
TencentCLS: The Cloud Log Service with HighQuery
Performances

Muzhi Yu
Peking University
Beijing, China

muzhi.yu@pku.edu.cn

Zhaoxiang Lin
Tencent Cloud Computing (Beijing)

Co., Ltd.
Beijing, China

zlinzlin@tencent.com

Jinan Sun
Peking University
Beijing, China
sjn@pku.edu.cn

Runyun Zhou
Tencent Cloud Computing (Beijing)

Co., Ltd.
Beijing, China

runyunzhou@tencent.com

Guoqiang Jiang
Tencent Cloud Computing (Beijing)

Co., Ltd.
Beijing, China

johnqjiang@tencent.com

Hua Huang
Tencent Cloud Computing (Beijing)

Co., Ltd.
Beijing, China

danielhuang@tencent.com

Shikun Zhang
Peking University
Beijing, China

zhangsk@pku.edu.cn

ABSTRACT
With the trend of cloud computing, the cloud log service is becom-
ing increasingly important, as it plays a critical role in tasks such
as root cause analysis, service monitoring and security audition. To
meet these needs, we provide Tencent Cloud Log Service (Tencent-
CLS), a one-stop solution for log collection, storage, analysis and
dumping. It currently hosts more than a million tenants, of which
the largest ones can generate up to PB-level logs per day.

The most important challenge that TencentCLS faces is to sup-
port both low-latency and resource-efficient queries on such large
quantities of log data. To address that challenge, we propose a novel
search engine based upon Lucene. The system features a novel pro-
cedure for querying logs within a time range, an indexing technique
for the time field, as well as optimized query algorithms dedicated
to multiple critical and common query types.

As a result, the search engine at TencentCLS gains significant
performance improvements against Lucene. It achieves 20x per-
formance increase with standard queries, and 10x performance
increase with histogram queries in massive log query scenarios.
In addition, TencentCLS also supports storing and querying with
microsecond-level time precision, as well as the microsecond-level
time order preservation capability.

PVLDB Reference Format:
Muzhi Yu, Zhaoxiang Lin, Jinan Sun, Runyun Zhou, Guoqiang Jiang, Hua
Huang, and Shikun Zhang. TencentCLS: The Cloud Log Service with High
Query Performances. PVLDB, 15(12): 3472 - 3482, 2022.
doi:10.14778/3554821.3554837

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 12 ISSN 2150-8097.
doi:10.14778/3554821.3554837

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/aur3l14no/PVLDB2022_TencentCLS.

1 INTRODUCTION
With the trend of cloud computing, cloud log service has become
increasingly popular. Cloud log services significantly simplify log
collection and analysis, and lay solid foundations for applications
such as root cause analysis, service monitoring and security audi-
tion.

Cloud log services also have high business values and there-
fore have attracted many companies. Not only there have been
commercially successful enterprises dedicated in log services, such
as Splunk [9] and Elastic [6], but also many cloud vendors have
launched their own log service product [1, 4, 5].

Tencent Cloud Log Services (TencentCLS) [10] is the log service
product provided at Tencent Cloud, and it has experienced rapid
growth in the past year (500% anual growth).

In this paper, we describe some characteristics and challenges
of the business scenarios faced by TencentCLS, and elaborate on
its architecture and designs. We also provide detailed experimental
evaluations to demonstrate the effect of some major design choices
we made with TencentCLS.

The TencentCLS business scenarios have the following charac-
teristics and challenges.

Heavy and Skewed Log Writes
The logs stored in TencentCLS are of large and skewed quantity.

Currently, TencentCLS has millions of log topics, about 10% percent
of which are monthly active.

The logs collected per day for the active topics are highly skewed.
Concretely, the top topic has more than 100 billion logs collected
per day while 90% of the active topics generate less than 10 million
logs per day each.

Heavy and Skewed Log Queries

3472

https://doi.org/10.14778/3554821.3554837
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3554821.3554837
https://github.com/aur3l14no/PVLDB2022_TencentCLS

Figure 1: The latency distribution of different types of queries

Not only the quantity of logs has a skewed distribution but also
the query latency. As is shown in Figure 1, although the average
latency of queries is below 1 second, there is a long-tail effect where
some of the queries take up to 30 seconds or even time out.

More challenging is that querying on such large data is inherently
costly. To be more precise, suppose that we use Lucene [13] as the
search engine of TencentCLS, the index of the timestamp field of
10 billion logs would have the size of around 30 GB. Even loading
the index from a disk drive that has the speed of 150 MB/s takes up
a total of 200 seconds.

According to the data of online business, around 95% of the
queries are limited to the logs of the last 24h. In order for those
queries to be answered in less than 30 seconds, the number of
the logs written on each drive per day has to be below 1.5 billion.
Therefore, for the top topic that generates 100 billion logs per day,
a total of at least 67 disks (with a speed of 150 MB/s) are required,
which is very costly.

Histogram Queries are Common
In addition, for each query, TencentCLS shows the distribution

of logs in time that meets the conditions. We call the queries that
support such visualization histogram queries, which collect the
counts of hits in different time segments. Histogram queries are
extremely common, but also resource demanding.

The above challenges can be worse if we use higher precision for
timestamps, because the index of the timestamp will grow larger
as the precision increases, and ultimately slowing down the query
processes.

Therefore, it is a both necessary and challenging task to design
a system that supports low-latency queries on these large-quantity,
highly-skewed log data.

Our solution is a novel log search engine featuring time series
index. It is based on Lucene and is optimized especially for log
data. Compared with vanilla Lucene, it has the following main
differences.

(1) We keep the documents sorted according to their times-
tamps.

(2) We design an time series index dedicated for the time field.
(3) We design a search algorithm dedicated for tail queries

(queries that are expected to return the last few hits).
(4) We optimize the histogram queries (queries that are ex-

pected to return the distribution of number of logs in time).

