
Ganos: A Multidimensional, Dynamic, and Scene-Oriented
Cloud-Native Spatial Database Engine

Jiong Xie, Zhen Chen, Jianwei Liu, Fang Wang, Feifei Li, Zhida Chen, Yinpei Liu, Songlu Cai,
Zhenhua Fan, Fei Xiao, Yue Chen

Alibaba Group
{xiejiong.xj,erchen.cz,jerven.ljw,solar.wf,lifeifei,zhida.chen,yinpei.lyp,zijia,huanzhi.fzh,jibo.xf,beiqi.cy}@alibaba-

inc.com

ABSTRACT
Recently, the trend of developing digital twins for smart cities has
driven a need for managing large-scale multidimensional, dynamic,
and scene-oriented spatial data. Due to larger data scale and more
complex data structure, queries over such data aremore complicated
and expensive than those on traditional spatial data, which poses
challenges to the system efficiency and deployment costs. The
existing spatial databases have limited support in both data types
and operations. Therefore, a new-generation spatial database with
excellent performance and effective deployment costs is needed.

This paper presents Ganos, a cloud-native spatial database engine
of PolarDB for PostgreSQL that is developed by Alibaba Cloud, to
efficiently manage multidimensional, dynamic, and scene-oriented
spatial data. Ganos models 3D space and spatio-temporal dynam-
ics as first-class citizens. Also, it natively supports spatial/spatio-
temporal data types such as 3DMesh, Trajectory, Raster, PointCloud,
etc. Besides, it implements a novel extended-storage mechanism
that utilizes cloud-native object storage to reduce storage costs and
enable uniform operations on the data in different storages. To facil-
itate processing “big” queries, Ganos extends PolarDB and provides
spatial-oriented multi-level parallelism under the architecture of
decoupling compute from storage in cloud-native databases, which
achieves elasticity and excellent query performance. We demon-
strate Ganos in real-life case studies. The performance of Ganos is
evaluated using real datasets, and promising results are obtained. Fi-
nally, based on the extensive deployment and application of Ganos,
the lessons learned from our customers and the expectations of
modern cloud applications for new spatial database features are
discussed.

PVLDB Reference Format:
Jiong Xie, Zhen Chen, Jianwei Liu, Fang Wang, Feifei Li, Zhida Chen,
Yinpei Liu, Songlu Cai, Zhenhua Fan, Fei Xiao, Yue Chen. Ganos: A
Multidimensional, Dynamic, and Scene-Oriented Cloud-Native Spatial
Database Engine. PVLDB, 15(12): 3483 - 3495, 2022.
doi:10.14778/3554821.3554838

1 INTRODUCTION
In recent years, we have entered a new era of digital twins of phys-
ical worlds. The city digital twins technology develops digitization

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 12 ISSN 2150-8097.
doi:10.14778/3554821.3554838

copies of cities and manages them for the bidirectional interaction
between digital and real worlds [20, 30–32]. It has broad appli-
cations in urban planning, smart traffic management, automated
environment monitoring, etc. [30, 31]. With the development of
sensors and the city digital twins technology, multidimensional,
dynamic, and scene-oriented spatial (MDS, for short) data is gener-
ated at an unprecedented speed. Compared with traditional spatial
data that is often static and two-dimensional (2D), MDS data can
model real-life objects much more precisely in three aspects: (1) It
models the three-dimensional (3D) space of our world; (2) It stores
the information of an object at different time points, which reflects
the dynamic characteristics of our world over time; (3) It stores
scene-oriented information of an object that is rarely considered
by traditional spatial data. Here, the scene-oriented information
can be visual or behavior information, or any other information
that can describe the object, e.g., textures of a building, locking
and unlocking events in bike-sharing. It should be noted that the
concept of MDS data is a superset of traditional spatial data. Several
cases of MDS data include the building information modeling (BIM)
that represents real-world buildings as a 3D entity with textures
and materials, and the trajectory of an unmanned aerial vehicle
(UAV) that is composed of 3D points and remote sensing images
collected with timestamp information.

The development of a spatial database management system
(DBMS) to manage large-scale MDS data is the foundation of city
digitization [15, 29, 31, 32]. However, it brings new challenges to
the system design. First, the MDS data has much more complex
structure and much larger data size than traditional spatial data
does. For instance, the size of a BIM object can be a few orders
of magnitude larger than that of a Point of Interest (POI) object.
Moreover, different MDS data differs greatly in both data structure
and size. It is challenging for a DBMS to manage large-scale MDS
data of different types and to provide scalable operations on the
data. Second, the DBMS should support different types of queries,
including spatial, spatio-temporal, scene-oriented, and cross-model
queries. A cross-model query requires computations on different
MDS data. For example, a query for the no-fly zones of UAVs re-
quires computations on BIM data, digital elevation model (DEM)
data, and Trajectory data. Besides, due to the complexity of the data
structure and spatial operations, queries on the MDS data can be
time-consuming, e.g., taking hours to finish. Thus poses challenging
requirements on the DBMS in both its functionality and efficiency.

Much work has been done on managing spatial data. This paper
focuses on relational DBMS (RDBMS) because it is most commonly
used for OLTP and complex queries over spatial data. The existing
spatial RDBMS [3, 6, 10, 11, 19, 21] have good support for traditional

3483

https://doi.org/10.14778/3554821.3554838
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3554821.3554838


spatial data, but they have limited support for MDS data in both
data types and operations. The prosperity of cloud computing has
facilitated the development of cloud-native spatial RDBMS. Several
compatible editions of on-premise spatial RDBMS are implemented,
e.g., [9, 11], but they have limited support for MDS data as well.
To overcome these challenges, this paper presents a new spatial
RDBMS engine called Ganos (the name comes from the goddess of
earth Gaea and the god of time Chronos).

Ganos is built on PolarDB for PostgreSQL (hereafter simplified as
PolarDB). PolarDB [26] is a cloud-native relational database service
developed by Alibaba Cloud. Ganos enables PolarDB to store, index,
and query MDS data. It is provided as a value-added service on
PolarDB for cloud users who have spatial applications. Ganos is
designed as a cloud-native spatial RDBMS because of the following
reasons. First, with an increasing number of applications moving
to the cloud, Database-as-a-service (also called DBaaS) has shown
its potential to process large-scale data and queries, making it a
reasonable choice for managing MDS data. Second, compared to on-
premise databases, the features of DBaaS, e.g., cloud-native object
storage and decoupling computation from storage, allow designing
a system with good performance and elasticity. This is important
for users who care about performance and deployment costs.

Ganos considers MDS data as first-class citizens and implements
a type hierarchy of MDS data. Ganos implements systems-supplied
data types including 3DMesh, Trajectory, Raster, PointCloud, etc.
Based on this, Ganos provides a systematic framework of managing
MDS data, including defining data structures, implementing data
storage and indexing, and implementing operations on MDS data.
These features distinguish Ganos from other spatial RDBMS. Each
data type encapsulates multiple fields and is implemented as a
compact binary structure called Spatial Large Object (SLOB). This is
beneficial to reducing the storage space and the complexity of table
schema. Ganos uses multidimensional R-trees to manage SLOBs.

Besides, Ganos extends the query functionality of PolarDB by
supporting spatial queries, spatio-temporal queries, scene-oriented
queries, and cross-model queries. To realize these extensions, Ganos
adds over one thousand operations to PolarDB, many of which
are optimized considering the characteristics of MDS data. This
allows Ganos to achieve optimizations in processing queries. More-
over, Ganos implements operations that leverage cloud features
to achieve good performance and elasticity. Specifically, Ganos
implements an extended-storage mechanism that allows storing
large-scale spatial data in a database and in a cheaper cloud-native
object storage, thus reducing the deployment costs significantly.
Ganos also provides spatial-oriented multi-level parallelism that
makes good use of one-write-multiple-reads computing resources
to accelerate the processing of big queries on MDS data.

Product Impact. Since 2018, Ganos has been deployed as a cloud
service, and it has shown success in over 30 fields of applications.

The contributions of this paper are summarized as follows:

• A spatial RDBMS engine called Ganos is designed and imple-
mented to manage real-world MDS data. Ganos considers MDS
data as first-class citizens and provides a systematic framework
of managing MDS data, including defining data structures, im-
plementing data storage and indexing, and implementing data
operations.

• A brand-new practice of moving from traditional on-premise
spatial RDBMS to cloud-native spatial RDBMS is shown. Ganos
implements a set of operations that leverage cloud features
to achieve good performance and elasticity. Specifically, it im-
plements an extended-storage mechanism that reduces deploy-
ment costs significantly. Besides, Ganos provides spatial-oriented
multi-level parallelism to accelerate the processing of big queries
on MDS data.

• Lessons learned from the customers are shared. By deploying
Ganos as a cloud service to power many brand-new applications
such as smart city planning, autonomous driving, and DB for
GeoAI. Last but not least, city digital twins will bring a new
direction to the development of spatial DBMS.

2 RELATEDWORK
Extensive studies have been conducted to develop systems for spa-
tial data in both industry and academia. This paper focuses on
reviewing full-fledged RDBMS that have comprehensive features
(e.g., SQL support, data integrity, and query plan optimizations)
because they are most related to our work.

