSTRACT
We present Magma, a write-optimized high data density key-value
storage engine used in the Couchbase NoSQL distributed docu-
ment database. Today’s write-heavy data-intensive applications
like ad-serving, internet-of-things, messaging, and online gaming,
generate massive amounts of data. As a result, the requirement
for storing and retrieving large volumes of data has grown rapidly.
Distributed databases that can scale out horizontally by adding
more nodes can be used to serve the requirements of these internet-
scale applications. To maintain a reasonable cost of ownership, we
need to improve storage eciency in handling large data volumes
per node, such that we don’t have to rely on adding more nodes.
Our current generation storage engine, Couchstore is based on a
log-structured append-only copy-on-write B+Tree architecture. To
make substantial improvements to support higher data density and
write throughput, we needed a storage engine architecture that
lowers write amplication and avoids compaction operations that
rewrite the whole database les periodically.

We introduce Magma, a hybrid key-value storage engine that
combines LSM Trees and a segmented log approach from log-
structured le systems. We present a novel approach to perform-
ing garbage collection of stale document versions avoiding index
lookup during log segment compaction. This is the key to achieving
storage eciency for Magma and eliminates the need for random
I/Os during compaction. Magma oers signicantly lower write
amplication, scalable incremental compaction, and lower space
amplication while not regressing the read amplication. Through
the eciency improvements, we improved the single machine data
density supported by the Couchbase Server by 3.3x and lowered
the memory requirement by 10x, thereby reducing the total cost
of ownership up to 10x. Our evaluation results show that Magma
outperforms Couchstore and RocksDB in write-heavy workloads.
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1 INTRODUCTION
Modern-day internet-scale interactive applications generate huge
amounts of data through user engagements. These data-intensive
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applications like ad-serving, internet-of-things, messaging, and on-
line gaming are real-time and write-heavy, requiring large storage
capacity and high transaction throughput. As a result, distributed
databases that can scale horizontally have become an integral part
of the modern data infrastructure stack that needs to operate at
scale. The rapid growth of data volumes due to the digital wave
has introduced challenges from a manageability and storage cost
perspective. These problems have only grown despite the cost of
computing and storage hardware like memory and ash dropping
because the cost reduction has not kept up with the growth of
data. The high throughput and storage capacity can be achieved
by scaling out the distributed database by adding more nodes. To
maintain a reasonable cost of ownership, we need to improve stor-
age eciency in handling large data volumes per node, such that
we don’t have to rely on adding more nodes.

Under the hood, a single node of the distributed database depends
on a persistent key-value storage engine for durable storage and
retrieval of the database records. B+Trees [7] and Log structured
merge trees [26] are two popular access methods for implementing
persistent key-value storage engines. B+Tree is a read-optimized
data structure while LSM Tree is write-optimized. Both of these
data structures can be found in popular distributed databases like
Couchbase, Cassandra, MongoDB, CockroachDB, etc. The eciency
and performance of I/O intensive index structures are essentially a
balance among three properties. Write amplication, read ampli-
cation, and space amplication (RUM Conjecture) [4]. We cannot
achieve write-optimized, read-optimized, and space-optimized per-
sistent index structures all at the same time. Write amplication
denes the ratio of the amount of data written to disk for every byte
of write to the storage engine. Read amplication is the number
of reads issued to the disk for every read operation of the storage
engine. Space amplication is the ratio of the amount of data stored
on a disk to the user input data size.

Key Challenges withHigh Data Density.We start by identify-
ing the challenges faced by our append-only copy-on-write B+Tree
based storage engine to sustain high write throughput with a large
volume of data per node with a database size to memory ratio of
100x.

Slow Writes. Updates in a copy-on-write B+Tree are done as
read-modify-write, requiring random read I/Os. As the density
increases, reads incur large cache misses for the B+Tree pages.
Keys are spread out in a large key range distribution, and hence
larger B+Tree. The opportunity for deduplication before writing
and amortization of page rewrites due to large batches reduces,
thereby increasing the write amplication. Write latency increases
and throughput drops.

Compaction Challenges. When the database becomes frag-
mented, a compaction operation needs to be performed to limit
space amplication. Compaction performs a full database rewrite
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by copying live documents to a new le and building the B+Tree
indexes, taking time proportional to the database size. After copy-
ing, it has to run catchup to replay the extra changes that came
in during the copying. This introduces high write amplication.
Writes can only run at the speed of single-threaded compaction
per DB le. Even though we have several DB les per node, as the
density increases, the size of individual les increases. Full DB le
rewrite and longer duration catchup with larger DB size are no
longer scalable.

We present Magma, a hybrid write-optimized storage engine
based on LSM Trees [26] and Log-structured storage [28] available
in Couchbase 7.1. In this paper, we describe the following key
contributions:

• Evaluation of copy-on-write B+ tree for high data density
• Design of a high data density storage engine that blends

LSMTrees with Log-Structured storage to achieve lowwrite
amplication

• A novel method for garbage collecting the log-structured
storage eciently

This paper is organized into three parts. We initially discuss the
background by providing details on B+Trees in the context of chal-
lenges faced by our existing storage engine Couchstore in Section
2. Section 3 and 4 discuss the Magma design and our contributions.
Section 9 provides experimental evaluation results and discussion.

2 BACKGROUND
2.1 Couchbase Data Service

Figure 1: Couchbase server architecture

Couchbase distributed database has a microservices approach
called multi-dimensional-scaling [6, 9] to horizontally scale all parts
of the database. Data service is a distributed high-performance,
replicated and elastic key-value document storage service that
spans across several nodes as shown in Figure 1. In Couchbase

terminology, a database is called a bucket. A bucket is internally
split into 1024 logical partitions called vBuckets. A document is
mapped to a vBucket by hashing its key. vBuckets are distributed
among several nodes of the data service. As the number of nodes
in the cluster increases, the number of vBuckets hosted per node
decreases, thereby increasing the data density per vBucket. Docu-
ments belonging to a vBucket are stored in a single node key-value
storage engine. The data service oers simple key-value lookup
operations for the database. The secondary indexing, as well as
range query use cases, are served through Global Secondary Index
(GSI) service [20].

The primaryAPIs required by the vBucket key-value store engine
are as follows:

(1) WriteDocs(DocsList: List<Key, Seqno, Value/Tombstone> )
(2) ReadDocs(KeyList: List<Key>)
(3) ChangeFeed(startSeqno : Seqno, endSeqno: Seqno, Call-

back<Key, Seqno, Value>)
The storage engine WriteDocs API accepts a batch of document

mutations and persists it to the key-value store. The Data Service
performs de-duplication on keys in a batch before writing them to
a vbucket. Every document update has a monotonically increasing
sequence number, seqno generated by the data service. ReadDocs
performs key lookups for a batch of keys. The ChangeFeed API
exposes a change log interface to the vBucket which returns the
results as a stream of document mutations ordered by seqno. The
changelog is the backend for several services within the database to
subscribe and consume database document mutations. Couchbase
Services like vBucket Replication, Global Secondary Index (GSI),
and Analytics [19] consume the changelog via Database Change
Protocol (DCP) [11] to create new indexes and keep up to date on
the document mutations.