Thanks to the design, TencentCLS significantly lowers the query
latency, and supports microsecond-level precision for timestamps
with little cost. In the scenario described above, we only need 3
disks instead of 67 to achieve the same query latency.

It is worth noting that higher timestamp precision not only al-
lows storing and querying with higher precision, but also keeps
the retrieved logs in microsecond-level order. This is useful when
applications generate multiple logs in the same second. With Ten-
centCLS, it is more probable that those logs are retrieved in the
same order as they were written.

We have conducted detailed experiments using the open bench-
mark to demonstrate the superiority of our solution compared
to Lucene. Generally, our solution gains 7.5x to 38x performance
increases, depending on the types of queries. More detailed com-
parisons and analyses are shown in the experimental evaluation
section. In addition to the open benchmark, we have also show the
performance increases using the real world data collected by Cloud
Log Service at Tencent.

The paper is organized as follows. Section 2 gives the background
for the log search solutions. Section 3 describes the overall archi-
tecture of TencentCLS and its modules. Section 4 elaborates on the
design of the search engine of TencentCLS. Section 5 provides both
offline and online experimental evaluation of the search engine of
TencentCLS.

2 BACKGROUND
Currently, there are many search engines in the industry, including
Lucene [2, 13] and its variants [17, 22], Sphinx [8], Xapian [11],
MG4J [7], etc. The most widely used are Lucene-based products and
Sphinx. We list the characteristics of each solution below, explain
why we choose to base the search engine of TencentCLS on Lucene,
and describe a few weaknesses of Lucene that we need to address.

2.1 Search Engine Options
Sphinx [8] is a search engine library that features high-speed
index generation and high-speed distributed search. It has a good
support for MySQL. However, as a static search engine, Sphinx is
neither suitable for real-time search, nor scenarios with frequent
data updates. It also suffers from a high disk IO overhead.

Xapian [11] shares a similar design with Lucene, and also pro-
vides a rich and extensible set of API. It even achieves higher query
performances than Lucene. However, it lacks the concepts of fields
or columns, which is rather different from traditional databases.

Lucene [2], on the other hand, can generate indexes on fields and
support retrieval by fields. It also supports real-time index genera-
tion, query and update. Lucene itself has excellent object-oriented
system architecture and integrates a powerful search engine. Based
on Lucene, Solr and ElasticSearch both support distributed storage
and distributed query.

Solr [3] was the most mature and stable Lucene-based indexing
component before ElasticSearch. However, ElasticSearch become
far more popular than Solr after its launch, because ElasticSearch
has more powerful real-time search capabilities as well as other
advantages including easy-to-use, near-zero configuration, friendly
RESTful query interface, convenient cluster deployment and man-
agement.

3473

ElasticSearch also has the following features.

• High availability: ES supports indexing on shards and multi-
node distributed query.

• Persistency: ES supportsmulti-machine backup, self-monitoring
and balancing.

• Scalability: ES supports discovering and joining new nodes
and horizontal auto scaling. Node failures do not affect the
cluster.

Due to its many advantages and rapid development, Elastic-
Search now enjoys a wide and vibrant community, and has attracted
many well-known enterprises users as well as many startups.

After comparative analyses, we decided to use Lucene / Elas-
ticSearch as the foundation of our distributed log storage and dis-
tributed full-text search solution.

2.2 Weaknesses of Lucene
Lucene is certainly not perfect. Lucene’s support for range query
was not provided at the beginning, and when it was finally intro-
duced, the performance is not satisfactory. In practice, the search
can be very slow when there are many occurrences of terms in a
single document. Although Lucene is often reputed as an efficient
full-text search engine, its high performance is largely limited to
boolean queries.

Starting with Lucene version 6.0, a new index data structure for
numeric datatype called BKD tree [20] was introduced to optimize
the performance of range queries in Lucene.

The complexity of the BKD tree is linearly correlated with the
index cardinality, and the number of hits. Therefore, the original
BKD tree is not suitable for massive log query, whose timestamps
are of high cardinality.

3 ARCHITECTURE
The architecture for TencentCLS is shown in Figure 2. The entire
system is deployed on Tencent Cloud, using cloud services such as
Elastic Compute Service, Cloud Object Storage, etc. Its components
are described as follows.

3.1 Access Layer
The access layer receives, processes, and forwards the requests to
other layers. It consists of multiple modules which takes charge
of authentication, validation, centralized flow control, etc. Valid
requests will be eventually forwarded to the write layer or the query
layer according to their types. Modules at this layer are deployed
as containers, and the resources will be automatically adjusted as
the demands change.

3.2 Stateless Write Layer
The write layer processes the write requests. It writes the data to
the corresponding topic in the message queue of the data store layer.
The layer is designed to be stateless, and the mapping between the
topics and the topics in the message queue is maintained with the
Multi-Tenant Resource Manager, which is described below. The
layer is deployed as containers, and supports auto scaling.

Figure 2: The TencentCLS Architecture

3.3 Stateless Query Layer
The query layer processes the query requests, and consists of func-
tionalities such as query parsing, query translation, collection and
aggregation of retrieved information, etc.

We have also customized the SQL engine to support over 300
functions to meet the needs of our users. As a comparison, built on
Lucene as well, ElasticSearch only supports less than 200 functions.

In addition, TencentCLS has also introduced the smart sampling
feature. When switched on, the engine would estimate the time
required for the query based on both the current workload and the
query itself, and perform on-demand sampling on the query results,
therefore enabling timely response.

The layer is also designed to be stateless, thanks to the Multi-
Tenant Resource Manager module. The layer is deployed as con-
tainers, and supports auto scaling.