Spatial RDBMS. To handle ubiquitous spatial data and to over-
come the limitations of traditional RDBMS, commercial database
vendors have extended their products to provide native support for
spatial data, e.g., IBM DB2 Spatial Extender [10, 19], SQL Server
Spatial [11], Oracle Spatial [3]. Some spatial RDBMS are devel-
oped based on or by adding spatial support to the open-source
RDBMS, e.g., PostGIS [6] built on PostgreSQL [4], MySQL [2], and
SpatiaLite [21] built on SQLite [8]. Among them, PostGIS [6] is ar-
guably the de facto standard of open-source spatial RDBMS, which
adds support for geometry, geography, raster, and other types to
PostgreSQL.

These spatial RDBMS have achieved great success in processing
traditional static and 2D spatial data, and they have served many
applications well. However, they supported limited types of MDS
data and operations. For example, Oracle Spatial is probably the
most powerful spatial RDBMS that supports a rich set of spatial
data types and operations, which has inspired our work a lot. As
Ganos does, Oracle Spatial implements 3D geometric data and
PointCloud as system-supplied data types. However, it does not
fully implement the scene-oriented attributes like textures, and it
does not implement Trajectory as a system-supplied data type [7].
Therefore, it has limited support for scene-oriented, and spatio-
temporal queries, which are essential for building city digital twins
systems. This problem will be solved by Ganos.

Extensions on spatial RDBMS. This line of studies makes
extensions based on spatial RDBMS. This paper categorizes the
studies into application-level and DBMS-level extensions according
to whether they implement changes in DBMS. (1) Application-level
extensions [18, 27, 28, 34, 35]: Logothetis et al. [28] developed an
open source Building Information Modeling (BIM) tool for the BIM
process, which leverages PostGIS to extend FreeCAD [1] into BIM.
Zhang et al. [35] extended PostgreSQL to manage raster species
distribution data. Alexandre et al. [18] developed a spatio-temporal
database based on TimeDB [17] andOracle Spatial to support tempo-
ral and spatial data, respectively. AST-PostGIS [27] implements ad-
vanced spatial data types by enforcing spatial integrity constraints

3484



on PostGIS geometric types. 3DCityDatabase [34] is an open source
3D spatial database based on PostGIS or Oracle Spatial to manage
3D city models. (2) DBMS-level extensions [13, 25, 36]: Mobili-
tyDB [13, 36] and PG-TRAJECTORY [25] extend spatial RDBMS at
the DBMS level. They natively support Trajectory by implement-
ing it as a system-supplied data type and providing a set of data
operations, both of which are built on PostGIS.

Compared to the above systems, Ganos natively supports more
MDS data types and can be applied to more applications. Ganos
makes changes in DBMS and implements plenty of operations
on MDS data. Meanwhile, it optimizes the operations by consid-
ering the characteristics of MDS carefully. MobilityDB and PG-
TRAJECTORY belong to DBMS-level extensions as Ganos does, but
they only add support for Trajectory.

Cloud-native spatial RDBMS. An increasing number of en-
terprises are migrating their data to cloud-native databases. Major
cloud vendors are providing DBaaS such as AWS Aurora [33] and
Azure SQL DB [12]. They implement compatible editions of spatial
RDBMS tomanage spatial data. For example, Aurora PostgreSQL [9]
supports PostGIS, and Azure SQL DB has the spatial features of SQL
Server. They support spatial data asmuch as the base spatial RDBMS
can afford. In comparison to them, Ganos is a spatial database en-
gine of PolarDB that enables PolarDB with the capability to manage
spatial data by making changes in its kernel. Ganos provides bet-
ter support for MDS data in three aspects. Firstly, it implements
a set of system-supplied MDS data types, which cover many real
applications. Secondly, it supports spatial, spatio-temporal, scene-
oriented, and cross-model queries on MDS data. Lastly, it considers
the characteristics of MDS data and leverages cloud features to
optimize a large set of operations, including data storage, indexing,
and querying.

3 SYSTEM OVERVIEW
Ganos is a spatial database engine that is built on PolarDB [26].
PolarDB is a cloud-native relational database system developed by
Alibaba Cloud. It provides high elasticity and concurrency, and it
is built on and fully compatible with PostgreSQL. Figure 1 shows
the architecture of Ganos and the interaction between Ganos and
PolarDB, where the left picture shows the architecture of PolarDB
and the right one shows the architecture of Ganos. This paper first
gives a brief introduction to PolarDB and then introduces Ganos.

PolarDB. PolarDB adopts the shared-storage architecture that
decouples compute from storage. The computation nodes and stor-
age nodes are connected through a low-latency remote direct mem-
ory access (RDMA) network. PolarDB supports on-demand scaling
of computation nodes and auto-scaling of storage nodes. At the
computation layer, PolarDB has one primary node called RW node
and many read-only (RO) nodes. The primary node conducts both
read and write operations, while the RO node only conducts read
operations. PolarDB implements a failover mechanism to achieve
high availability. Once the primary node crashes, PolarDB will
select a RO node as the new primary node. At the storage layer,
PolarDB is based on PolarFS [16], a distributed file system with
ultra-low latency, high throughput, and high availability.

Ganos overview. Ganos is the spatial database engine of Po-
larDB, which enables PolarDB to store, index, and query MDS data.

Since Ganos is built on PolarDB, Ganos inherits the functions and
features of PolarDB, including relational data support, high avail-
ability, and elasticity. At the DBMS level, Ganos implements a rich
set of system-supplied spatial data types and adds plenty of oper-
ations to PolarDB. As shown in Figure 1, Ganos extends PolarDB
in four aspects, including data models, access methods, extended
storage, and query processing. In the following, these aspects are
introduced, respectively.

Datamodels.Ganos models real-world objects as MDS data and
implements a type hierarchy of MDS data, where Geometry is im-
plemented following the hierarchy that is defined by OGC [5] and
SQL/MM Spatial [24]. Ganos implements a set of system-supplied
MDS data types including 3DMesh, Trajectory, PointCloud, Raster,
etc., each of which contains the information of real-world objects.
As the data of different types have different data fields, Ganos in-
troduces SLOB to simplify the storage of database tables. A SLOB
encapsulates multiple fields of one MDS object into one data struc-
ture, e.g., geometry, textures, and materials of 3DMesh, and the
data structure is implemented as a compact binary structure. SLOBs
are stored in the same column of a table. This design avoids us-
ing a schema for each type of data and is conducive to operations
on different types of data. Besides, it is easy to extend to support
more system-supplied data types in the future. For more detailed
information, please refer to Section 4.

Access methods. To accelerate the processing of queries, Ganos
implements indexes for MDS data types. In addition to a B-tree
for equality search, based on generalized search tree (GiST) [23],
Ganos provides an index framework named GiST+ to enrich the
access methods of GiST. GiST is an index framework that can be
used to build disk-based search trees including R-tree [22] and B-
tree [14]. GiST+ extends GiST in the way that GiST+ can select
among indexes for answering a query, when there are different
GiST+-based indexes built on the same set of columns.

Extended storage. Based on the storage model of PolarDB,
Ganos implements a novel mechanism called extended storage to
store MDS data, which can reduce the deployment costs of Ganos
significantly. Extended storage allows storing MDS data not only
in database tables, but also on Alibaba Cloud Object Storage Ser-
vice (OSS). To meet different needs, Ganos provides two modes of
extended OSS storage, i.e., hot/cold data separation and heteroge-
neous file access. To hide the underlying storage details, Ganos
implements a spatial object locator that enables data operations
to access objects stored in database tables or on OSS in a unified
manner. More details are provided in Section 5.

Query processing. This component consists of three parts, and
each of them will be introduced in the following.

Query types. Ganos supports multiple types of queries, including
spatial, spatio-temporal, scene-oriented, and cross-model queries.
This paper mainly introduces the scene-oriented and cross-model
queries because they are rarely considered by other spatial RDBMS.
A scene-oriented query conducts operations based on the scene-
oriented information, e.g., conducting an intersection on a 3DMesh
object will change its textures and materials. A cross-model query
conducts operations on MDS data of different types. Ganos imple-
ments over 1,000 operations to support these queries. Details are
provided in Section 6.1.

3485



RDMA

DB Server (Primary)

R/W RO RO

DB Server (Replica) DB Server (Replica)

…

OSS

Read/Write Splitter
with Load Balancing

FailoverWrite Read Read

Spatial Object Locator OSS Stoarge

Extended Storage

Query Processing

GiST

Access Methods

GiST+ BTree

Data Models

Geometry Raster

Trajectory PointCloud3DMesh

…

2D/3D Spatial Query

Query Types
Spatio-Temporal 

Query
Scene-Oriented Query Cross-Model Query

Type Analyzer

Query Optimizations
Storage Cost Model

Intra-Query 
Parallelism

Multi-Level Parallel Query
Intra-Function 

Parallelism

TCP

PolarFS Server

Access Methods

Data Models
Extended 
Storage

Query 
Processing

Access Methods

Data Models
Extended 
Storage

Query 
Processing

Access Methods

Data Models
Extended 
Storage

Query 
Processing

Figure 1: Architecture of Ganos and the relation between Ganos and PolarDB.