Managed Document Cache. The data service maintains an
in-memory hash table-based document cache for each vBucket. The
documents which are actively read and mutated are resident in the
cache. Each document in the cache can be retrieved by the document
key. If the document is not present in the cache, it retrieves the
document through the key-value storage engine.

2.2 Couchstore Copy-On-Write B+Tree

Figure 2: Copy-on-write B+Tree undergoing a modication

Couchstore [10] is the current generation storage engine of
Couchbase Server for document storage. The overall architecture
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inherits from the storage model of Apache CouchDB [2]. This stor-
age engine is battle-hardened in production and has been serving
Couchbase customers for almost 10 years. Couchstore is based
on copy-on-write (COW) B+Tree and it follows a log-structured
append-only storage model. Each vBucket maintains a couchstore
le and stores the documents belonging to the vBucket. The le
format consists of documents and B+Tree pages interleaved in the
le. Each couchstore le maintains three B+Trees, a byKey index
for accessing by key, bySeqno index for accessing by seqno, and a
metadata B+Tree for storing vBucket statistics and metadata. To
look up a document by key, byKey B+Tree is used to obtain the
le oset of the document version, and a read is performed from
the oset. Couchstore does not have a dedicated managed cache.
Rather it depends on the le system buer cache.

A copy-on-write B+Tree is an adaptation of B+Tree for the log-
structured storage model. Compared to update in-place B+trees, the
COW B+Trees can achieve higher write throughput as it performs
writes in a sequential access pattern. B+Tree consists of intermedi-
ate pages and leaf pages. The leaf page consists of key-record pairs.
Intermediate pages consist of key-value pairs with the value being
the le osets of pointing pages within the same le.

2.2.1 Write Operation. B+Treemodication involves a read-modify-
write scheme for the B+Tree page. When a record needs to be added
or removed to the COW B+Tree, it locates the leaf page where the
record key belongs by traversing the tree from the root page and
navigating through the intermediate pages. It makes a copy of the
leaf page in memory and modies the page to add or remove the
record. The new version of the page is appended to the DB le. Now
that the location of the leaf page has changed to a new oset, we
need to update the intermediate node that points to the leaf node.
Similarly, all the intermediate pages up to the root page need to be
rewritten to update the new page locations. As shown in Figure
2, if a record is modied or added to page C3, it has to make the
modication in C3 and create C3’. Similarly, the pointing parent
pages including the intermediate page B2’ and new page A’ need
to be written. The older version of the pages (C3, B2, A) becomes
stale in the le as the current B+Tree points to the recently updated
pages. In B+Trees, the unit of modication is a single page. Hence,
even if a single record is added or removed, pages in the unit of
disk block sizes need to be rewritten. Every leaf page modication
results in multiple pages to be rewritten and this can lead to high
write amplication.

2.2.2 Read Operation. Read operation in a COW B+Tree is similar
to a traditional B+Tree.

2.2.3 Compaction Operations. Since we follow the append-only
storage model for writes, every insert, update, and deletion opera-
tion in the B+Tree results in multiple page rewrites. Each modica-
tion operation generates a few new pages while making the older
versions of the pages stale. These stale versions still are present
in the DB le. As more data is written, the DB le grows in size.
The B+Tree metadata maintains the size of the current live B+tree
in the le. Once the stale data size grows above a fragmentation
threshold compared to the DB le size, we perform compaction.

A compaction operation runs in a background thread. It obtains
the current B+Tree root oset and opens a B+Tree iterator. A new

DB le is opened and it performs a B+Tree bulk load operation
to the new le, rebuilding the B+Tree. While the compaction is
running, the writes continue to operate on the DB le. The com-
pactor operates on a point-in-time snapshot of the B+Tree. After
nishing the B+Tree bulk load, it runs a catchup phase to replay
the new additions/deletions that happened to the B+Tree from the
point-in-time version used by the compactor up to the latest B+Tree
in the DB le. On completion of the catchup phase, the old DB le
is removed and writers and readers switch to the new DB le. The
space is reclaimed. Compaction is a single-threaded process that
runs on a DB le.

2.3 Log-Structured Merge Tree

Figure 3: LSM Tree architecture

LSM Tree is a write-optimized persistent index data structure.
LSM Trees achieve high write throughput by utilizing superior
sequential write bandwidth of SSDs [18] and spinning disks com-
pared to the random I/O access pattern. The large sequential writes
are achieved by batching a large number of mutations in memory
before writing the index structure. LSM Trees is a hierarchical data
structure that consists of a memory component and multiple lev-
els of persistent immutable index components. For the persistent
components, it uses the append-only B+Tree index. The on-disk
components are organized as levels with exponentially increasing
sizes.

2.3.1 Write Operation. All writes in an LSM Tree are buered
in the in-memory component and they are also appended to a
write-ahead log as shown in Figure 3. During crash recovery, the
in-memory component can be recovered by sequentially scanning
the write-ahead log. The in-memory component uses a sort ordered
data structure providing fast lookups and range reads. Once the
in-memory component reaches a threshold size limit, it is frozen
and a new one is initialized for processing incoming writes. The
records from the frozen in-memory component are converted into
a B+Tree on a new le. This le is called a sorted strings table
(SSTable).

2.3.2 Compaction Operation. As the in-memory components are
ushed to the disk, more SSTable les are generated. For performing
a lookup, it has to search SSTables in themost recent table rst order
until the key is found. The I/O and CPU cost becomes proportional
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to the number of tables to be evaluated. A large number of tables
also consume space as they may contain stale key-value pairs. To
minimize the cost of reads as well as reduce space usage, we have
to periodically merge SSTable les and reclaim space. This process
is called compaction.

A level-based compaction strategy popularized by LevelDB [15,
24] is a common compaction strategy for achieving lower read am-
plication and space amplication. The LSM Tree is organized into
multiple levels of exponentially increasing sizes with the smallest
size at the top and the largest being the bottom level. Each level can
have several SSTable les. The in-memory component is periodi-
cally ushed into level-0 as an SSTable le. Level-0 is a special level
that accumulates new data. It can have multiple SSTables with over-
lapping key ranges. All other higher levels have non-overlapping
key ranges between the SSTables in the level. Each non-level-0 level
has a contiguous key range. When level-0 reaches a size threshold,
the SSTable les are picked and merged with sstables from the
level-1 and the overlapping key range from the level-1 is replaced
with new SSTable les. This involves a k-way merge sort between
the source SSTable les. A similar process is followed to manage
the size of each level according to the size threshold.