3.4 Multi-Tenant Resource Manager
The multi-tenant [12] resource manager maintains the mappings
from the topics of the tenants to three kinds of resources in the
data store layer: the topics in message queue, the indexes, and the
buckets. To be more precise, each topic corresponds to one topic in
the message queue, many indexes and one bucket. Therefore, we
achieve isolation between the data from different tenants.

We also conducted two optimizations. First, we slice the data
into many indexes according to their timestamps, so that we can
perform basic pre-filtering on the queries. Second, since a large
proportion of the tenants never write any data, we postponed the
resource allocation in the data store layer to the point where the
actual data write happens. To do so, we introduce virtual storage
resource (VSR), an abstraction of the storage resource. However,
this design increases increases the latency of the initial write. To

3474

mitigate the effect, we maintain a pool of resources in the data
store layer so that the allocation is done beforehand, and only the
data binding is required at the initial write. The size of the pool is
updated daily, to keep up with the requirements of that particular
day, and it is calculated mainly using the count of new users and of
users that turned active.

3.5 Data Store Layer
The data store layer consists of three parts: 1) the message queue, 2)
the index storage, and 3) the cloud storage. The message queue is to
smooth out the latency of write requests. To ensure data reliability,
multiple copies of data are kept in the queue, and the write request is
responded only when more than two copies have been successfully
written.

3.6 Index Storage Layer
The index storage layer maintains the indexes for different ten-
ant topics. The implementation is based on Lucene. In order to
support various kinds of queries, we build various indexes such
as inverted indexes [15, 23], SkipList [18] indexes and BKDTree
[20] indexes. Also, column-oriented storage is adopted to support
efficient analyses.

3.7 Object Storage Layer
The object storage layer takes care of the data persistence. It also
supports demands such as re-indexing from objects in the event of
an exception.

4 A SEARCH ENGINE OPTIMIZED FOR LOG
QUERY

This section describes the search engine used in TencentCLS. The
search engine is built upon Lucene and is highly optimized for log
queries.

We begin with some basic examples of queries, and then we
briefly describe the indexing and searching of Lucene. Next, we
demonstrate the characteristics of log queries and explain why the
default indexing and searching functionalities provided by native
Lucene is not satisfactory. Finally, we propose our design, and
elaborate on its differences from the Lucene search engine.

4.1 An Example Log Document and Log Query
A typical log document consists of a timestamp, text, and properties.
Below is an example.

[2021 −09 −28 T10 : 1 0 : 3 9 . 1 2 3 4] [i p = 1 9 2 . 1 6 8 . 1 . 1]
XXXXXXXX

Normally, to accelerate log query, the system will create indexes
for the timestamp, text and properties respectively.

A typical log query specify a few conditions, and a time range.
Below is an example.

SELECT ∗ FROM xxxx_ index
WHERE ip = 1 9 2 . 1 6 8 . 1 . 1

and t imestmap >= 2021 −09 −28T00 : 0 0 : 0 0
and t imestamp < 2021 −09 −29T00 : 0 0 : 0 0

4.2 Indexing and Searching in Lucene
In Lucene, every log document will be assigned a unique number
called docid. When creating an index, an inverted index storing a
mapping from contents to sets of docids will be created.

For example, with the timestamp field, Lucene will create a post-
ings list that maintains a mapping from all possible timestamps
to sets of docids. Based on that, Lucene can quickly response to
the queries that search for a given timestamp. The algorithm com-
plexity for the query is 𝑂 (𝑙𝑜𝑔(𝑛)), where 𝑛 is the number of the
possible timestamps.

4.3 Characteristics and Challenges with Log
Queries

Although Lucene is known to be good at full text queries thanks to
the design of the inverted index [23], its performance drops dramat-
ically when searching numeric fields [16]. The performance gets
even worse when searching high-cardinality numeric fields. Unfor-
tunately, the timestamp field of log data is a high-cardinality nu-
meric field. In fact, a maximum of 24*60*60*1000 = 86400000 unique
values can be generated every day, when using millisecond-level
indexing. Therefore, searching with time conditions on massive log
data with Lucene can be extremely slow.

What makes it even worse is that, most log queries do not specify
a single timestamp, but instead specify a range of time, as is shown
in the above example. Such queries will require even more time to
finish, because Lucene has to scan through all the timestamps and
retrieve the corresponding docids. Therefore, the time range query
on massive log data almost guarantees to time out.

Although there have been various optimizations and variants
based on inverted index [14, 16, 17, 19, 21, 21], very few of them
are battle tested. What we adopt here is a lightweight solution.

4.4 Our Solution: A Search Engine with Time
Series Index

To achieve better performances with log queries and address the
above problems, we propose a Lucene-based search engine with
time series index.

A query may consist of multiple sub-queries, one of which must
be a time range query. Other queries can be numeric range queries,
full-text queries, etc. Sub-queries can be combined in various ways
using NOTs, ANDs and ORs. A query with multiple sub-queries is
typically processed in the following steps.

(1) For each sub-query, an ordered list of document IDs that
meet the conditions is retrieved. Different sub-queries are
handled differently. For example, high-cardinality time se-
ries range queries are processed using optimized proce-
dure mentioned in following section, full-text queries are
processed using the posting list index, and numeric range
queries are processed using the BKD tree index.

(2) For the ordered list of document IDs perform intersection
and merge operations, e.g. intersection using the fast mul-
tiplexing algorithm.

(3) The results are output in temporal order.

3475

Figure 3: Range query with unordered documents. It requires
visiting every timestamp index within that range in order to
collect the documents.

The core design choice we make with the TencentCLS search
engine is that the log documents are always sorted by timestamps
in the ascending order.

The reason why additional sorting is needed for the seemingly
already time-ordered logs is that, although logs are generated in
chronological order, in a distributed system, after logs generated
from multiple services/servers are submitted to the logging service,
their order may be disturbed.