Multi-level parallelism. Queries on MDS data are usually more
complicated and take a longer time to finish than those on tradi-
tional spatial data. This paper refers to a query that takes hours to
finish as a big query. To accelerate the processing of big queries,
Ganos extends the parallelism mechanism of PolarDB and im-
plements spatial-oriented multi-level parallelism, including intra-
query parallelism (IQP) and intra-function parallelism (IFP). IQP
parallelizes the processing of a big query by assigning it to many
RO nodes, each of which processes a disjoint subset of SLOBs inde-
pendently. To mitigate the potential load imbalance problem that is
caused by the existence of spatial objects with drastic size differ-
ences, Ganos introduces IFP, and leverages it to work with IQP. For
more detailed information, please refer to Section 6.2.

Query optimizations. Ganos implements query optimizations to
improve the query processing efficiency. Since Ganos introduces
the extended storage mechanism, the query plan of PolarDB is not
usable because its cost model dost not consider I/O costs of OSS.
Therefore, Ganos implements the Spatial Type Analyzer of PolarDB
to maintain storage distribution histogram. Also, it improves the
cost model to consider the I/O costs of OSS. Based on this, query
plans tend to use index scans for queries that consider objects on
OSS. For more detailed information, please refer to Section 6.3.

4 DATA MODELS
In this section, the modeling and supporting of MDS data are de-
scribed. In Section 4.1, a representative set of system-supplied MDS
data types of Ganos is introduced. In Section 4.2, the implementa-
tion of these data types in Ganos is explained. In Section 4.3, the
indexes used in Ganos are explained.

4.1 Data Types
Ganos models real-world objects as multidimensional, dynamic,
and scene-oriented data. Ganos supports a rich set of data types, and
objects of different data types have different attributes that are cate-
gorized into SpatialAttr , TemporalAttr , SceneAttr , and GeneralAttr :

• SpatialAttr contains the spatial information of an object that can
be a set of 2D/3D points or a spatial range in 2D/3D space.

• TemporalAttr contains the temporal information of an object,
which can be a set of timestamps or a temporal interval.

• SceneAttr contains the scene-oriented information of an object,
which can be a set of images, RGB colors, lighting models, or a
composite data structure.

• GeneralAttr contains the general attributes of an object that do
not belong to the other three types of attributes.

Ganos represents the MDS data as the data with attributes of
SpatialAttr , and possibly TemporalAttr , SceneAttr , and GeneralAttr ,
i.e., an MDS object can have SpatialAttr only, or have SpatialAttr
and other attributes that are TemporalAttr , SceneAttr , orGeneralAttr .
Figure 2 shows the hierarchy of the data types that are supported
by Ganos, where Geometry is implemented under the hierarchy
defined by OGC [5] and SQL/MM Spatial [24]. In the following,
3DMesh, Trajectory, Raster, and PointCloud are introduced in detail.

3DMesh. 3DMesh represents a 3D object with scene-oriented in-
formation, which is denoted as 3DMesh = (Shape,Visuals,General).
Shape represents a 3D geometry. Visuals = (textures,materials,
mappings,UVcoords), where textures together with materials de-
scribe the visual information, such as color and pattern. mappings
represents the association of materials and textures with geometry,
and 𝑈𝑉𝐶𝑜𝑜𝑟𝑑𝑠 represents the pixel coordinates for visualization.

3486



_Trajectory

LineStringTrajectory PointTrajectory

_3DMesh Material

Texture

_Raster PointCloud

_Object

SurfaceMesh SolidMeshCompositeMesh Image Grid Voxel

_DiscreteTrajectory

Geometry*

_ContinuousTrajectory

…

Figure 2: Hierarchy of Ganos data types.

General represents the general attributes, e.g., the weight of each
vertex of Shape. In 3DMesh, Shape belongs to SpatialAttr , Visuals
belongs to SceneAttr , and General belongs to GeneralAttr . Based
on the structure of Shape, 3DMesh can be categorized into Sur-
faceMesh, SolidMesh, and CompositeMesh, where SurfaceMesh
represents a hollow 3D object, SolidMesh represents a solid 3D
object, and CompositeMesh represents a 3D object that has a com-
posite structure of SolidMesh and SurfaceMesh.

Trajectory. Trajectory is used to represent a moving object
whose location changes over time. It is denoted as Trajectory =

(TPoints, Events). TPoints = {(𝑝1, 𝑡1, 𝐴1), · · · , (𝑝𝑛, 𝑡𝑛, 𝐴𝑛)}, where
𝑝𝑖 is a 2D/3D point, 𝑡𝑖 is a timestamp, and 𝐴𝑖 is a set of general
attributes. Events = {(𝑒1, 𝑡𝑒1 ), · · · , (𝑒𝑚, 𝑡𝑒𝑚)}, where 𝑒 𝑗 is an event,
and 𝑡𝑒

𝑗
is a timestamp. In Trajectory, 𝑝 belongs to SpatialAttr , 𝑡 and

𝑡𝑒 belong to TemporalAttr ,𝐴 belongs toGeneralAttr , and event 𝑒 be-
longs to SceneAttr . Based on the sampling precision, Trajectory can
be categorized into ContinuousTrajectory and DiscreteTrajectory.

Raster. Raster is a gridded data where each cell is associated with
a geolocation. It is denoted as Raster = (Footprint, Time,Matrix),
where Footprint represents a spatial range, Time represents a tem-
poral range, and Matrix represents a multidimensional array of
cells. Matrix stores scene-oriented information such as tempera-
ture and spectrum. In 𝑅𝑎𝑠𝑡𝑒𝑟 , Footprint belongs to SpatialAttr , Time
belongs to TemporalAttr , and Matrix belongs to SceneAttr . Based
on the information that is stored in Matrix and its usage, Raster
can be categorized into Image, Grid, and Voxel.

PointCloud. PointCloud is a collection of 3D points. It is denoted
as PointCloud = {(𝑝1, 𝐴1), · · · , (𝑝𝑛, 𝐴𝑛)}, where 𝑝𝑖 is a 3D point,
and 𝐴𝑖 is a set of general attributes. In PointCloud, 𝑝 belongs to
SpatialAttr , and 𝐴 belongs to GeneralAttr .

4.2 Data Type Implementation
Each data type is divided into two parts, profile and details. profile
contains spatial information, metadata, and possibly temporal and
scene-oriented information, which is a summary of the data and
is used for filtering. details contains the detailed information of
the data, which comprises a distinct set of attributes of the data
type. Both parts are implemented as a binary sequence, and thus
each object is stored as a long binary sequence, i.e., a concatenation
of two binary sequences, in a table. We refer to it as a SLOB. The
benefits of introducing SLOBs are two-fold. On the one hand, it
follows the manner that PolarDB extends data types, which makes
SLOBs compatible with other data types in PolarDB. On the other

∗Geometry follows the hierarchy defined by OGC and SQL/MM Spatial

hand, the binary structure is flexible and compact that improves
the performance of both computation and storage.

Figure 3 shows the structure of 3DMesh, as an example of a
SLOB. At the front part, it is profile. The following part is details,
which contains shape, textures, materials, mapping, uvcoords, and
general. A building is decomposed into multiple components that
are of 3DMesh type, e.g., a building has a roof and many doors.
Each component object is implemented as a SLOB, and it is stored
as a cell in the table. They share the same building id, indicating
that they belong to the same building.

SLOB 1
SLOB 2

Roof

Door

1

1

…

…
…

…

1

2

3DMeshNameID

……2

……2

profile shape
textures

materials
mappings

uvcoords general

profile shape
textures
materials

mappings
general

uvcoords

Figure 3: Example of SLOBs in a 3DMesh data.

In real life, there exist many objects that have minor differences.
For example, in BIM, a building has many doors that have no dif-
ference in appearance but only different locations. It is a waste in
storage to store each of them. Therefore, Ganos develops a tech-
nique called instance referencing. The idea is to use a source object
to represent many objects having minor differences, and to use a
reference table to store the source objects. The other tables store
the ids of the source objects and a set of transformation information
that directs how to transform the source object into the real ob-
ject to be used. Figure 4 shows an example of instance referencing,
where the first floor and base one of building one can be obtained
by transforming SourceObject1, and the tenth floor of building
two and 𝑋 th floor of building 𝑁 can be obtained by transforming
SourceObject𝑀 . It is possible that different buildings have objects
referencing the same source object, e.g., they are produced by the
same manufacturer. It should be noted that the source object and
the object referencing it have the same data structure, and thus
Ganos conducts operations on them indifferently.