Due to the compactions that periodically rewrite the data, LSM
Trees can incur high write amplication. For an LSM Tree with a
10x level multiplier, each level except the level-0 contributes a write
amplication of 10. When data is ushed to level-0 from the write
cache, it contributes to a write amplication of 1. Similarly, the
write-ahead log also contributes a write amplication of 1. Hence,
for an LSM Tree with 5 levels, the worst-case write amplication
can go up to 42. For skewedworkloads, observedwrite amplication
will be lower than the worst-case amplication.

2.3.3 Read Operation. The levels in the LSM Tree hold data in
the order of recency. The lower levels have the most recent data.
When a lookup operation needs to be performed, the read starts
looking up the key from the in-memory component. If it nds the
key in the in-memory component, it can return immediately as it
contains the most recent version of the record. Otherwise, it keeps
looking for the key in each next higher level. It has to go through
every SSTable in the level-0 and one SSTable each from each of
the other levels. Each SSTable has an immutable B+Tree incurring
;>6⌫ (=) lookup cost (read amplication) where n is the number of
items in the SSTable. This can be expensive in terms of CPU andI/O
operations.

To optimize the lookup, LSM Trees generally maintain a bloom
lter per SSTable with high accuracy. This avoids I/O reads from
SSTables which do not have the key. Using a bloom-lter with high
accuracy, it can service the lookup operation using a single SSTable
or a single B+Tree. This makes the cost of lookup similar to that of
a traditional B+Tree.

3 MAGMA DESIGN
Magma is the next-generation single node document storage engine
of Couchbase Server designed for improving write performance
and data density per node. The data gathered from our customers
with large data density use cases reveal that average document
sizes range from 1 KB to 16 KB and our design optimizes for taking
advantage of this. The core idea is to separate index and document

data to minimize write amplication. Magma also builds a scal-
able and incremental compaction method to maintain stable space
amplication.

In this section, we describe the goals, system architecture, and
design of the storage engine.

Figure 4: Magma storage engine

3.1 Design Goals
The design goals for the Magma storage engine are as follows:

Minimize Write Amplication. To achieve high transaction
write throughput, write amplication needs to be lowered as the
I/O bandwidth available on the storage devices is limited. Reducing
the write amplication is also crucial to extend the lifetime of SSDs
as the underlying ash media has a limited number of write-erase
cycles [25].

Scalable Concurrent Compactions. As we observed with
Couchstore, running a database level full compaction can be ex-
pensive and cause second-order eects like throttling the writers
and resulting in lower write throughput. Having the ability to run
multi-threaded smaller concurrent compactions that can incremen-
tally perform space reclamation, is required for managing a large
density database.

Optimize for SSDs. We need to leverage sequential read and
write I/O access patterns [3] to utilize the full bandwidth of the SSDs.
Random I/O should be only incurred during point lookup operations.
The storage engine also needs to leverage I/O concurrency to utilize
the higher IOPS oered by modern fast NVMe SSDs.

Low Memory Footprint. To support large database sizes per
node, the database must optimize for a small memory footprint.
The opportunity for read caching and write caching reduces signif-
icantly with a larger density of data.

3.2 Architectural Components
The Magma key-value storage engine consists of the following key
components as shown in Figure 4.

Write-Cache. A write-cache is an in-memory component used
to buer key-value pairs and provide large sequential writes to
the persistent storage. The write-cache is also used during lookup
for key-value pairs. It is implemented using a lock-free skiplist
[27][20][30]. Fixed memory is congured for the write-cache and it
is internally split into two skiplists as active and immutable. When
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it reaches the congured memory limit, it is ushed to the key index
and log-structured object storage on the SSD.

Write-Ahead Log (WAL). A write-ahead log is an append-only
log where the incoming key-value pair writes are initially written
to provide durability. Writes are initially buered in the write-cache
and also written to the write-ahead log. The write API returns only
after issuing an fsync on the write-ahead log le. Periodically, the
space used by the write-ahead log is reclaimed when the write-
cache is ushed.

LSM Tree Index. An index for the documents stored on a log-
structured object store is organized as an LSM Tree. The LSM Tree
index stores document key, document seqno, and size metadata as
key-value pairs. For document read operations, the LSM Tree is
initially looked up to obtain the document seqno which is used to
read the document value from the log-structured object storage.
The LSM Tree index maintains bloom lters with an accuracy of
99% to optimize the lookup I/O.

Log Structured Object Store. The log-structured object store
provides persistent storage for the documents by organizing them
on an append-only segmented log. The log-structured store main-
tains an index that allows querying of a document by seqno. The
log-structured store also allows range query by seqno essentially
providing a changelog for the document database.

Index Block Cache. A read cache is maintained in RAM for
caching the recently read index blocks from the LSM Tree as well
as the log-structured object store. Least Recently Used (LRU) [29]
eviction policy is used to manage the cache. This cache does not
keep the actual document data, but only the index blocks used to
locate the documents on log-structured storage. Couchbase server
maintains a vBucket level document cache. This object-level man-
aged cache is more ecient than the block-level cache for document
objects. The unit of caching in a block cache is of size, 4 KB. The
document cache can perform the caching at a single document level
and avoid wasting memory for keeping cold documents grouped
in a physical block on the SSD.

3.3 Separation of Index and Data Organization
Persistent key-value index data structures like B+Trees and LSM
Trees organize key-value pairs in sorted order. The ordering ar-
rangement allows fast lookup by providing a bounded number
of disk reads per lookup in the order of ;>6⌫ (=). For maintaining
the sort order, the index data structure has to perform frequent re-
arrangement of the internal data structures on the disk. For B+Trees,
it comes in the form of page splits and merges, along with multiple
page rewrites whenever a record is added. LSM Trees require fre-
quent level merges or compaction operations to limit the cost of
lookup and range query operations. Records are initially written to
the level-0 of an LSM Tree. Each level of the LSM Tree is arranged
in exponentially increasing sizes. During compactions, records are
rewritten several times as they moved from lower levels to higher
levels of the tree. For an LSM Tree with a size multiplier of 10 and 5
levels, it may be rewritten up to a worst-case of 42 times. This is very
high write amplication. If we store the large document records in
an LSM Tree, the rewrites through the levels as part of compactions
would be signicantly wasting the SSD bandwidth. The write am-
plication incurred is the cost of maintaining sorted ordering. If

data can be stored separately in a dierent log-structured storage
[22] organization we can avoid the high write amplication. We
still need an index that can provide quick access to the document
stored on the log-structured storage. Based on this observation, we
organize our index data structure separate from the document data
storage.