In the following paragraphs, we first explain how this design ben-
efits the performance of log queries, then describe the overhead of
applying that functionality, and next provide some implementation
details. Finally, we also describe other optimizations for specific
query types.

4.4.1 Why keeping the log sorted in time.
In order to explain the reason why TencentCLS keeps the log sorted
in time, we need to first describe what that changes the range query
procedure into. The new procedure is provided below.

(1) Suppose the timestamp range is specified to [ts_i, ts_j],
we use the index to find the smallest docid, docid_p, that
corresponds to ts_i, and the largest docid, docid_q, that
corresponds to ts_j.

(2) The document id list is directly calculated as [docid_p, ...,
docid_q]. Previously it was constructed by merging all post-
ings lists for the timestamp within that range.

(3) Set operations might be performed on this document id list
and other document id lists, in order to generate the final
result.

Figure 3 and Figure 4 also demonstrate how the range query
works, before and after applying the feature.

Given the above procedure, it can be concluded that once we
successfully keep the documents sorted, the following merits are
promised.

• In the aspect of storage, the BKD index (the data structure
provided by Lucene to support range query) for timestamp
is no longer required, since the column-oriented storage
for timestamps is already sorted.

• The index read frequency is reduced, since we only need
to locate the docids corresponding to the begin and the end
of the timestamps.

Figure 4: Range query with ordered documents. It requires
visiting only two timestamp and the documents can be cal-
culated based on the first docid and the last docid.

• The CPU usage is reduced, since we can construct the post-
ings directly from the docids corresponding to the begin
and the end of the timestamps.

• The support for timestamps of higher precision becomes
feasible.

Theoretically, keeping the documents sorted would reduce the
complexity of each query from 𝑂 (𝑛) to 𝑂 (𝑙𝑜𝑔(𝑛)), where 𝑛 is the
number of the hit documents.

4.4.2 Implementation of the Sorting Mechanism.
The function that keeps the documents sorted is implemented using
the existing index-sorting in Lucene. The native Index-sorting has
two functionalities. First, the data is kept sorted by the specified field.
Second, a feature called early-terminate is applied to increase the
performance. The early-terminate feature is explained as follows.

By default, a search request in Lucene must visit every document
that matches the query in order to return the top documents sorted
by a defined sort. When the index and search sorts are the same, it
is feasible to limit the number of documents that must be viewed
per segment in order to obtain the top N documents globally. With
early-terminate, Lucene will only compare the first N documents
per segment if it detects that the top docs of each segment are
already sorted in the index. The remaining documents that fit the
query are gathered in order to count the overall number of results
and create aggregations.

Therefore, for example, when we want the latest 10 log data, if
the index-sorting is not enabled, we have to sort all the log data
with timestamps and return the latest 10. With the index-sorting
enabled, we only need to iterate over the latest 10 log data.

However, in practice we find that simply turning on the index-
sorting function implemented in Lucene achieves little to even
negative performance improvements with log queries. After some
analysis, we find that there are some other issues that need to be
solved before we can benefit from index-sorting when processing
log queries. Those optimizations are described in the next section
4.5.1.

4.4.3 Overhead of Keeping the Log Sorted.
The overhead of keeping the log sorted is also important to consider.
According to our experiments and analysis, enabling index-sorting

3476

Figure 5: Binary search for timestamps endpoints directly
on column-oriented storage

has only slight effect on log writes, increasing the CPU usage by
approximately 6.5%, a value that is perfectly acceptable for our
system. For example, if the average CPU usage was 30% before
enabling index-sorting, now it would become 32%.

4.4.4 Microsecond-level Time Order Preservation.
We have also noticed that many commercial and open-source log
service solutions do not support microsecond-level time order
preservation, which is a urgent need for many time-critical log
analysis scenarios. Attributed to the above design, our solution has
already guaranteed the property of microsecond-level time order
preservation with no additional effort, while still keeping the query
latency low.

4.5 Additional Optimizations
In addition to the major design described above, we have also
implement other optimizations in the search engine in TencentCLS.
The motivation and the description of those optimizations are given
below.

4.5.1 Optimization 1. Secondary Indexing.
We analyzed the reason why simply using index-sorting on times-
tamp field yields little performance gain. In Lucene, searching the
sorted field is accomplished by performing binary search in the
column-oriented storage of that column. The problem is, the index
for the log data is too large (a few tens of gigabytes), and the binary
search for the beginning and end timestamps requires a few tens of
random accesses on the disks, which are slow to perform on slow
storage devices.

For example, the index for 10 billion log entries would have the
size of around 30 GB, and therefore even the process of loading the
index data would cost 300 seconds with the speed of 100 MB/s.

To address that problem, we build a secondary index that de-
creases disk accesses from a few tens of times to around 3 times, as
is demonstrated in Figure 5 and Figure 6.

The secondary index is implemented using the posting list and
the BKD tree data structures implemented within Lucene, and does
not affect the types of queries Lucene supported.

4.5.2 Optimization 2. Reverse Binary Search Algorithm for Tail
Queries.
We find that the queries can be divided into two groups: head
queries and tail queries, and the latter can be optimized.

We define the head queries as the queries that are to search the
last few entries that satisfy the given conditions, and the tail queries
as the queries that are to search the first few entries, as is shown

Figure 6: Binary search for timestamp endpoints with sec-
ondary index

Figure 7: Head query and tail query

in Figure 7. Given that the log data are sorted in ascending order
by time, head queries are to search the oldest logs that meets the
conditions while the tail queries are to search the newest logs. We
also provide an example of the tail query below.

SELECT ∗ FROM xxx_ index
WHERE . . .
ORDER BY t imestamp
DESC LIMIT 1 0 ;

Although both queries look similar, when it comes to tail queries,
Lucene’s implementation can be very inefficient, due to the follow-
ing reasons.