4.3 Indexes
In PolarDB, the suggested way of adding indexes is to develop
indexes that are based on GiST [23]. Following PolarDB, Ganos

3487



{reftable,rid=1,Affine1} SourceObj 1

SourceObj 2{reftable,rid=1,Affine2}

{reftable,rid=n,Affine3}

…

{reftable,rid=M,Affinen}

Base Table Ref Table

First

Base1

Tenth

…

Xth

1

1

2

…

N

3DMeshFloorBID 3DMeshRID

1

2

……

SourceObj MM

Figure 4: Example of instance referencing.

develop indexes based on GiST+ which is an index framework that
enriches the access methods of GiST. The extension includes adding
a set of function interfaces to estimate index costs. Ganos imple-
ments a set of GiST+-based indexes (mostly R-tree) that organize the
data based on different dimensions, e.g., (𝑥,𝑦), (𝑥,𝑦, 𝑧), or (𝑥,𝑦, 𝑧, 𝑡).
Thus allows Ganos to have multiple GiST+-based indexes on the
same set of data, which is useful for answering the queries that
consider different dimensions. For example, if users have a need for
the queries on (𝑥,𝑦, 𝑧) and (𝑥,𝑦, 𝑧, 𝑡), respectively, Ganos allows
users to build two GiST+-based indexes that are on (𝑥,𝑦, 𝑧) and
(𝑥,𝑦, 𝑧, 𝑡), respectively, and selects between the two to answer a
query on-the-fly. Even though there exists no GiST+-based index of
which the indexed dimensions are the same to the queried dimen-
sions, another one can still be used to answer that query if there
exist common indexed dimensions between them. For example, a
GiST+-based index built on (𝑥,𝑦, 𝑧) can answer a query having a
constraint on (𝑥,𝑦, 𝑡) as they share common dimensions (𝑥,𝑦). This
is an improvement over a GiST-based index which does not work
here, and it allows Ganos to optimize the processing of less often
queries of which the queried dimensions are not indexed exactly.
Moreover, Ganos implements a strategy to select the best GiST+-
based index to answer a query when multiple candidates exist,
which is based on the similarity of indexed and queried dimensions.

5 EXTENDED STORAGE
This section introduces the storage mechanism of Ganos.

5.1 Storage Mode
Figure 5 shows an overview of extended storage. As explained, a
SLOB has profile and details, where profile is a summary of the
object and details is the detailed information of the object. If details
is small, it is stored inline in the table (the top one in the figure).
Otherwise, it is stored in a TOAST (The Oversized-Attribute Storage
Technique) table (the second one in the figure), which is used by
PolarDB to store large objects. Both cases belong to storing in the
database. Operations on the data stored in the database are efficient.
However, the deployment costs are expensive when the data is
of large scale. Since most queries can be answered using profile,
while only a few queries require details, Ganos provides extended
storage that separates the storages of profile and details, which
stores profile in a database table and stores details on OSS. There
are two modes of extended storage aiming at different scenarios,
which are hot/cold data separation (the third and fourth ones in the
figure) and heterogeneous file access (the bottom one in the figure).

DataTable

Spatial Object Locator

Profile Filename & 
Offset

Spatial Object Locator

Profile Filename & 
Offset

Spatial Object Locator
Profile Filename & 

Offset
Row

…

Spatial Object Locator
Profile Filename & 

Offset

Details
Details

Spatial Object Locator
Profile Filename & 

Offset

Spatial Objects In Memory

Indexes FunctionsOperators …

Row
…

Row
…

Row
…

Row
…

File On OSS(.orc)
Details
Details

File On OSS(.orc)

Details

SLOB

Cell Cell

Cell Cell

Cell Cell

Cell Cell

Cell Cell

SLOB

SLOB

SLOB

SLOB

SLOB

Figure 5: Overview of extended storage.

Hot/cold data separation. There exist large-scale cold data
stored in database tables that are rarely used. Meanwhile, it is
common that most queries consider a smaller fraction of data, i.e.,
hot data. For the users who care about deployment costs and are
willing to tolerate the performance loss of a small ratio of queries, it
is better to store the cold data on OSS because OSS is much cheaper
than the database storage.

Periodically, Ganos exports details of objects that are rarely used
to OSS files, which are created and managed by Ganos. It means
that an OSS file stores the details of many objects that were stored
in the database previously. During this process, Ganos changes
details of each exported object into its address on OSS, which is
composed of a file location and an offset in the file.

Heterogeneous file access. There are many sources of MDS
data. Files of different formats are used to store the data from them.
These heterogeneous files are of large size but for each of them
only a small part is necessary for most queries, which need to be
stored in the database. The files can be stored on OSS. To achieve
this, Ganos extracts profile from each object in the files, pairing it
with the file location, and writes the pair into a SLOB that is stored
in a database table then. In this mode, an OSS file stores details of
one SLOB only.

There exists difference between the two modes. Hot/cold data
separation exports details of objects that were in the database pre-
viously to OSS files. It is useful for reducing the storage cost of
database, especially for data of large scale such as Trajectory data.
Heterogeneous file access extracts profile from objects stored on
OSS and writes them into the database. An example is to extract
profile from files that store Raster data.

5.2 Spatial Object Locator
At the central part of Figure 5 is spatial object locator (Locator,
for short), which is the core of extended storage. It provides trans-
parent access to data in different storages, and is responsible for

3488



maintaining the storage information. Specifically, when an opera-
tion only requires profile of a SLOB, e.g., creating spatial indexes,
and filtering using bounding boxes, Locator can return profile di-
rectly without reading details from OSS, and when an operation
requires details of a SLOB, e.g., computing topological relationship,
and spatial clipping, Locator checks it is details or an address that
is stored in the SLOB. If meeting an address, Locator automatically
reads details from OSS and returns it to the operation. Otherwise,
Locator returns details that is stored in the SLOB directly. By doing
this, operations can consider all the objects as being stored in the
database without knowing the storage details, and the same index
can be used to organize all the objects based on their profile. Besides,
the storage cost of the database is reduced greatly because profile
and the address information are much smaller than details in size.

In summary, Locator connects the higher-level access methods
and the storage layer. It hides the underlying storage details, and
allows access methods to operate on the objects in a unified way.

5.3 Cache Mechanisms
Ganos provides cache mechanisms that include write caching and
read caching to work with the extended storage.

Write caching. For the hot/cold data separation, Ganos utilizes
write caching to reduce the network costs of exporting cold data
from the database to OSS. It is to maintain a write cache to store all
the cold data that is to be exported. When the cache is full, Ganos
setups a network connection with OSS, and transfers all the cached
data to OSS. The write cache reduces the network costs by avoiding
frequent network connections and data transferring.

Read caching. A SQL query usually requires conducting opera-
tions on one object multiple times. This does not matter for objects
that are stored in the database because PolarDB provides a read
cache to avoid reading the same object multiple times from a table.
However, for an object whose details is stored on OSS, PolarDB
does not write the object’s details into the cache after reading it
from OSS, but writes its address into the cache. Therefore, it will
result in multiple times of OSS readings. To solve this problem, in
one query session, Ganos builds and maintains a read cache that
adopts a least recently used (LRU) policy. After reading details of an
object from OSS, Ganos writes it into the read cache. The following
operations on that object will be redirected to the read cache, thus
avoiding reading the same object from OSS multiple times.

6 QUERY PROCESSING
6.1 Query Types
Ganos supports multiple types of queries, including spatial queries,
spatio-temporal queries, scene-oriented queries, and cross-model
queries:
• Spatial queries only consider spatial dimensions. They include

3D relationships, 3D analysis, and 3D processing operations in
3D scenarios.

• Spatio-temporal queries consider both spatial and temporal di-
mensions. They include spatio-temporal relationships, spatio-
temporal analysis, and spatio-temporal processing operations.

• Scene-oriented queries is a new query type supported by Ganos.
They contain the scene information and require operations to
construct, edit and process the scenes.

Table 1: Functions for MDS data types

Category Geom. Raster Traj. 3DMesh PointCloud Count
3D spatial
relationship

✓ ✓ ✓ ✓ 69
Example: ST_3DIntersects(3DMesh, 3DMesh) - Check if two
3DMeshes spatially intersect in 3D

3D spatial
analysis

✓ ✓ ✓ ✓ 52
Example: ST_3DBuffer(Geometry) - Compute a geometry
that contains all points whose distance to the geometry is
less than or equal to a given distance in 3D

3D spatial
processing

✓ ✓ ✓ ✓ 90
Example: ST_3DIntersection(Pointcloud, Geometry) - Com-
pute a new pointcloud representing the point-set intersec-
tion of input pointcloud and geometry in 3D

Spatio-
temporal
relationship

✓ ✓ 31
Example: ST_3DIntersects(Raster, Raster) - Check if two
rasters intersects in both intersects in both spatial(footprint)
and temporal dimensions

Spatio-
temporal
analysis

✓ ✓ 57
Example: ST_LCSSSimilarity(Trajectory, Trajectory) - Com-
pute the similarity of two trajectories using LCSS algorithm
with spatial and temporal criteria

Spatio-
temporal
processing

✓ ✓ 53
Example: ST_Intersection(Trajectory, Trajectory) - Compute
the same temporal points of two trajectories

Scene edit ✓ ✓ ✓ 45
Example: ST_AddMaterial(3DMesh, Material) - Add a mate-
rial to a 3DMesh

Scene pro-
cessing

✓ ✓ ✓ 56
Example: ST_Simplify(3DMesh) - Compute a simplified ver-
sion of the given 3DMesh with geometry and other scene-
oriented information

Cross model
processing

✓ ✓ ✓ ✓ ✓ 75
Example: ST_Intersects(Trajectory, 3DMesh) - Check if Tra-
jectory and 3DMesh spatially intersects in 3D

Figure 6: Geometry intersection vs. scene intersection.

• Cross-model queries are hybrid queries that involve multiple
data types, e.g., overlay analysis of 3DMesh and Trajectory data.