We use LSM Tree as our persistent index. The index consists of
records with key, document seqno, and document size. The seqno
acts as a record locator for fetching the document from the log-
structured object store. Considering an example of 20 byte key and
1 KB document size, the key is only less than 2% of the document
size. By separating the index structure from data storage, the high
write amplication cost of LSM Tree index is only applicable to a
small fraction of the database. We leverage key prex compression
to further reduce the size of the keys stored in the index. A compact
index structure is benecial for minimizing the number of I/Os
required to serve document read operations as a signicant part of
the index could be cached in the index block cache.

Wisckey. The idea of separating key and value for LSM Tree
based key-value store has been proposed by Wisckey [23]. Wisckey
maintains a sequential log for storing values and puts a direct
le oset pointer in the LSM Tree. This approach requires index
lookup to be performed during the log cleaning for every record
to validate/invalidate a live record. In a limited memory setup like
100x database size to memory ratio, most reads will incur cache
miss and every lookup can lead to multiple random I/Os slowing
down the log cleaning process. The read I/O and CPU required to
perform a lookup during log cleaning can be expensive. Magma
takes a dierent approach leveraging sequential I/O access patterns
by avoiding the index lookup during garbage collection. The design
tradeos of Magma also allow for the implementation of an ecient
changelog for the database.

3.4 Read and Write Operations
The interaction among various components in the storage engine
design can be understood by illustrating the read and the write
operation paths in the storage engine.

3.4.1 Lookup Operation. A key lookup operation rst looks up
into the active and immutable write-cache component in memory.
If the key does not exist, then it proceeds to search in the persistent
LSM Tree key Index in order to obtain the document seqno. To
locate the key, LSM Tree identies the candidate SSTables having
a key range that overlaps with the key. It uses the bloom lter to
probabilistically eliminate all SSTables which does not have the
key present. Once an SSTable is identied, it reads through the
B+Tree pages to read the record for the key. While reading the
B+Tree pages from the SSD, it makes use of the Index Block Cache
to eliminate the read I/O operation. If the key cannot be found,
it returns not-found. Otherwise, it uses the document seqno to
locate the document value from the log-structured object store.
For searching within the log-structured object store, it identies
the log segment with the overlapping seqno range. Similar to the
SSTable, a B+Tree index is used to retrieve the location of the data
block where the document is present. Whenever an index block I/O
operation is performed, the index block is inserted into the Index
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Block Cache and a non-recent block is evicted from the cache if it
is full.

3.4.2 Write Operation. A document write or mutation operation
can be either insert, update or delete for a key. Each document
mutation has a monotonically increasing sequence number. The
document mutation is initially inserted into the active write-cache.
Within the write-cache, it maintains two skiplists. One indexed by
key and the other by seqno. The document mutation is also written
to the write-ahead log for durability. The writer thread returns with
a success status after this step. When the write-cache accumulates
a sucient number of document mutations and exceeds the con-
gured memory limit, the write-cache is ushed to the persistent
storage. The in-memory key-value pairs are converted into key
index SSTable components for the LSM Tree and also documents
are appended to the tail log-segment of the log-structured object
store. After this step, the write-cache memory is freed. This is pro-
cessed by a background usher thread. The procedure for removing
obsolete document versions from the log is described in section 4.

3.4.3 Changelog. A changelog read operation reads a stream of
document versions starting from startSeqno to endSeqno. The
operation starts by locating the starting log segment in the log-
structured object store where the log-segment seqno range overlaps
with the startSeqno. The index B+Tree within the log segment is
used to locate the data block where the document with seqno >=
startSeqno is present. The contiguous data blocks from the location
are read sequentially until the end-of-le of the log-segment or
until the endSeqno for the document is reached. Once it reaches
the end-of-le, the subsequent log segments that fall within the
requested sequence number range are read. Once we have nished
going over the on-disk log segments, the in-memory write-cache is
used to retrieve the rest of the document versions up till the endSe-
qno. The write-cache has a skiplist data structure which provides
sort ordered documents by seqno.

3.5 Log Structured Object Store

Figure 5: Log segment storage

Magma uses the segmented log concept from log-structured le
systems [28][21] to build our append-only log-structured object
store. The log-structured object store consists of several log segment
les organized as a sequentially growing log with a tail log segment
accepting the incoming writes. Each log segment maintains a COW
B+Tree index to locate the documents by seqno. When the write-
cache reaches the congured memory limit, the background usher
thread appends the document mutations to the tail log segment.
Appended document mutations are organized as 4KB blocks. Each
document mutation has a unique seqno. Each data block oset is
added to the B+Tree index as part of the ush operation. When the

size of the tail log segment reaches a segment log size limit, it is
made immutable and a new empty tail log segment le is created.
The tail log segment size limit is derived based on a percentage of
the current total database size. The size of the log segment is the
minimum unit size for performing log compaction.

As the document versions are appended in seqno order, the index
COW B+Tree does not have to perform expensive read-modify-
write of random pages. The writing log segment maintains a tail
page per B+Tree level in memory and data block osets are added
as they arrive. The B+Tree pages are appended to the log segment
le when the page becomes full or once all the document versions
are appended from a write-cache ush session. The B+Tree write
amplication is minimal due to the monotonic order of insertions.
The B+Tree mainly consists of 8-byte seqnos and data block o-
sets. The index size is extremely compact (<0.4%) compared to the
data stored on the log segment. This makes it easily cachable in
limited memory. The log-segment storage maintains an in-memory
array of log segments sorted by segment start seqno in memory.
The candidate segment for any document lookup by seqno can be
identied by searching in this list.

We preallocate the log segment les to minimize the le system
metadata overheads. This also allows the physical layout on the
SSD media to be contiguous apart from logically contiguous from
the le system point of view.

The log can contain multiple document versions with the same
key. When a new version is appended, that makes the older ver-
sions of the same document logically stale. When a key lookup is
performed in the key index LSM Tree, it returns the latest version
seqno for the document. Hence, the read operations being navigated
through the key index, always end up reading the latest document
version. In the next section, we discuss how to garbage collect stale
document versions for reclaiming space.

Compression. Magma uses block-level compression using the
LZ4 [1] algorithm. Due to block-level compression, we observe a
signicant size reduction for the same dataset compared to Couch-
store. Couchstore uses document-level compression. The older log
segments tend to have colder documents compared to the recent
log segments. This provides an opportunity to use compression
schemes with better compression ratios for cold log segments. Pe-
riodically, the blocks within the cold log segments can be recom-
pressed with a higher compression scheme like ZStandard [13] in
the background to save space.