The iterators implemented in Lucene only support one-way
iterations. Therefore, for tail queries, we have to iterate through
all data till the end, as is shown in Figure 7. The complexity of this
process is𝑂 (𝑛), where 𝑛 is the number of the documents that meet
the condition.

Even if we add support for reverse iteration on top of Lucene,
tail queries would still be inefficient. The reason is that the reverse
access to disks would render the file cache provided by operating
systems ineffective.

Therefore, to address the inefficiency of tail queries, we propose
the Reverse Binary Search algorithm. The algorithm is implemented
on top of the existing iterators of Lucene. In effect, the algorithm
reduces the complexity of tail queries from 𝑂 (𝑛) to 𝑂 (𝑙𝑜𝑔(𝑛)).

The execution of the algorithm consists of two steps. The first
step is using binary search algorithm to locate the second to last
document that meets the given conditions, and store every middle
point during the search. The second step is to iterate over the
collection of the middle points. For every middle point, we examine

3477

Figure 8: Demonstration of the Reverse Binary Search algo-
rithm for tail queries.

if there exists 𝐾 documents that meet the conditions. If there are 𝐾
documents, the execution is finished and𝐾 documents are returned.
If not, we continue that process and examine the next middle point.

The algorithm is demonstrated in Figure 8, as well as Algorithm
1.

Algorithm 1 The Reverse Binary Search algorithm.
MiddlePoints← BinarySearch (Hits)
⊲ Here BinarySearch refers to a modified algorithm that returns
a series of middle points instead of the found document
for eachMiddlePoint ∈ MiddlePoints do

iterator← Iterator(MiddlePoint)
count← 0
documents← {}
for each document ∈ iterator do

documents.add(document)
count← count + 1

end for
if count >= K then

return The last 𝐾 elements of documents
end if

end for

4.5.3 Optimization 3. The HistogramQuery.
Lastly, the histogram queries are also optimized. A histogram query
asks for the distribution of logs in time that satisfy certain condi-
tions.

The histogram query is an extremely common type of query
in TencentCLS. Because TencentCLS almost always provide a his-
togram view for every normal query, to give the user an overall
sense of the log distribution.

By default, to handle such queries, Lucene first filter the logs by
the conditions, then check the timestamps of the remaining logs.
However, this process may cause tens of thousands of look-ups in
the table, which in turn causes huge latency.

To address that, we optimize the histogram queries so that they
no longer require looking up the table. The details are as follows.

First, the doc_ids that correspond to the edges of the bins are
retrieved, using the time series index. Second, we iterate over the
logs that satisfy the given conditions and check which bin each
log belongs to, by comparing the doc_id of the log and the doc_id

Figure 9: The optimized procedure for histogram queries con-
sists of two steps: 1) calculating the docids that corresponds
to the bin edges, and 2) iterating over the logs that satisfy the
conditions and increase the count of the corresponding bin,
which is recognized by comparing the docids of the log and
the edge docids derived in the first step.

edges retrieved in the first step. The counts of the corresponding
bins are increased in this process.

With such technique, we managed to reduce the cost of tens of
thousands of lookups into the table to a few lookups into the time
series index.

The process is shown in Figure 9.

4.5.4 Optimization 4. IO Optimizations.
In the development process, we observe spikes of disk write.

We investigated this issue and found that it was related to the
operating system’s page cache.When the file systems performwrite
operations, the data are first put into the page cache, and are later
put onto disks only when either of the conditions are met.

(1) The data inside page cache reached certain amount (con-
trollded by vm.dirty_background_ratio in Linux).

(2) The data inside page cache reached certain time limit (con-
trolled by vm.dirty_expire_centisecs in Linux).

To avoid occasional high query latency, we smooth the disk write
and eliminate the write spike by increasing the two aforementioned
parameters. As a result, the long tail latency is significantly reduced,
as well as the size of the query queue.

5 EXPERIMENTAL EVALUATION
The experimental evaluations are mainly to demonstrate the effec-
tiveness of the design of the search engine in TencentCLS.

Overall, the experiments consist of two parts: offline experiments
with open benchmarks and online experiments with real world data.
The first part of experiments is relatively cheap to perform, we
use them to analyze the performance gains of our methods under
various scenarios. The second part, on the other hand, provide more
convincing evidences of the effectiveness of our solution, since it
utilizes real-world data at TencentCLS.

3478

5.1 Open Benchmark Evaluation
In the open dataset experiments, we quantitatively investigate the
effectiveness of the query optimizations in a single-machine setup.

The experiment is performed on Tencent Cloud machines, each
with a 16-core vCPU and 64 GB of ram. The storage devices are
local NVMe SSD drives (IT3.4XLARGE64), local SATA HDD drives
(D3.4XLARGE64) and Tencent Premium Cloud Storage.

Table 1: Statistics of the NYC Taxi Benchmark

Name Value

No. of documents ∼12 b
No. of shards 6
average Lucene segment size ∼5 GB
No. of documents per Lucene segment ∼24 m
average No. of hits per query ∼40 m

The benchmark we use is the NYC taxi benchmark provided by
esrally. The dataset consists of taxi rides information in New York
in 2015, and contains up to a total of 12 billion documents. Some
important statistics for this benchmark are listed in Table 1.

The experiments are designed with the goal of analyzing the
performance increases in the following scenarios.

(1) Different types of queries: head queries, tail queries, and his-
togram queries (defined in Section 4.5.2 and Section 4.5.3).

(2) Different types of storage devices: Tencent Premium Cloud
Storage, NVMe SSD drive, and SATA HDD drives.

(3) Different number of users: 1, 2, 4, 6, 8, 10, 15, 20, 50, 100,
150, 200.