To support above query types, Ganos provides a rich set of data
types and functions, which are listed in Table 1. To improve the
query performance, the most appropriate index will be used by
functions according to the query type.

Note that the functions in Ganos are polymorphic, which implies
the same function will behave differently according to the input
arguments. For example, when two trajectory objects are fed to the
intersection function, the spatial and temporal relationships will
be analyzed. Figure 6 shows that if two 3DMesh objects are taken
as input in the same function, the spatial information and scene-
related information (e.g., textures and materials) will be considered.

6.2 Parallel Execution
Some queries on MDS data are extremely time-consuming, e.g., 3D
building surface area calculations and trajectory similarity calcu-
lations. There are various reasons that make them slow. (1) Some
queries may involve millions of rows even after most irrelevant

3489



data is filtered by indexes such as R-tress. (2) One SLOB can grow
up to several MBs and operations on SLOBs are complicated.

To accelerate these queries, this paper proposes spatial-oriented
multi-level parallelism in PolarDB, including IQP and IFP. The
overview of the parallelism is shown in Figure 7.

Query
Table

Huge Cell

3

RO 1

RO 2
2

Shared Storage

RDMA

Computing Service

RW

Distributed 
Query Plan

Result

Client

SQL 
Parser
SQL 

Optimizer
network

1
1-1 1-2

1-3 1-4

1-1

1-2
1-3
1-4

row 1

row 2

row 3

row 4

Figure 7: Overview of Ganos parallelism.

Intra-query parallelism (IQP). The IQP splits the millions of
rows into multiple data slices, which can be processed simultane-
ously on several RO nodes. IQP starts with the generation of a
distributed plan. The plan decides the degree of IQP and the nodes
participating in the query. The default size of each data slice is
4MB (512 pages), and the default data slice assignment scheme is
hash-based. Ganos also provides a dynamic data slice assignment
scheme, which assigns a data slice to an idle process on-the-fly
by keeping the data slices in a queue, and a leader process being
responsible for the assignment of the data slices to the processes
having finished their job. A user can set a different data slice size
and use the dynamic data slice assignment scheme based on his/her
needs. For example, if a user wants better load balance, he/she can
set the size of each data slice as one page, and adopt the dynamic
data slice assignment scheme.

When executing the plan, each nodemay start multiple processes.
Processes can communicate with others through network protocols
or shared memory, depending on whether they are on the same
node. Because PolarDB decouples storage and computation, all
processes in all nodes can access the entire data from the shared
storage. Thus, many costly operations of parallel executions can
be avoided, e.g., data shuffling. Besides, the parallel degree can be
adjusted flexibly for different queries.

Intra-function parallelism (IFP). IFP accelerates the process-
ing of huge cells, i.e., SLOBs of great size, in a tuple that is compute-
intensive and cannot be split into small data slices through IQP.
When a worker process meets a huge cell, IFP divides the huge
cell into several small cells by spatio-temporal information and
processes these small cells with subprocesses in parallel. For the
Trajectory data, the huge cell can be segmented by the temporal
dimension; for the 3DMesh, it can be segmented by spatial grid.

Figure 8 gives an example of IFP. The black squares in the left-
most picture are the meshes (in the Geometry attribute) stored in
one 3DMesh SLOB. We want to combine all the meshes into a sin-
gle shape efficiently. IFP first classifies them into 16 grids (green

grids in Figure 8), and starts subprocesses to compute the results in
each of them. When all subprocesses are finished, their results are
aggregated and illustrated in the second picture. IFP again classifies
them into four larger grids and repeats this procedure. The final
result is given when all the grids are aggregated.

x

y

x

y

x x

yy

Figure 8: Example of intra-function parallelism.

Figure 7 gives an example of the whole procedure. One RW and
two RO nodes are employed to speed up the union processing for
the 3D building data containing four rows, in which the first row
has a huge cell. The processing consists of the following steps: (1)
The RW node uses the query optimizer to generate a distributed
query plan, and distributes the plan to the RO1 and RO2 nodes. (2)
The RO1 node reads the first row. Since the record contains a huge
cell, the cell is divided into four MBRs. Therefore, the RO1 node
will create four subprocesses to process the huge cell. RO1 adopts
the IFP mechanism. (3) Worker process 2 in RO2 node will process
row 2 and row 4 data. This is because worker process 2 is idle after
processing row 2 and will continue processing the next row; worker
process 3 in RO2 node will process row 3. RO1 and RO2 collectively
adopt the IQP mechanism. (4) After all worker processes finish the
tasks, RW aggregates all the results and returns them to the client.

6.3 Query Optimizations
Since the access performance of OSS is two orders of magnitude
slower than that of local disk, query performance is affected when
spatial data are stored on OSS. To reduce the impact of reading
data from OSS, Ganos implements the spatial type analyzer and
optimizes cost model for OSS storage.

Spatial Type Analyzer. The query optimizer of PolarDB uses
a type analyzer to collect statistics of data tables and store them
in a metadata table. Then, the statistics are used to estimate the
selectivity of the different query predicates and select the optimal
execution plan. The type analyzer provides analysis functions that
are triggered by running ANALYZE command. Ganos implements
its analyzer for each extended type to collect the distribution his-
tograms of tables. For example, the geometry analyzer collects
spatial distribution histogram, and the trajectory analyzer collects
spatial and temporal distribution histograms. As Ganos supports
the OSS storage, Ganos type analyzers need to collect additional
storage distribution histogram. They also collect the tuples and the
number and percentage of tuples using OSS storage.

Storage Cost Model. The cost evaluation model is used to select
the optimal execution plan by query optimizer of PolarDB. It con-
siders the pages scanning costs, tuples processing costs, functions
and operators execution costs, etc. It does not consider the costs of
accessing data that are stored on OSS, thus making it not accurate
for estimating the costs of a query plan that requires details stored
on OSS. To solve this problem, Ganos improves the cost model to
consider the costs of reading OSS. Specifically, Ganos adds a new

3490



part into the cost model: 𝐶new = 𝐶old + Δ𝐶 , where 𝐶old represents
the costs output by the old cost model, and Δ𝐶 represents the extra
costs of reading OSS data in a query.

The value of Δ𝐶 is computed differently based on the scanning
method to be used. Sequence scan (seqscan, for short) and indexscan
are the two most common scanning methods. Seqscan scans a
table sequentially. The extra costs of seqscan are computed by
multiplying the number of tuples in a table whose details are stored
onOSS and the average cost of reading a details fromOSS. Indexscan
scans a table using an index, which reduces the number of tuples
to be accessed by utilizing the filtering effect of the index. The
extra cost of indexscan are computed by multiplying the number of
tuples whose details are stored on OSS and that cannot be filtered
by the index, and the average cost of reading a details from OSS.

The improved cost model is used to select the optimal query plan
for a query that asks to access details of many SLOBs on OSS. In
particular, for a query that has a high selectivity, the old cost model
will prefer using seqscan because it is smaller in cost. However, it is
probably better to use indexscan because that the costs of reading
OSS data overwhelm the extra scanning costs. The improved cost
model takes into consideration the costs of reading OSS data, and
thus assist optimizer in selecting the optimal query plan.

7 EVALUATION
7.1 Experimental Setup
Testbed. Four PolarDB instances with Ganos are deployed on the
nodes equipped with 32 CPUs and 256GB memories. One instance
works as the RW node, and the other three instances work as RO
nodes. These database instances are connected to a distributed
storage by a high-speed RDMA network.

Datasets. Ganos is evaluated with one public dataset and three
private datasets that are from real applications. The details of these
datasets are listed below:

• OSM (201GB) is a public dataset that we crawled from online.1
It contains 96,648,669 trajectories. The average number of points
in one trajectory is 49.8 and the time span is 20 years.

• DT4 (100MB) is a dataset composed of four different types of
data: UAV trajectory, digital elevation model (DEM), no-fly zone,
and BIM data for the restricted-fly zone. It is used in a digital
twins scene to demonstrate the capability of Ganos to handle
cross-model queries considering different types of data.

• BIM1000 (428GB) is a BIM dataset. It contains the information of
1,000 buildings composed of 11,106,095 components. Each com-
ponent has 313 points and 327 surfaces on average and 896,638
points and 1,062,881 surfaces at most.

• RASTER1718 (519GB) is a satellite image dataset of two-meter
resolution. It contains 1,718 images, and the size of each image
is 300MB on average and 2.4GB at maximum.

7.2 Use Case Study
In this case, the DT4 dataset is used to demonstrate the processing
of a cross-model query in a city digital twin scene with different
data types (as shown in Figure 9).

1https://www.openstreetmap.org/traces

Figure 9: A cross-model query in a city digital twins scene.

It is necessary to conduct an operation guideline check on UAV’s
flight trajectories to confirm that all the operations are legal. The
requirements for a legal flight include:

(1) The maximum height from the ground of the flight must be
lower than a certain threshold. Since the elevation recorded
by GPS is based on the reference ellipsoid, a further relative
height calculation is needed according to the DEM data.

(2) The maximum flight speed must be lower than a certain
threshold. The flight speed has been recorded on the track.