4 GARBAGE COLLECTION
In a log-structured append-only storage model, when a record is
deleted or a new version of the record is updated, the stale records
are not immediately removed from the storage. A separate log clean-
ing or compaction process is used to reclaim space. As the Magma
key-value store accepts update or delete operations, the prior ver-
sions of the documents stored on the log-structured object store
become logically stale. Over a period of time, the stale document
versions are accumulated in the log and they will consume a con-
siderable amount of space. The newer versions of the documents
are appended towards the tail of the log while invalidating older
versions that get accumulated towards the head of the log. To limit
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space usage and maintain stable space amplication, we have to
perform periodic log cleaning.

To reclaim space, we need to identify the percentage of data
consumed by stale documents in the log-structured store. We dene
fragmentation as the ratio of the total size of stale documents to the
space consumed. A compaction operation needs to be initiated once
the fragmentation of the log-structured store exceeds a congured
threshold. The compaction operation has to pick a few log segments,
copy all the live document versions to a new log-segment le and
replace the candidate log-segment les. This essentially means we
need to devise a method to estimate the fragmentation in the log
segments and also check the validity of the document versions
in the log segment during log compaction. The straightforward
technique to check whether a document version is live is to lookup
in the key index LSM Tree using the document key. If the retrieved
seqno matches the current version seqno, it is a live document and
it needs to be retained during compaction. The lookup operation
for every document version during compaction can be an expensive
process as it involves random I/O in the key index LSM Tree as well
as the CPU cost for evaluating SSTables and bloom lters. When
we have sucient enough memory to cache the whole key index
LSM Tree, the random I/O can be avoided. But, for a high data
density use case with very low memory, often we cannot cache the
key index in memory. The random I/Os can signicantly consume
the read bandwidth, otherwise available for key-value store read
operations.

We introduce a novel approach for accurately estimating the
fragmentation in the log-structured object store as well as perform-
ing garbage collection eciently. The key idea is to maintain a
logically sorted delete list of stale document seqnos and their size
per log segment. If we take the sum of all sizes from the delete
list, we can calculate the garbage size per log segment and thereby
calculate the fragmentation. By triggering compactions when the
fragmentation reaches a threshold of 50%, we can maintain a space
amplication of 2 and low write amplication. If we pick log seg-
ments with higher fragmentation than 50%, the write amplication
will be even lower. If we assume that we have a sorted delete list
available per log-segment, the compaction process can perform
a streaming sort-merge operation between the delete list and the
log-segment. The seqnos which are both present in the delete list
and log-segment get canceled out and discarded, while other live
document versions are retained. For minimizing write amplication,
the compaction process must pick the log segment with the highest
fragmentation.

Now let’s discuss how to generate the stale document seqnos
list without performing an expensive key index LSM Tree lookup
operation. The key index LSM Tree performs periodic compaction
operations to maintain the shape of the tree to minimize read am-
plication and space amplication. As part of the process, multi-
ple SSTables are merged into new SSTables and older versions or
deleted key-value pairs are discarded as part of key version dedu-
plication. We can use this deduplication step in the key index LSM
Tree to generate the stale document seqno list. We implement a
callback function in the key index compaction for the discarded
documents. The callback function receives the seqno and size of
the discarded versions and it can be used to populate the stale doc-
uments seqnos list for the log-structured store. The stale seqnos list

Figure 6: Delete propagation fromLSMTree to Log Structured
Object Store

is populated asynchronously as the compaction happens on the key
index LSM Tree. The sequence of delete list propagation operations
is shown in Figure 6

Maintaining an in-memory list of stale seqnos per log segment
can be expensive. A bitmap with one bit ag per document can be
maintained to keep the list of stale seqnos in-memory with lower
memory overhead. Even then, the memory requirement and the
overhead to persist them consistently can be signicant for a high
data density key-value storage. Magma implements the persistent
delete seqnos list by using an LSM Tree. The key-value pairs in this
delete list LSM Tree are stale seqno and size. The size information
allows computing the fragmentation eciently. The extra space
used for maintaining the delete list LSM Tree is tiny as it contains
only an 8-byte seqno and 4-byte size. Since the size of the delete list
data structures is small, the overhead of the LSM Tree in terms of
write amplication as well as space usage is only a small fraction
of the overall disk usage and bandwidth consumed.

Figure 7: Log segment garbage collection

We arrange the delete list LSM Tree on top of the log-structured
storage log segments to form a master LSM Tree with a few tweaks
as shown in Figure 7. Instead of using the SSTable le sizes for the
LSM Tree compaction level size thresholds, we compute a logical
size using the document size information encoded in the delete list
LSM Tree records. Each SSTable now has a logical size which is the
sum of all document sizes encoded in the delete seqno records stored
in the SSTable. This logical size is used for computing level size and
also triggers compactions based on size thresholds. This modica-
tion normalizes the size units of log-structured object stores and
the delete list LSM tree. The delete list LSM Tree level size targets
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are now derived based on the total le size of the log-structured
store.

The sum of all record values in the delete list LSM Tree provides
an estimate of the total garbage size in the log-structured storage.
We implement a fragmentation threshold above which compaction
is triggered to rewrite log segments from the log-structured store to
bring the fragmentation ratio below the threshold limit. We adapted
the LSM Tree compaction procedure based on the level size thresh-
old to perform log-segment compactions. The algorithm picks a
few overlapping delete list SSTables that falls into the candidate log
segment’s seqno range and performs a merge operation. The candi-
date log segment is replaced with a new log segment discarding the
stale seqnos merged from the delete list LSM Tree SSTables. Instead
of picking a single log segment, we use additional heuristics to pick
multiple log segments to avoid generating too many smaller log
segments after rewrite. The default fragmentation threshold is con-
gured to be 50% to minimize write amplication. By conguring a
lower threshold, we can reduce our space amplication by trading
o with higher write amplication.

In addition to the stale document versions, the index COW
B+Tree rewrites during the write operations can also contribute
to fragmentation within a log segment. When we operate with a
tiny amount of memory for write-cache, every write-cache ush
could potentially contain only very few documents. Hence, B+Tree
blocks may need to be rewritten without enough ll factor gener-
ating stale blocks. We store this stale block’s space usage within
the log segment metadata. This estimate is also added to compute
the fragmentation ratio along with the delete list. This LSM Tree
arrangement between log segments and delete list also optimizes
the changelog API. The changelog API can now run a merge itera-
tor between the delete list and the data log. It can discard all the
stale values while returning the stream of documents.