(4) Different timestamp precisions: second-level, andmillisecond-
level.

The most important scenario is ones that use Tencent Premium
Cloud Storage as storage devices, and adopt second-level times-
tamp precision. The reason for prioritizing the Tencent Premium
Cloud Storage is that TencentCLS is built on Tencent Cloud. And
the reason for using second-level timestamp precision is that the
timestamp in the benchmark dataset has the second-level precision.

Based on the results, we have been able to answer the following
research questions.

5.1.1 RQ1. What is the overall performance increase compared with
Lucene?
Under the most important scenario described above (Tencent Pre-
mium Cloud Storage + second-level time precision), using the in-
verse of the service time (in milliseconds) as the indicator for the
performance, we observe that the performances increase by 38x for
head queries, 26x for tail queries and 7.5x for the histogram queries.

Figure 10 shows a more detailed result, distinguishing the per-
formances under different user counts. Generally, the performance
steadily increases more, as the user counts get higher. The reason
is that when the user counts are low, the workload is low, and the
strength of the system design is not fully displayed. Therefore, we
always use the results from the heaviest workload as the arguments
for our analyses.

(a) Head Queries

(b) Tail Queries

(c) Histogram Queries

Figure 10: Performances for three types of queries with dif-
ferent optimization options

5.1.2 RQ2. How much does each of the optimization techniques
contribute to the performance improvements?
There are four optimization techniques described in this paper:

• O0: Keeping the documents sorted.
• O1: Constructing the secondary index for the timestamp

field.
• O2: Reverse binary search algorithm for tail queries.
• O3: Optimizing histogram queries.

We turn them on and off individually (while we can) in order
to understand the contribution of each technique to the overall
performance increase. Other experimental setup is the same as the
one used in RQ1.

3479

Results show that turning on O0 alone increases the head query
performances by 12x, increases the head query performances by 3x
and increases the histogram query performances by 3x.

On top of that, the turning on the secondary index (O1) further
increases the head query performances by 3x, but has little effect
on the performances of other types of queries.

Furthermore, the Reverse Binary Search Optimization technique
(O2) increases the tail query performances by 3.5x, while the His-
togram Optimization technique (O3) increases the histogram query
performances by 1.6x.

The results are shown in Figure 10, distinguishing the perfor-
mances under different user counts, as well as in Table 2.

5.1.3 RQ3. How does the choice of the storage option affect the
query performance, before and after the optimization?
Tencent Cloud provides a series of customizable storage options,
among which Tencent Premium Cloud Storage, SATA HDD drives,
and NVMe SSD drives are the most representative ones.

All the above analyses (RQ1 and RQ2) are based on the experi-
ments using Tencent Premium Cloud Storage as the storage option.
However, experimental results with other storage options are also
important, because they not only show the comparison of effective-
ness of the optimization techniques, but also serve as a guidance
for choosing the storage option.

Tencent Cloud PremiumCloud Storage is a hybrid storage option.
It adopts the Cache mechanism to provide a high-performance SSD-
like storage, and employs a three-copy distributed mechanism to
ensure data reliability.

SATA HDD is the most economical option suitable for scenarios
that involve sequential reading and writing of large files, but its
random access performance is relatively low.

NVMe SSD has the highest performance. But its low cost perfor-
mance ratio restricts its strength in the log service scenarios.

Table 3 shows the comparison of the specifications of the three
storage options.

The experimental results with different storage options are shown
in Table 4. We can draw the following conclusions. First, the NVMe
SSD option consistently outperform other storage options, while
the Tencent Premium Cloud Storage option is less than an order
of magnitude behind. Second, compared with the NVMe SSD, the
Tencent Premium Cloud Storage consistently enjoys more benefits
from the query optimization techniques.

5.1.4 RQ4. Will the increase of timestamp precision level impact the
query performances?
It is also the goal of Cloud Log Service to support storing and
querying higher-precision timestamps. Therefore, it is important to
check how does the increase of the timestamp precision level impact
the query performance. To this end, we change the timestamp from
second to millisecond, and analyze the query performance. The data
also comes from the experiments using Tencent Premium Cloud
Storage.

Interestingly, as is shown in Figure 11, increasing the timestamp
precision has almost no impact on the query performance, thanks
to the search engine design in TencentCLS.

The reason is that although the precision increases, the frequency
of the log writes stays the same. Although theoretically some oper-
ations such as locating the endpoints will get slower, after applying

Table 2: Performances when turning on and off different
optimization techniques. Multiplier refers to the boost mul-
tiplier of current optimization config, compared with the
previous one. Accumulative Multiplier refers to the accumu-
lative boost multiplier of the current optimization config.
CPU / query refers to the CPU usage per query (CPU usage
percentage * time). rMB refers to the disk read per query.

Head Query
Service Time CPU / query rMB / query

No Optimizations 604124.0 200.5 452.7

O0 50318.2 7.3 37.3
Multiplier 12.0 27.6 12.1
Acc. Multiplier 12.0 27.6 12.1

O0 + O1 17224.8 5.5 12.5
Multiplier 2.9 1.3 3.0
Acc. Multiplier 35.1 36.5 36.2

O0 + O1 + O2 + O3 15904.2 5.2 12.1
Multiplier 1.1 1.1 1.0
Acc. Multiplier 38.0 38.9 37.3

Tail Query
Service Time CPU / query rMB / query

No Optimizations 585014.0 196.0 438.4

O0 193487.0 831.7 144.3
Multiplier 3.0 0.2 3.0
Acc. Multiplier 3.0 0.2 3.0

O0 + O1 194551.0 821.8 82.2
Multiplier 1.0 1.0 1.8
Acc. Multiplier 3.0 0.2 5.3

O0 + O1 + O2 + O3 23931.0 34.4 17.1
Multiplier 8.1 23.9 4.8
Acc. Multiplier 24.4 5.7 25.6