(3) UAV must not touch the restricted-fly zone. The restricted-
fly zone is a 3D space that no flight is allowed inside, e.g.,
the space whose distance from a building is less than 100
meters. The restricted-fly zones are usually generated by
BIM data.

(4) UAV must not cross the no-fly zone. The no-fly zone is a
3D space where no flight can cross at any height.

The data used in this case study include UAV’s flight of 3D
Trajectory type, DEM of Raster type, no-fly zones of Geometry
type, and BIM of 3DMesh type. They are stored in different tables
of the database. Since no-fly zone check and restricted-fly zone
check are similar, this paper only takes restricted-fly zone check
for example. SQL 1 shows the SQL statement to conduct the check.

The relative flight height is calculated by the difference of the
ground height based on the DEM and the height recorded by the
GPS. The maximum flight speed is determined by calling a function
to obtain the speed values recorded in the UAV trajectory. Whether
the flight crosses the restricted-fly zone is checked by calling a
function named ST_3DIntersects.

This case study illustrates the capabilities of Ganos to support
MDS data and the interoperability for different types of MDS data.
By using simple SQL to perform the complex cross-model queries
in the applications of digital twins, users can benefit from reducing
the development costs and complexity of the systems.

7.3 Evaluation of Extended Storage
This section evaluates the extended storage of Ganos using the OSM
dataset. As stated in Section 5, Ganos designs a hot/cold separation
mode and a heterogeneous file access mode for different scenarios.
In this section, we illustrate the performance of the hot/cold sep-
aration mode along with the R-tree index based on GiST+, while
the heterogeneous file access mode will be illustrated later in𝑄2 of

3491

https://www.openstreetmap.org/traces


SQL 1: SQL statements
/* Max relative height. 1.𝑠𝑡_𝑎𝑑𝑑𝑧 to get ground elevation;

2.get relative height; 3.get maximum relative height. */

1 WITH height AS (
2 SELECT st_z((st_dumppoints(traj)).geom) - st_z((st_addz(rast, traj)).geom)

AS h
3 FROM t_trajectory, t_dem WHERE t_dem.id = 1 AND t_trajectory.id = 1),

max_height AS (
4 SELECT max(h) AS max_relative_height FROM height ),
/* Max speed. 1.𝑠𝑡_𝑎𝑡𝑡𝑟𝑠 𝑓 𝑙𝑜𝑎𝑡8 to get the speed; 2.get the

maximum speed. */

5 max_speed AS(
6 SELECT max(speed) AS max_fly_speed FROM (
7 SELECT unnest(st_attrsfloat8(traj, ’speed’)) AS speed
8 FROM t_trajectory WHERE id = 1 ) t ),
/* Buffer zones touch check. 1.𝑠𝑡_3𝑑𝑏𝑢𝑓 𝑓 𝑒𝑟 to buffer

buildings; 2.𝑠𝑡_3𝑑𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑠 to check if trajectory
touches the buffer zones. */

9 cross_buiding AS(
10 SELECT NOT EXISTS (
11 SELECT 1 FROM t_trajectory, t_building
12 WHERE st_3dintersects( st_3dbuffer(t_building.m, 100), t_trajectory.traj)

AND t_trajectory.id = 1) AS cross_restricted_zone )
/* Final check. */

13 SELECT max_relative_height < 500 AND max_fly_speed < 60 AND
cross_restricted_zone

14 FROM max_height, max_speed, cross_building.

Section 7.4. Based on customers’ situations, this section assumes
20% of the dataset is hot data, and 80% of queries search for hot data.
In addition, this section assumes the hot data is the more recent
part (judged by trajectories’ end times) of the dataset.

In the following experiments, the percentage of data stored
on OSS is varied. Figure 10 shows the change of table size after
0%,20%,40%,60%,and 80% of the dataset is exported to OSS. After the
original data are imported into the database, it is compressed and
occupies 109GB. The table size in the database decreases linearly,
and the file size on OSS increases linearly as more data is exported
to OSS. The cold data in the database has a size of about 88GB in the
database, and when it is exported to OSS, it occupies only 19GB in
the database, achieving a 21.6% compression rate. The compression
rate in the database is in reverse proportion to the size of the SLOBs’
details data; for longer trajectories with rich attribute and event
information, e.g., AIS ship tracks, the compression rate can be less
than 1%.

Figure 11 shows the index construction time against the ratio of
on-OSS data. The index construction time is roughly 40 minutes
when the ratio of on-OSS data varies from 0% to 80%. Ganos can
obtain the MBRs from a Locator to build an index without accessing
the OSS, and thus the ratio of on-OSS data has minor influence on
the index construction time. Without a Locator, the index construc-
tion time takes over twelve hours even on only 20% on-OSS data,
which is not included in the figure. The experiment demonstrates
the effectiveness of the Locator.

The performance of biased range queries is tested with 500𝑚 ×
500𝑚 × 7days query ranges. Biased queries assume that the centers
of the query ranges have similar spatio-temporal distribution as
the dataset does. Since Ganos provides transparent accesses to OSS,
each query can access both in-database and on-OSS data. Figure 12
illustrates theQPS of the queries. It can be seen that storing cold data

on OSS reduces QPS. When all cold data is stored on OSS, the QPS is
roughly halved. Figure 13 shows the change of latency distribution
(measured by frequency per minute) with different ratios of on-
OSS data. The results are aggregated by six response-time ranges:
0–50ms, 50–100ms, 100–500ms, 500–1000ms, 1,000–2,000ms, and
more than 2,000ms. It can be seen that most queries are finished
in 50ms, because most irrelevant data is pruned by the indexes.
Moreover, when the ratio of on-OSS data increases, there appear
more queries with longer latencies.

Additionally, the performance of range queries with different
query ranges is compared. Range queries are performedwith 100𝑚×
100𝑚, 500𝑚× 500𝑚, 2000𝑚× 2000𝑚 spatial ranges and 1-day, 7-day,
30-day temporal ranges. The QPSs of the queries are illustrated for
tables with 0% (marked as In-DB) and 80% (marked as On-OSS) data
exported to OSS in Figure 16. For larger query ranges, the QPS of
both setups decreases. The performance of the extended storage
is affected more because the index has weaker pruning power on
larger query ranges. For the 1-day temporal ranges, the QPS with
the extended storage is 60% of that without OSS; for the 30-day
temporal ranges, the QPS with the extended storage is 35% of that
without OSS.

The experiments illustrate the abilities of Ganos on exporting
data to OSS, building indexes on tables with extended storage, and
querying through indexes with transparent accesses to OSS. The
results show that OSS can reduce storage cost with an acceptable
sacrifice of QPS. Although reading data from OSS is slow, with
the help of the indexes, the query performance on spatio-temporal
queries can become acceptable. The results also show that the
extended storage suits better for queries with small query ranges
and without a strong requirement on latency. However, it affects
the latency, and harms query performance when the query range
is large.

7.4 Evaluation of Parallel Query Processing
In this set of experiments, we evaluate the performance of the
spatial-oriented multi-level parallelism of Ganos. Two big queries
are used for the evaluation, which are described below.

𝑄1: This query asks to project each building in the BIM1000
dataset into the 𝑥𝑦-plane and compute its area.

𝑄2: This query asks to collect the statistics of each Raster data
in the dataset RASTER1718, which is stored on OSS.

Systems to compare against. The PostgreSQL compatible par-
allelism (hereafter simplified as PostgreSQL) is used, which is one of
the parallel query strategies supported by PolarDB and is inherited
from PostgreSQL. It can only parallelize the processing of a query
in one node and cannot work with IFP.

7.4.1 Results for 𝑄1. Figure 14 shows the results of running 𝑄1,
where IFP-𝑥 (resp. IQP-𝑥) represents that the degree of the paral-
lelism of IFP (resp. IQP) is 𝑥 . It takes more than three hours to run
𝑄1 without parallelism, so we do not show that result in this figure.
It can be seen that the parallelism of Ganos performs much better
than PostgreSQL. For example, the latency of IQP-24 and IFP-4 is
66% lower than that of PostgreSQL whose parallelism degree is
96. There are several phenomena that worth discussing, which are
described in the following.

3492



0% 20% 40% 60% 80%
Ratio of on-OSS data

0

20

40

60

80

100

S
iz

e
(G

B
)

Size in DB

Size in OSS

Figure 10: Size vs. ratio of on-OSS data.

0% 20% 40% 60% 80%
Ratio of on-OSS data

0

10

20

30

40

50

T
im

e
 (

m
in

u
te

)

Index Contruction Time

Figure 11: Index construction time.

0% 20% 40% 60% 80%
Ratio of on-OSS data

0.0

0.5

1.0

1.5

2.0

2.5

Q
P

S
(×
1
0
3
)

Range Query QPS

Figure 12: QPS vs. ratio of on-OSS data.

0% 20% 40% 60% 80%
Ratio of on-OSS data

10
0

10
2

10
4

10
6

10
8

F
re

q
u
e
n
c
y
(p

e
r 

m
in

u
te

)

0-50

50-100

100-500

500-1000

1000-2000

2000+

Figure 13: Latency distribution.

6 12 24 48 88 96
Degrees of IQP

0

500

1000

1500

2000

2500

3000

3500

4000
L
a
te

n
c
y
(s

e
c
o
n
d
s
) PostgreSQL

IFP-0

IFP-2

IFP-4

IFP-6

Figure 14: Q1 latency vs. #parallelism.