5 CRASH CONSISTENCY
A write ahead log (WAL) is used to ensure durability for the write
operations by logging every mutation in the WAL while they are
buered in the LSM Tree in-memory write-cache. The Magma
database maintains a metadata le to store a point in time snapshot
of the live SSTable and the seqno based log-structured object store’s
segment les. Along with the le list, we also record the point in
timeWAL oset up to which the LSMTree and Log-Structured Store
have recorded the data in the snapshot metadata le. Periodically
we run a checkpointing process which writes a new metadata le
with the current live set of the data les from LSM Tree and Log-
structured store. For the log segments, we also record the last-
written consistent tail oset in the metadata le, in-order to restart
writing after crash-recovery. Each checkpoint is a point-in-time
snapshot of the database to which we can revert in case of a rollback.
The database maintains periodic checkpoint snapshots up to 10
minutes old by default for allowing the data service to rollback
in case of any failures. During crash recovery, the latest snapshot
metadata le is read to reconstruct the LSM Tree levels and the
corresponding SSTables. The same procedure is used for the log-
structured object store as well. Using the WAL oset recorded in
the snapshot metadata, we replay the document mutations that
occurred after a metadata le was created from the WAL up to

the end of the WAL into the write-cache. Since we use key index
LSM Tree compaction to generate deleted seqnos list for the log-
structured store, the point in time consistency of the key index
LSM Tree and delete list LSM Tree is important. When compaction
is performed in key index LSM Tree, the generated stale seqno
list is added to the write-cache of the log-structured store delete
list LSM Tree. Let’s consider a case where the process crashes
after persisting the snapshot metadata le for key index, while the
generated seqnos from the compaction are not yet persisted in the
delete list LSM Tree. This can result in inight stale seqnos never
getting garbage collected. To handle this case, we need to make sure
that the delete list LSM Tree snapshot metadata is always persisted
before persisting the key index snapshot metadata. This invariant
ensures that we never lose stale seqnos metadata. Let’s consider
the case where we persist the seqnos in delete list LSM Tree, but
the compaction SSTable changes on the key index LSM Tree are
not persisted during a crash. The compaction will be rerun after
the Magma recovery and the stale seqnos are regenerated. Adding
the stale seqnos again to the delete list LSM Tree is an idempotent
operation.

6 ASYNCHRONOUS I/O FOR READS
Modern fast NVMe SSDs have very high random read IOPS and
bandwidth capacity. Scaling with very high IOPS can be challenging.
For utilizing the available IOPS, we must queue a large number of
requests to the SSDs to generate a queue depth of 64-128. Especially
when we combine 3-4 NVMe SSDs, we have the capacity of 2M-3M
IOPS available. We may have to generate a queue depth of 256 to
512. To generate such a high queue depth, we need large number of
OS threads. A single thread can only generate one queue depth at a
time if we use the blocking I/O model using pread64. To achieve
high throughput with a minimal number of threads, we leverage
asynchronous I/O through Linux kernel asynchronous I/O [5].

Magma implements a coroutine framework to dispatch concur-
rent reads within a single reader thread. When the reader thread
receives a batch of keys to be fetched, we launch a limited num-
ber of coroutines equal to the SSD queue depth that we need to
achieve. Each coroutine issues an async read request. The coroutine
scheduler waits on the queued requests once each coroutine has at
least queued one request. The coroutine-based framework allows
to reuse the synchronous read APIs of the storage engine but inter-
nally swaps out pread based system calls with asynchronous system
calls under the hood. This model allows magma to scale with the
modern SSDs with a smaller number of threads. We demonstrate
the read throughput scaling of Magma with the asynchronous I/O
enabled in the evaluation section.

7 INTEGRATION WITH COUCHBASE SERVER
The Magma storage engine is designed to be a replacement for our
current generation storage engine, Couchstore to service high data
density workloads. We wanted to minimize changes in the Couch-
base Data Service to simplify integration. The data service hosts
many vBuckets within a server node. The database is internally
sharded to improve the concurrency of read and write operations.
Each shard hosts several vBuckets. The vBuckets follow a single
writer, multiple readers concurrency model. Each magma storage

3503



engine shard hosts multiple vBuckets while sharing a common
write-ahead log. Each vBucket key-value store also requires a meta-
data store for storing local metadata for the database. We use a
separate local metadata LSM Tree in addition to the key index to
store the metadata.

7.1 Expiration of Documents
Couchbase Server supports document expirationwhich allows users
to automatically remove a document after the expiration period
elapses. To identify and remove expired documents, a periodic full
key index scan has to be performed, which would be expensive in
terms of I/O and CPU cost. Magma amortizes this cost by lazily
evaluating and removing documents whenever compaction of the
key index occurs. This can cause cases where some SSTables are
not frequently compacted resulting in an accumulation of expired
documents. To mitigate this, Magma maintains a histogram per
SSTable with time intervals and count of future expirations. These
histograms are periodically checked to estimate the percentage of
keys that expired within an SSTable. If the proportion of expired
items is beyond a congured threshold, compaction is triggered
targeting those SSTables to remove expired documents.

7.2 Accurate Item Count Statistics
The Couchbase Data service provides accurate document count sta-
tistics for the databases to help customers with monitoring and trou-
bleshooting. The item count statistics are maintained per vBucket
by identifying whether each document mutation is either an insert
or an update. For Couchstore, during the write operation, copy-
on-write B+Tree has to perform a read-modify-write operation of
the B+Tree pages. We can easily identify whether a document key
already exists or not while performing the page modication. Items
counts are incremented when a modifying document key is not
already present.

For the Magma storage engine, we need to perform an extra key
index lookup for every document mutation to identify whether a
document mutation is an insert or update. For the insert, the bloom
lter helps in identifying a non-existent key without incurring an
I/O operation. By default, Couchbase Server integrates Magma with
accurate item count. In the future, we plan to provide an optional
feature to disable accurate item count to help customers choose
better write performance tradeos by avoiding expensive read I/O
during the writes. When item count is enabled, we piggyback on
the same key index lookup operation to propagate stale seqnos
to the log-structured store in real-time. We do not depend on the
compaction operation.

8 FUTURE OPTIMIZATIONS
8.1 Skipping write-ahead log for large

transactions
Write-ahead log contributes to write amplication of 1. For large
writes, we can skip writing to the write-ahead log. Instead, along
with write-cache buering we can persist the document mutations
to the log-structured store. We can replay from the log-structured
store similar to the write-ahead log during the crash recovery op-
eration. This optimization will allow write-heavy transactions to

reduce the write amplication by 1 in addition to the existing sig-
nicant improvements to lower write amplication.

8.2 Avoiding seqno based index lookup
The document read operation fetches the document seqno from
the key index and then performs an index lookup into the log
structured object-store to obtain the document block oset. The
extra indirection using the seqno into the log-structured object store
index can be avoided by keeping <logSegmentNo, blockOset> in
the key index records. This additional information can be populated
during the write cache ush. These osets stored in the key index
records may become invalid as the compactions occur in the log
structured object-store and log segments are replaced with new
ones. The read operation can fallback to seqno based indirection
if it cannot nd the corresponding log segment in the object store.
The invalid <logSegment, oset> location in key index records can
be lazily updated with new locations during key index compactions
by doing a lookup into the log structured object-store index.