Histogram Query
Service Time CPU / query rMB / query

No Optimizations 584511.0 116.4 438.0

O0 179252.0 66.6 134.0
Multiplier 3.3 1.7 3.3
Acc. Multiplier 3.3 1.7 3.3

O0 + O1 183304.0 69.2 137.7
Multiplier 1.0 1.0 1.0
Acc. Multiplier 3.2 1.7 3.2

O0 + O1 + O2 + O3 76893.0 39.8 57.0
Multiplier 2.4 1.7 2.4
Acc. Multiplier 7.6 2.9 7.7

the secondary index optimization, the difference in costs is sig-
nificantly reduced. Also, those precision-sensitive operations do
not take up a large proportion of the total service time. Therefore,
generally speaking, the performance is virtually unaffected by the
time precision.

3480

Table 3: The specifications of different storage solutions at
Tencent Cloud. IOPS is tested with 4 KiB IO, and throughput
is tested with 256 KiB IO.

Disk Type IOPS Throughput

Premium Cloud Storage 6,000 150 MB/s
NVMe SSD 650,000 2.8 GB/s
SATA HDD 200 190 MB/s

(a) Head query performance

(b) Tail query performance

(c) Histogram query performance

Figure 11: Performances with second-level timestamp preci-
sion and millisecond-level timestamp precision, evaluated
using the total service time (in milliseconds).

Table 4: Comparison of performance improvements among
different storage solutions. For each storage solution, three
rows list the native performances, the performances after
optimizations, and the multipliers for performance improve-
ments, respectively. The results are tested under 200 concur-
rent users for Premium Cloud Storage and NVMe SSD, and
under 150 concurrent users for SATA HDD because of the its
limited performance.

Head Query
Service Time CPU / query rMB / query

Premium Cloud
Storage 604124.0 200.5 452.7

15904.2 5.2 12.1
38.0 38.9 37.3

NVMe SSD 84986.6 405.6 459.4
2704.1 9.0 9.6
31.4 45.3 47.6

SATA HDD 1426810.0 215.7 423.9
108863.0 8.6 14.0

13.1 25.1 30.2

Tail Query
Service Time CPU / query rMB / query

Premium Cloud
Storage 585014.0 196.0 438.4

23931.0 34.4 17.1
24.4 5.7 25.6

NVMe SSD 77402.1 370.8 449.6
13134.5 61.1 17.3

5.9 6.1 26.0
SATA HDD 1448450.0 211.7 433.2

183195.0 35.7 17.7
7.9 5.9 24.5

Histogram Query
Service Time CPU / query rMB / query

Premium Cloud
Storage 584511.0 116.4 438.0

76893.0 39.8 57.0
7.6 2.9 7.7

NVMe SSD 53759.4 237.7 425.5
17333.5 77.4 48.9

3.1 3.1 8.7
SATA HDD 1326030.0 130.9 411.9

465770.0 42.4 58.1
2.8 3.1 7.1

This conclusion also theoretically applies to higher time accu-
racy. In fact, the online version of TencentCLS is running with
microsecond-level time precision with no additional optimization,
which is much higher than many vendors that are providing second-
level time precisions.

3481

Table 5: Results of the online experiment.

Head Query
Log 109 1010
Original (ms) 12882 16904
Ours (ms) 399 780
Boost Multiplier 32x 21x

Tail Query
Log 109 1010
Original (ms) 10577 17483
Ours (ms) 391 1299
Boost Multiplier 27x 13x

Histogram Query
Log 109 1010 5 ∗ 1010 1011
Original (ms) 16623 >42764 TIMEOUT TIMEOUT
Ours (ms) 1144 4253 10300 17920
Boost Multiplier 15x >10x N/A N/A

5.1.5 RQ5. What is the bottleneck of our system?
We have also investigated the bottlenecks of our system by analyz-
ing the CPU usage and the disk IO during the above experiments.

As is shown in Table 4, the bottlenecks for Premium-Cloud-
Storage-based solutions and NVMe-SSD-based solutions are IO
bandwidth and CPU, respectively. For SATA-HDD-based solutions,
the bottleneck is IOPS from our experience, although it is not ex-
plicitly reflected in Table 4.

5.2 Online Test
In addition to the offline experiments with open benchmarks, we
have also tested the system with real world data.

The experiments involve two clusters, one equipped with Elas-
ticSearch (version 7.10.1), and the other equipped with the search
engine of TencentCLS. Each cluster consists of 3 master nodes as
well as 40 data nodes. We select a single large log topic as input,
and its data is written to those clusters at the same time.

The results are shown in Table 5. Generally, the head/tail query
performances increase by 20x, while the histogram query perfor-
mances increase by 10x. Moreover, the new system supports his-
togram queries on 100 billion log documents, and can process the
queries within 20 seconds, while the original system has started to
time out on only 10 billion log documents.

6 CONCLUSION
In this paper, we introduce the motivation of TencentCLS, and
propose the architecture of TencentCLS. Then we elaborate on
the design and optimizations of the search engine in TencentCLS,
a system that supports low-latency queries with massive high-
cardinality data. Finally, we evaluate and analyze the performance
of our search engine, both with open benchmarks and with online
data in TencentCLS.

ACKNOWLEDGMENTS
We would like to thank anonymous reviewers for their valuable
comments and helpful suggestions. We must also thank the R&D
Team and the PMTeam of the TencentCLS. Especially helpful during
this time were Wenshuang Ma, Jueling Li, Jian Wang, Xianbin Wu.
And special thanks to TencentES OTeam for their technical support.
Jinan Sun is the corresponding author.