6 12 24 48 88 96
Degrees of IQP

0

500

1000

1500

2000

2500

3000

3500

L
a
te

n
c
y
(s

e
c
o
n
d
s
)

PostgreSQL

IFP-0

IFP-2

IFP-4

IFP-6

Figure 15: Q2 latency vs. #parallelism.

100m 500m 2000m
Query Range Side Length

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Q
P

S
(×
1
0
3
)

In-DB On-OSS

(a) QPS for 1 day

100m 500m 2000m
Query Range Side Length

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Q
P

S
(×
1
0
3
)

In-DB On-OSS

(b) QPS for 7 days

100m 500m 2000m
Query Range Side Length

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Q
P

S
(×
1
0
3
)

In-DB On-OSS

(c) QPS for 30 days

Figure 16: QPS for different queries.

First, the IQP without IFP (called IFP-0) is more efficient than
PostgreSQL. For instance, PostgreSQL takes 1.4x (resp. 2x) more
time than IFP-0 when IQP is 24 (resp. 48). The main reasons are:
(1) The inter-process communication mechanisms of Ganos and
PostgreSQL are different. In PostgreSQL, the worker processes need
to ask the leader process for data. It causes extrawaiting time if there
are many worker processes. In comparison, each process of Ganos
can obtain the data for processing independently, which reduces
the inter-process communication costs. (2) The IO mechanisms
of Ganos and PostgreSQL are different. In PostgreSQL, there is
only one process that can obtain data at one time. While in Ganos,
processes can obtain data simultaneously.

Second, the IFP facilitates the processing of huge cells. Figure 14
shows that: (1) The latency of IFP-2 is almost half of that of IFP-
0 at the same IQP degree, e.g., 577 seconds for IQP-96 and IFP-0
vs. 288 seconds for IQP-96 and IFP-2. (2) With the same degree
of parallelism, IQP+IFP outperforms IQP only. For instance, the
latency of IQP-24 and IFP-2 is 628 seconds, while the latency of

IQP-48 and IFP-0 is 810 seconds. This is because IFP can parallelize
the processing of huge cells, thus improving the query performance.

Third, the improvement in performance becomes smaller with
the increasing of the degree of the parallelism. That is because more
time is spent on scheduling and communication if there are more
workers, and the aggregating progress by the leader process cannot
be parallelized neither.

Even so, Ganos is more scalable than PostgreSQL, e.g., IQP-96
and IFP-0 has a smaller latency than IQP-88 and IFP-0, i.e., 577
seconds vs. 617 seconds, while the latency of PostgreSQL is 1,728
seconds when the degree of parallelism is 96, which is larger than
that when the degree of parallelism is 88, i.e., 1,673 seconds.

7.4.2 Results for 𝑄2. Figure 15 shows the results of running 𝑄2 (It
takes about six hours to run the query without any parallelism, and
the result is not shown in this figure). Similar patterns can be found
that the parallelism of Ganos performs better than PostgreSQL, e.g.,
655 seconds for IQP-24 and IFP-4 vs. 921 seconds for PostgreSQL

3493



when the degree of parallelism is 96. In the following, we discuss
different patterns that are not shown in Figure 14.

First, PostgreSQL performs slightly better than using IQP w/o
IFP when the degree of parallelism is 6, 12, or 24. This is due to load
imbalance caused by the data skew. IQP parallelizes the processing
of data at the granularity of blocks, while PostgreSQL parallelizes at
the granularity of tuples. Since PostgreSQL uses a finer granularity
than IQP, data skew is more likely to occur in IQP when the degree
of parallelism is smaller.

Second, the difference among the evaluated parallelisms for the
same IQP degree is more obvious than that in Figure 14. For instance,
in Figure 15, the latency for IQP-48 and IFP-4 is 66% of that for
IQP-48 and IFP-2, while in Figure 14, it is 87%. This is because that
more huge cells are invoked for the dataset RASTER1718 than for
the BIM1000 dataset, which cannot be parallelized in IQP.

Overall, the experimental results prove two points: First, the
parallelism of Ganos performs better than PostgreSQL in most
cases. Second, it is better to use IQP and IFP collectively than using
IQP only when there exist huge cells.

8 LESSONS LEARNED
After it was released in 2018, Ganos has offered service in Alibaba
Cloud for over four years. Various spatial/spatio-temporal appli-
cations from small Internet applications to large enterprise appli-
cations have been implemented with Ganos. Most of these appli-
cations focus on traditional 2D static spatial data management.
However, in recent years, a lot of new applications have emerged
with new data types like digital twins, location sensing, etc. They
represent the future trend and lead the traditional spatial databases
to the new era. This section introduces several novel applications,
the challenges encountered, and our solutions.

Multidimensional scenes and 3D analytics. The integration
of BIM and 3D GIS is the foundation of multidimensional scenes
construction and 3D aided analytics. BIM data contains a huge
number of delicate components and poses great challenges in the
complexity analysis and computational efficiency. One of our digital
government customers, who is responsible for the urban planning
and construction of a State-Level NewArea, aims to make full use of
the BIM data for the approval of the construction project. One cru-
cial step is the fast computation of the overall ground projection of
the target building. However, for a large auditorium with a peculiar
roof structure, its BIM data contains millions of polygons, which
cannot be quickly computed in the external middleware of the
systems due to the unbearable overhead of network transmission.

Ganos utilizes the built-in 3DMesh data type to manage the
BIM data, and adopts spatial-oriented multi-level parallelism to
achieve in-database computation acceleration. As a result, Ganos
improves the efficiency of projection computation by nearly 100
times and solves the problem for customers. The inspiration from
these scenarios is that in the urban digital twin business, customers
have changed from only focusing on 3D visualization to 3D analysis
and computing. The integration of spatial databases and cloud-
native technology will be more and more important in this field.

Querying dynamic data. The moving objects such as vehicles,
ships, and aircrafts are crucial elements for building city digital
twins systems. Ganos has been applied to a series of MOD-based

(MovingObject Database) scenarios in the cloud, including LBS bike-
sharing management, agricultural credit systems, transportation
systems, and airlines systems etc. Following are several practical
problems encountered in the applications.

Scene management. Some bike-sharing service providers try to
model the locking and unlocking events and record the complete
itinerary of a rent event. Ganos solves this problem by adding
scene-oriented event processing in the trajectory models.

Extended storage. Some LBS service providers store the trajec-
tories data into the databases with customized JSON formats and
periodically extract the cold data into OSS to reduce the storage
cost. This strategy makes it difficult to access the cold data. Ganos
elegantly solves this problem by providing built-in Trajectory types.

Cross-modal queries. Some vehicles service providers would like
to support cross-modal queries. For example, based on the overlay
analysis of Trajectory data and Raster data, they want to compute
the climbing height of the vehicles. Ganos offers the SQL interfaces
to support this type of query.

Database for GeoAI Satellite photographing is an effective
method to obtain the data in future digital twins applications. The
integration of GeoAI (geographical AI) and remote sensing images
can significantly enhance large-scale geographical spatial data ana-
lytics and processing ability. In recent years, GeoAI providers have
an increasing demand for temporal and spatial resolutions of remote
sensing images. The traditional static-tiles based Raster data man-
agement cannot meet the following requirements: (1) The databases
can directly manipulate OSS-based raw image files to avoid redun-
dant storage. (2) Remote sensing images should be structurally
stored in spatial databases to enable spatial and spatio-temporal
queries. (3) Support parallel mechanism to improve the query effi-
ciency. To meet these requirements, Ganos supports the Raster data
type natively, allowing the integration with heterogeneous files on
OSS. In addition, Ganos uses spatial indexes and spatial-oriented
multi-level parallelism to accelerate queries for the Raster data. The
above solutions have been extensively applied to the national terri-
tory spatial plan and governance, dynamic monitoring of ecological
environment, water resource management (watershed protection,
river and lake supervision), financial credit, etc.

9 CONCLUSION
With the rapid development of smart cities, digital twins, and cloud
computing, the existing spatial relational databases cannot meet the
requirement of modern applications for MDS data processing. To
address this issue, in Alibaba, a cloud-native spatial database engine
called Ganos is designed and implemented on PolarDB. Ganos pro-
vides a systematic framework of data models, access methods, and
operations for MDS data. Especially, Ganos optimizes the process-
ing of queries onMDS data through cloud-native capabilities, which
provides a new practice of moving from traditional on-premise spa-
tial database to cloud-native spatial database. The future work will
leverage GPU resources on the cloud to accelerate Ganos and uti-
lize the PolarDB serverless framework to achieve better dynamic
resource provisioning.