9 EVALUATION
In this section, we evaluate Magma’s performance and demonstrate
the performance benets of the hybrid design which combines
an LSM Tree with Log-Structured Storage. During this evaluation,
we focus on Magma’s throughput, write and space amplication
characteristics under varied workloads in a larger-than-memory
setup. The experiments also compare Magma with RocksDB [14]
and Couchbase’s current storage engine, Couchstore.

9.1 Hardware setup
Our experiments run on a machine that has an Intel Xeon Gold
6230 2.10GHz processor with 80 CPUs, 125 GB of RAM, and an Intel
DC P4610 SSD of 3.2TB capacity. The machine is running Linux
5.13 with XFS [17] as the le system.

9.2 Microbenchmarks
This section evaluates performance on a microbenchmark under
load, update and read workloads on a single instance of the storage
engine.

9.2.1 Experimental Setup. Evaluation is done on a randomly gen-
erated data set of 100M items with a key size of 40 bytes and a value
size of 1024 bytes, making the total dataset size 100GB. For data
100x larger than the memory setup, we congure a 1GB memory
quota for Magma and RocksDB. For read workload, Couchstore is
also congured with a 1GB memory quota. For load and update
workloads, Couchstore is congured with a 10GB memory quota
as it has higher memory requirements during compaction. Magma
and RocksDB are run with Direct I/O to get an accurate picture
of their disk I/Os. They are congured with their block caches
to compensate for the Linux page cache. Couchstore is run with
Buered I/O as it does not support Direct I/O and does not have
its block cache. The available Linux page cache is limited to the
memory quota using cgroups for Couchstore. The load and update
workloads are executed using a single thread. Read workloads are
executed by varying the number of threads.
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RocksDB version 5.18.3 is used. Table 1 has the list of congu-
rations set. Congurations that correspond in Magma are set to
the same value for a fair comparison. RocksDB is set up with two
column families. The byKey column family stores the (key, value)
pair, and the bySeqno column family stores the (seqno, key) pair.

Table 1: RockDB conguration

Compression for levels > 0 LZ4
db_write_buer_size 200MB
Block cache size 800MB
Block cache high_pri_pool_ratio 1
Bloom lter (only for byKey) 10 bits per key
max_background_jobs 5
Low/High priority thread pool size 4:1
level_compaction_dynamic_level_bytes true
Partitioned index/lters true
WriteOptions.sync true

Couchstore uses Snappy compression [16] as it does not support
LZ4. The fragmentation threshold for both Couchstore and Magma
is set to 30%.
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Figure 8: Write throughput for load and update workload

9.2.2 Load Workload. We generate 100M unique items and load
them in random order with a batch size of 100 items. The results
are presented in Figure 8 and 9. Magma is 2.78x faster and has
3.2x less write amplication than RocksDB. RocksDB is slower
as writes are stalled for 50% of the time. The stalls happen when
there are more than 20 les on the L0 level or when the aggregate
level size exceeds their aggregate target size by 64GB or more and
hence require a compaction [12]. The reason for frequent stalls is
by storing keys and values together, it needs to rewrite more data
during compaction which takes more time. This is also the cause for
the higher write amplication. Magma’s compactions are faster due
to index and data separation as it rewrites only the keys. Since there
are no updates in this workload, the delete-list LSM tree is empty
and values are never compacted. Hence its write amplication is
much lower.

Magma is 21x faster and has 3.3x less write amplication than
Couchstore. Couchstore is slower and has higher write amplica-
tion because of multiple page rewrites and read I/Os as described
before in section 2.2.

9.2.3 Update Workload. We generate 100M random items to up-
date the initially loaded dataset. The write batch size is 100 items.
We measure peak space amplication in addition to throughput
and write amplication. Measuring space amplication makes the
comparison fair as it can be traded o for write amplication [4]. It
is also an important metric as it helps decide how much storage ca-
pacity needs to be provisioned. We repeat this workload twice. The
rst round evaluates the performance when the fragmentation is
being built up. The second round evaluates the performance when
the fragmentation has to be continuously maintained under limits.
The results are presented in Figure 8 and 9.
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Figure 9: Write amplication for load and update workload

Round 1. Magma is 1.77x faster and has 3.38x less write am-
plication than RocksDB. The throughput for both RocksDB and
Magma drops in comparison to the load workload. This is due to
write stalls. RocksDB has an increase in write stalls and is stalled for
60% of the time. Magma also now stalls writes due to the delete-list
LSM tree’s L0 level exceeding either its size target or the number of
les target. RocksDB has a peak space amplication of 2, slightly
more thanMagma’s 1.93. With RocksDB’s default level multiplier of
10, the expected peak space amplication is 1.111 (assuming 4 non-
empty levels). However, its dynamic leveling feature decreases level
multipliers dynamically to decrease write amplication trading o
for increased space amplication. Magma’s peak space amplica-
tion is 2 even when the delete-list LSM tree is only 30% fragmented.
The actual space amplication is more than the expected 1.42 be-
cause of two reasons. First, the key index LSM tree is yet to compact
and generate new deletes into the delete-list. Second, until a log
segment compaction nishes, values in both the older log segment
and the newer one will exist on the disk.

Magma is 36x faster and has 5x less write amplication than
Couchstore. Couchstore’s write amplication increases in compari-
son to load workload due to more compactions. More compactions
are required since it gets fragmented faster than before. Apart
from stale index pages, old values also contribute to fragmenta-
tion. Couchstore’s peak space amplication is 3.05 which is 1.6x
of Magma’s 1.93. This is because of its much slower compaction
process that rewrites the entire data set as described in section 2.2.

Round 2. Magma is 1.25x faster and has 2.36x less write am-
plication than RocksDB. It is 21x faster and has 3.37x less write
amplication than Couchstore. Compared to the previous round,
Magma has a higher write amplication because this round starts
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with the fragmentation already built up triggering compactions
much earlier. The throughput also drops due to an increase in write
stalls. The peak space amplication for all three engines is similar
to what it was in the previous round.

9.2.4 Read Workload. We randomly generate keys that exist in
the dataset and issue point reads in the data initially generated by
the load workload. We measure read I/O amplication and bytes
per read which help in explaining read performance. These metrics
are derived from /proc/diskstats. Results are presented with single
and multiple reader threads in Figure 10. Every instance of this
workload is run for 30 minutes.