REFERENCES
[1] 2022. Amazon CloudWatch - Application and Infrastructure Monitoring.

https://aws.amazon.com/cloudwatch/.
[2] 2022. Apache Lucene. https://lucene.apache.org/.
[3] 2022. Apache Solr. https://solr.apache.org/.
[4] 2022. Azure Monitor | Microsoft Azure. https://azure.microsoft.com/en-

us/services/monitor/.
[5] 2022. Cloud Logging | Google Cloud. https://cloud.google.com/logging.
[6] 2022. Elastic. https://www.elastic.co/.
[7] 2022. MG4J: High-Performance Text Indexing for Java™.

https://mg4j.di.unimi.it/.
[8] 2022. Sphinx: Open Source Search Engine. http://sphinxsearch.com/.
[9] 2022. Splunk. https://www.splunk.com.
[10] 2022. Tencent Cloud Log Service. https://intl.cloud.tencent.com/products/cls.
[11] 2022. The Xapian Project. https://xapian.org/.
[12] Stefan Aulbach, Torsten Grust, Dean Jacobs, Alfons Kemper, and Jan Rittinger.

2008. Multi-Tenant Databases for Software as a Service: Schema-Mapping Tech-
niques. In Proceedings of the 2008 ACM SIGMOD International Conference on
Management of Data (SIGMOD ’08). Association for Computing Machinery, New
York, NY, USA, 1195–1206. https://doi.org/10.1145/1376616.1376736

[13] Andrzej Białecki, Robert Muir, and Grant Ingersoll. 2012. Apache Lucene 4. 24
pages.

[14] Matteo Catena, Craig Macdonald, and Iadh Ounis. 2014. On Inverted Index
Compression for Search Engine Efficiency. In Advances in Information Retrieval
(Lecture Notes in Computer Science), Maarten de Rijke, Tom Kenter, Arjen P. de
Vries, ChengXiang Zhai, Franciska de Jong, Kira Radinsky, and Katja Hofmann
(Eds.). Springer International Publishing, Cham, 359–371. https://doi.org/10.
1007/978-3-319-06028-6_30

[15] D. Cutting and J. Pedersen. 1990. Optimization for Dynamic Inverted Index Main-
tenance. In Proceedings of the 13th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval - SIGIR ’90. ACM Press,
Brussels, Belgium, 405–411. https://doi.org/10.1145/96749.98245

[16] Marcus Fontoura, Ronny Lempel, Runping Qi, and Jason Zien. 2005. Inverted
Index Support for Numeric Search.

[17] Xiaoming Gao, Vaibhav Nachankar, and Judy Qiu. 2011. Experimenting Lucene
Index on HBase in an HPC Environment. In Proceedings of the First Annual
Workshop on High Performance Computing Meets Databases - HPCDB ’11. ACM
Press, Seattle, Washington, USA, 25. https://doi.org/10.1145/2125636.2125646

[18] Maurice Herlihy, Yossi Lev, Victor Luchangco, and Nir Shavit. 2007. A Simple
Optimistic Skiplist Algorithm. In Structural Information and Communication
Complexity, Giuseppe Prencipe and Shmuel Zaks (Eds.). Vol. 4474. Springer
Berlin Heidelberg, Berlin, Heidelberg, 124–138. https://doi.org/10.1007/978-3-
540-72951-8_11

[19] Giulio Ermanno Pibiri and Rossano Venturini. 2021. Techniques for Inverted
Index Compression. Comput. Surveys 53, 6 (Nov. 2021), 1–36. https://doi.org/10.
1145/3415148 arXiv:1908.10598

[20] Octavian Procopiuc, Pankaj K. Agarwal, Lars Arge, and Jeffrey Scott Vitter.
2003. Bkd-Tree: A Dynamic Scalable Kd-Tree. In Advances in Spatial and
Temporal Databases, Gerhard Goos, Juris Hartmanis, Jan van Leeuwen, Thanasis
Hadzilacos, Yannis Manolopoulos, John Roddick, and Yannis Theodoridis (Eds.).
Vol. 2750. Springer Berlin Heidelberg, Berlin, Heidelberg, 46–65. https://doi.org/
10.1007/978-3-540-45072-6_4

[21] Hao Yan, Shuai Ding, and Torsten Suel. 2009. Inverted Index Compression and
Query Processing with Optimized Document Ordering. In Proceedings of the 18th
International Conference on World Wide Web - WWW ’09. ACM Press, Madrid,
Spain, 401. https://doi.org/10.1145/1526709.1526764

[22] Peilin Yang, Hui Fang, and Jimmy Lin. 2017. Anserini: Enabling the Use of Lucene
for Information Retrieval Research. In Proceedings of the 40th International ACM
SIGIR Conference on Research and Development in Information Retrieval. ACM,
Shinjuku Tokyo Japan, 1253–1256. https://doi.org/10.1145/3077136.3080721

[23] Justin Zobel and Alistair Moffat. 2006. Inverted Files for Text Search Engines.
Comput. Surveys 38, 2 (July 2006), 6. https://doi.org/10.1145/1132956.1132959

3482

https://doi.org/10.1145/1376616.1376736
https://doi.org/10.1007/978-3-319-06028-6_30
https://doi.org/10.1007/978-3-319-06028-6_30
https://doi.org/10.1145/96749.98245
https://doi.org/10.1145/2125636.2125646
https://doi.org/10.1007/978-3-540-72951-8_11
https://doi.org/10.1007/978-3-540-72951-8_11
https://doi.org/10.1145/3415148
https://doi.org/10.1145/3415148
https://arxiv.org/abs/1908.10598
https://doi.org/10.1007/978-3-540-45072-6_4
https://doi.org/10.1007/978-3-540-45072-6_4
https://doi.org/10.1145/1526709.1526764
https://doi.org/10.1145/3077136.3080721
https://doi.org/10.1145/1132956.1132959