REFERENCES
[1] KiCad Services Corp. [n.d.]. FreeCAD: Your own 3D parametric modeler. KiCad

Services Corp. Retrieved January 25, 2022 from https://www.freecadweb.org/

3494

https://www.freecadweb.org/


[2] Oracle [n.d.]. MySQL Documentation. Oracle. Retrieved January 25, 2022 from
https://dev.mysql.com/doc/

[3] Oracle [n.d.]. Oracle’s Spatial Database. Oracle. Retrieved January 25, 2022 from
https://www.oracle.com/database/spatial/

[4] The PostgreSQL Global Development Group [n.d.]. PostgreSQL: The World’s Most
Advanced Open Source Relational Database. The PostgreSQL Global Development
Group. Retrieved January 25, 2022 from https://www.postgresql.org/

[5] Open Geospatial Consortium [n.d.]. Simple Feature Access, Part 1: Common
Architecture. Open Geospatial Consortium. Retrieved January 25, 2022 from
http://www.opengeospatial.org/standards/sfa/

[6] PostGIS Project Steering Committee (PSC) [n.d.]. Spatial and Geographic objects
for PostgreSQL. PostGIS Project Steering Committee (PSC). Retrieved January
25, 2022 from https://postgis.net/

[7] Oracle [n.d.]. Spatial Developer’s Guide. Oracle. Retrieved February 23, 2022
from https://docs.oracle.com/en/database/oracle/oracle-database/21/spatl/

[8] SQLite Consortium [n.d.]. SQLite. SQLite Consortium. Retrieved February 7,
2022 from https://www.sqlite.org/index.html

[9] Amazon [n.d.]. Working with Amazon Aurora PostgreSQL. Amazon. Re-
trieved January 25, 2022 from https://docs.aws.amazon.com/AmazonRDS/latest/
AuroraUserGuide/Aurora.AuroraPostgreSQL.html

[10] David M. Adler. 2001. DB2 Spatial Extender-Spatial data within the RDBMS. In
Proceedings of 27th International Conference on Very Large Data Bases (PVLDB
’01). 687–690.

[11] Mladen Andzic, Van To, Mike Ray, Craig Guyer, Saisang Cai, and Douglas Lauden-
schlager. [n.d.]. Spatial Data (SQL Server). Microsoft. Retrieved January 25, 2022
from https://docs.microsoft.com/en-us/sql/relational-databases/spatial/spatial-
data-sql-server?view=sql-server-ver15

[12] Panagiotis Antonopoulos, Alex Budovski, Cristian Diaconu, Alejandro Hernan-
dez Saenz, Jack Hu, Hanuma Kodavalla, Donald Kossmann, Sandeep Lingam,
Umar Farooq Minhas, Naveen Prakash, et al. 2019. Socrates: The new SQL server
in the cloud. In Proceedings of the 2019 International Conference on Management
of Data (SIGMOD ’17). 1743–1756.

[13] Mohamed Bakli, Mahmoud Sakr, and Esteban Zimanyi. 2019. Distributed moving
object data management in MobilityDB. In Proceedings of the 8th ACM SIGSPA-
TIAL International Workshop on Analytics for Big Geospatial Data (BigSpatial ’19).
1–10.

[14] Rudolf Bayer and Edward McCreight. 2002. Organization and maintenance of
large ordered indexes. In Software Pioneers: Contributions to Software Engineering.
Springer, 245–262.

[15] Martin Breunig, Patrick Erik Bradley, Markus Jahn, Paul Kuper, Nima Mazroob,
Norbert Rösch, Mulhim Al-Doori, Emmanuel Stefanakis, and Mojgan Jadidi. 2020.
Geospatial data management research: Progress and future directions. ISPRS
International Journal of Geo-Information 9, 2 (2020), 95.

[16] Wei Cao, Zhenjun Liu, Peng Wang, Sen Chen, Caifeng Zhu, Song Zheng, Yuhui
Wang, and Guoqing Ma. 2018. PolarFS: an ultra-low latency and failure resilient
distributed file system for shared storage cloud database. Proceedings of the VLDB
Endowment 11, 12, 1849–1862.

[17] Alexandre Carvalho, Cristina Ribeiro, and António Augusto Sousa. 2006. Spatial
timedb-valid time support in spatial dbms. In Proceedings of 2nd International
Advanced Database Conference (IADC ’06).

[18] Alexandre Carvalho, Cristina Ribeiro, and A. Augusto Sousa. 2006. A spatio-
temporal database system based on timedb and oracle spatial. In Research and
Practical Issues of Enterprise Information Systems. Springer, 11–20.

[19] Judith R. Davis. 1998. IBM’s DB2 spatial extender: Managing geo-spatial infor-
mation within the DBMS. IBM corporation (May 1998).

[20] Li Deren, Yu Wenbo, and Shao Zhenfeng. 2021. Smart city based on digital twins.
Computational Urban Science 1, 1 (2021), 1–11.

[21] Alessandro Furieri. [n.d.]. SpatiaLite. Retrieved February 7, 2022 from https:
//www.gaia-gis.it/fossil/libspatialite/index

[22] Antonin Guttman. 1984. R-trees: A dynamic index structure for spatial searching.
In Proceedings of the 1984 ACM SIGMOD international conference on Management
of data (SIGMOD ’84). 47–57.

[23] Joseph M. Hellerstein, Jeffrey F. Naughton, and Avi Pfeffer. 1995. Generalized
search trees for database systems.

[24] ISO/IEC. 2016. Information Technology—Database Languages—SQL Multimedia
and Application Packages—Part3: Spatial.

[25] Ahmet Kucuk, Shah Muhammad Hamdi, Berkay Aydin, Michael A Schuh, and
Rafal A Angryk. 2016. Pg-trajectory: A postgresql/postgis based data model
for spatiotemporal trajectories. In IEEE International Conferences on Big Data
and Cloud Computing (BDCloud), Social Computing and Networking (SocialCom),
Sustainable Computing and Communications (SustainCom) (BDCloud-SocialCom-
SustainCom ’16). IEEE, 81–88.

[26] Feifei Li. 2019. Cloud-native database systems at Alibaba: Opportunities and
challenges. In Proceedings of the VLDB Endowment (PVLDB ’17, Vol. 12). 2263–
2272.

[27] Luís Eduardo Oliveira Lizardo and Clodoveu Augusto Davis Jr. 2017. A PostGIS
extension to support advanced spatial data types and integrity constraints. In
Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems (SIGSPATIAL ’17). 1–10.

[28] S. Logothetis, E. Valari, E. Karachaliou, and E. Stylianidis. 2017. Spatial DMBS
architecture for a free and open source BIM. International Archives of the Pho-
togrammetry, Remote Sensing & Spatial Information Sciences 42 (2017).

[29] N Mazroob Semnani, PV Kuper, M Breunig, and M Al-Doori. 2018. Towards
an intelligent platform for big 3d geospatial data management. ISPRS Annals
of Photogrammetry, Remote Sensing and Spatial Information Sciences 4 (2018),
133–140.

[30] Georgios Mylonas, Athanasios Kalogeras, Georgios Kalogeras, Christos Anagnos-
topoulos, Christos Alexakos, and Luis Muñoz. 2021. Digital Twins From Smart
Manufacturing to Smart Cities: A Survey. IEEE Access 9 (2021), 143222–143249.

[31] Ehab Shahat, Chang THyun, and Chunho Yeom. 2021. City digital twin potentials:
A review and research agenda. Sustainability 13, 6 (2021), 3386.

[32] Sara Shirowzhan, Willie Tan, and Samad ME Sepasgozar. 2020. Digital twin
and CyberGIS for improving connectivity and measuring the impact of infras-
tructure construction planning in smart cities. ISPRS International Journal of
Geo-Information 9, 4 (2020), 240.

[33] Alexandre Verbitski, Anurag Gupta, Debanjan Saha, Murali Brahmadesam,
Kamal Gupta, Raman Mittal, Sailesh Krishnamurthy, Sandor Maurice, Tengiz
Kharatishvili, and Xiaofeng Bao. 2017. Amazon aurora: Design considerations
for high throughput cloud-native relational databases. In Proceedings of the 2017
ACM International Conference on Management of Data (SIGMOD ’17). 1041–1052.

[34] Z. Yao, C. Nagel, F. Kunde, G. Hudra, P. Willkomm, A. Donaubauer, and TH Kolbe.
2018. 3DCityDB - a 3D geodatabase solution for the management, analysis, and
visualization of semantic 3D city models based on CityGML. Open Geospatial
Data, Software and Standards 3, 5 (2018), 1–26.

[35] Jianting Zhang, Michael Gertz, and Le Gruenwald. 2009. Efficiently managing
large-scale raster species distribution data in PostgreSQL. In Proceedings of
the 17th ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems (SIGSPATIAL ’09). 316–325.

[36] Esteban Zimányi, Mahmoud Sakr, and Arthur Lesuisse. 2020. MobilityDB: A
mobility database based on PostgreSQL and PostGIS. ACM Transactions on
Database Systems (TODS) 45, 4 (2020), 1–42.

3495

https://dev.mysql.com/doc/
https://www.oracle.com/database/spatial/
https://www.postgresql.org/
http://www. opengeospatial. org/standards/sfa/
https://postgis.net/
https://docs.oracle.com/en/database/oracle/oracle-database/21/spatl/
https://www.sqlite.org/index.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.AuroraPostgreSQL.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.AuroraPostgreSQL.html
https://docs.microsoft.com/en-us/sql/relational-databases/spatial/spatial-data-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/spatial/spatial-data-sql-server?view=sql-server-ver15
https://www.gaia-gis.it/fossil/libspatialite/index
https://www.gaia-gis.it/fossil/libspatialite/index