Magma’s read amplication is 1.21x less and reads 1.11x fewer
bytes than RocksDB. Magma does lesser reads because it stores
compressed blocks in block cache and hence can cache more of
them. However, the read throughput is slightly less than RocksDB
because of Magma’s higher CPU usage.

Magma’s read amplication is 2.06x less, reads 2.33x fewer bytes,
and has a read throughput up to 1.76x higher than Couchstore.
Couchstore does more reads due to its caching ineciency. Its
reliance on Linux page cache is not as ecient as having its own
managed cache for two reasons. First, Couchstore cannot prioritize
caching of index blocks over data blocks even though they tend to
be accessed more. Second, by default, the kernel issues read aheads
asynchronously which brings in more blocks than requested which
could evict other useful blocks. Both these reasons lead to cache
pollution and result in higher read amplication and thereby lower
throughput.

Table 2: Metrics captured during read workload

Metric Magma RocksDB Couchstore
Read amplication 1.79 2.18 3.7
Bytes per read 12.6k 14k 29.4k

Next, we demonstrate Magma’s improvement in read perfor-
mance while needing lesser threads when leveraging asynchronous
I/O as described in section 6. In these experiments, the read batch
size and queue depth for Magma’s coroutine framework is 32. Re-
sults are presented in Figure 10.
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Figure 10: Read throughput with varying number of reader
threads

With 32 threads, asynchronous I/O provides 2.92x higher through-
put than synchronous I/O. Furthermore, to achieve similar through-
put as synchronous I/O does with 32 threads, asynchronous I/O
only requires 8 threads.

9.2.5 Various Item Sizes. We demonstrate performance on datasets
having values of a particular size in the range 512B to 64KB. Every
dataset is of 100GB size and is prepared by loading unique keys
randomly.

We run an update workload that overwrites the entire data once
randomly. A write batch size of 100KB is used for all value sizes.
The results are presented in Figure 11. Magma continues to scale
well as its write amplication stays low and reduces from 4.3 to 2.8.
RocksDB doesn’t scale well because its write amplication stays
high and only reduces from 13.5 to 10.4. Couchstore shows some
scaling as its write amplication signicantly reduces from 41 to
2.5. The source of write amplication and its eect on throughput
is the same as described in section 9.2.3.

We run a read workload as described in section 9.2.4 with 32
threads. The results are presented in Figure 12. All three storage
engines show some scaling because, with increasing value size and
fewer items, the total size of index blocks reduces. This improves
cache hit ratios and reduces read amplication. The reason why
Magma, RocksDB scale similarly and do sowell whereas Couchstore
does not is the same as described in section 9.2.4.

0
50
100
150
200
250
300
350
400
450

512B 1KB 2KB 4KB 8KB 16KB 32KB 64KB

Th
ro
ug
hp
ut
(M
B/
s)

Value size

Magma
RocksDB

Couchstore

Figure 11: Write throughput for various item sizes
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9.3 Full System YCSB Benchmarks
We next evaluate the performance of Magma integrated with the
whole Couchbase Server stack. In this test, we aim to assess the
performance of the storage engines integrated with Couchbase
Server under real-world workloads and a large amount of data per
node.
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Figure 13: YCSB Write Heavy Tests

0

50 k

100 k

150 k

200 k

250 k

300 k

350 k

Workload B Workload C Workload D

Th
ro
ug
hp
ut
(o
ps
/s
ec
)

Magma (item counts disabled)
Magma (item counts enabled)

Couchstore

Figure 14: YCSB Read Heavy Tests

9.3.1 Experimental Setup. We evaluate the performance of Magma
as a storage engine for Couchbase Server simulating a single node
in an 8 node cluster by lowering the number of vBuckets to 64.

We compare Magma’s performance using the YCSB workloads
[8]. We chose YCSB Workload A, Workload B, Workload C, Work-
load D, Workload F, and an Update only workload. These workloads
are used to compare Magma with item counts enabled, Magma
with item counts disabled, and Couchbase’s current storage engine
Couchstore.

The cluster is loaded with 1 Billion records of size 1KB for a
total of 1 Terabyte. Each record consists of a 24 bytes key and value
composed of 10 elds of 100 bytes each. Since we are simulating a
high data density scenario, the memory of the OS is restricted to
20GB by setting Linux kernel boot parameter mem and Couchbase’s
memory quota is set to 10GB. This conguration results in a 1%
memory to data size ratio. We also set Couchbase Server’s Reader
and Writer thread settings to Disk I/O Optimized.

Before each workload, an update-only workload with zipan dis-
tribution is run for 30 minutes. This allows for the storage engines
to be evaluated while there is fragmentation and compaction oper-
ations are running in the background. After the update phase, the
workload is run for 1 hour and monitored. We ensure the through-
put of update and write tests is sustainable ie. disk size is not grow-
ing unbounded and compaction can keep up with fragmentation.

9.3.2 Write Heavy Workloads. We ran an Update Only workload,
YCSB Workload A (50% read and 50% update workload), and Work-
load F (50% read and 50% read-modify-write workload) with zipan
key distribution. As shown in Figure 13, the throughput of Magma
with item counts disabled (ie. Magma does not do a lookup on
every set) is better than Magma with item counts enabled and sig-
nicantly higher than Couchstore. The dierence in throughput
narrows as the proportion of reads increases in Workload A (50%
reads) and Workload F (75% reads, 50% for the gets, and 25% as
part of the read-modify-write operation); reads in all three storage
engines have approximately the same cost as the key distribution
is zipan. Couchstore’s update throughput is signicantly lower
due to compaction being unable to keep up with the rate of writes
and the write operations are throttled to a rate at which disk size
is stable. Couchstore’s compaction is slow due to higher write am-
plication, compaction running on the entire vBucket database at
once, and lack of concurrency. Magma without item counts is faster
than with item counts since it avoids extra read I/Os for item count
maintenance.

9.3.3 Read Heavy Workloads. YCSB Workload B is a 95% read and
5% update workload, Workload C is 100% read and Workload D is
95% read and 5% insert. In these read-heavy workloads, we observed
similar performance in all three storage engines due to zipan key
distribution. Magma with item counts enabled was slightly slower
than the other two since some of the read bandwidth was lost to
the lookups performed before writing to maintain the item counts.
The results of all three workloads can be seen in Figure 14.

10 CONCLUSION
In this paper, we presented the design of a single node key-value
storage engine used in the Couchbase distributed database. We
reviewed the challenges of supporting write-heavy workloads with
large data density per node. We discussed how to combine LSM
Tree index with a log structured storage and perform garbage collec-
tion eciently. Finally, we compare and evaluate the performance
of Magma through microbenchmarks and YCSB full system tests
to demonstrate that it outperforms other engines in write-heavy
workloads.
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