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ABSTRACT
In National University Hospital (NUH) in Singapore, we conduct
healthcare analytics that analyzes heterogeneous electronic medical
records (EMR) to support effective clinical decision-making on a
daily basis. Existing work mainly focuses on multimodality for
extracting complementary information from different modalities,
and/or interpretability for providing interpretable prediction results.
However, real-world healthcare analytics has presented another
major challenge, i.e., the available modalities evolve or change
intermittently. Addressing this challenge requires deployed models
to be adaptive to such dynamic modality changes.

To meet the aforementioned requirement, we develop a modu-
lar, multimodal and interpretable framework DyHealth to enable
dynamic healthcare analytics in clinical practice. Specifically, differ-
ent modalities are processed within their respective data modules
that adhere to the interface defined by DyHealth. The extracted
information from different modalities is integrated subsequently
in our proposed Multimodal Fusion Module in DyHealth. In order
to better handle modality changes at runtime, we further propose
exponential increasing/decreasing mechanisms to support modal-
ity “hot-plug”. We also devise a novel modality-based attention
mechanism for providing fine-grained interpretation results on
a per-input basis. We conduct a pilot evaluation of DyHealth on
the patients’ EMR data from NUH, in which DyHealth achieves
superior performance and therefore, is promising to roll out for
hospital-wide deployment. We also validate DyHealth in two pub-
lic EMR datasets. Experimental results confirm the effectiveness,
flexibility, and extensibility of DyHealth in supporting multimodal
and interpretable healthcare analytics.
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1 INTRODUCTION
National University Health System (NUHS)1 is a healthcare cluster
consisting of four acute and community hospitals, three national
specialty centres, and seven primary care polyclinics. Apart from
using commercial products for managing its healthcare data for
daily operations, NUHS also collaborates with universities and
research institutes to create value from the data, including data
acquisition, data cleaning, data integration [15], data processing [33,
35], data analytics [66–68] and data visualization, with the ultimate
aim of improving healthcare services and outcomes.

National University Hospital (NUH)2 is a tertiary referral hospi-
tal in Singapore and the largest hospital of NUHS, serving as the
flagship hospital for the cluster. In NUH, innovative approaches
are employed for healthcare analytics, which is critical for medical
practitioners to make effective and timely decisions on patient man-
agement and resource allocation. In particular, electronic medical
records (EMRs) are the main data sources for supporting healthcare
analytics. EMR data are typically collected from multiple sources,
and therefore it is important to address the issue of multimodality.
In a similar vein, interpretability for understanding model predic-
tions is essential, since we are making life and death decisions. We
shall further elaborate on their importance below.
• Multimodality. A modality of EMR data represents one particu-

lar way in which the health conditions of a patient are captured.
EMR data typically encompass multiple modalities: (i) structured
data such as patients’ demographics, diagnoses, lab tests, medica-
tions, procedures, and (ii) unstructured data such as image data
(e.g., magnetic resonance imaging (MRI) scans and computerized
tomography (CT) scans) and text data (e.g., doctors’ notes). EMR
data are heterogeneous in nature, and different modalities con-
tain complementary information for data analytics [3]. Therefore,
developing models that handle multimodal data is essential for
achieving effective healthcare analytics.

• Interpretability. Interpretability measures the extent to which
predictions produced by the model can be understood by hu-
mans [39, 65]. This is important and necessary for many critical
applications. Particularly, in healthcare analytics, simply report-
ing the prediction results of the model to clinicians without expla-
nations is not acceptable. To mitigate this issue, it is imperative
to consider interpretability in the model design so that the model

1https://en.wikipedia.org/wiki/National_University_Health_System
2https://en.wikipedia.org/wiki/National_University_Hospital
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1 # initialize a suspected case detection
2 DyHealth.register_module(
3 'Lab Tests', LabTestModule ())
4
5 # add chest imaging as complementary criteria
6 DyHealth.register_module(
7 'Chest Images ', ImageModule1 ())
8
9 # upgrade module for an existing modality
10 DyHealth.remove_module('Chest Images ')
11 DyHealth.register_module(
12 'Chest Images ', ImageModule2 ())

Figure 1: A DyHealth example for modality “hot-plug”.

can also explain “why” certain decisions are made [39]. Such
interpretability is invaluable for clinicians to derive medically
meaningful insights for providing better healthcare.

There has been a long stream of research addressing these two
challenges, e.g., [17, 45, 46, 63] for multimodal modeling [3], and [12,
36, 54, 65] for predictionwith interpretability [4, 38, 39]. Several ded-
icated healthcare frameworks [8, 24, 28, 31, 37, 55, 56, 60, 61, 64, 65]
have also been developed in response to either or both challenges.
Nonetheless, while working on a wide spectrum of healthcare appli-
cations, we face the challenge that the data modalities often evolve
or change intermittently, which cannot be well handled by existing
work. For instance, (i) the hospital may employ some scanners to
support a new modality of medical images such as MRI and CT;
hence, a new module needs to be integrated, (ii) the modalities re-
quired for the diagnosis of a specific disease may be updated due to
medical research discovery. Therefore, after the initial installation of
a healthcare analytic model in hospitals, new modules may need to
be integrated into the deployed model, or certain existing modules
may need to be upgraded or removed at times. Further, an exist-
ing module may also need to be upgraded to a better-performing
one, e.g., via neural architecture search (NAS) [16]. Such dynamic
changes in modalities require the adaptation of the deployed model
at runtime. This is highly desirable in clinical practice, yet has not
been investigated by existing approaches as of today.

In this work, we build upon but go beyond multimodality and
interpretability, and advocate modularity design for a more flexible
and extensible healthcare framework. Modularity refers to a logical
division of the framework into manageable modules for ease of
implementation, upgrade, and maintenance. The modular design of
healthcare analytics can be based on related functions, data flows,
or other considerations. Notably, a clear division of the functional
modules and their processing adhering to a standardized interface
are at the core of a modular healthcare framework design. It allows
different modules to be developed independently, and each module
can be added, removed, or replaced in a plug-and-play manner for
flexibility and extensibility.

Contributions.We present DyHealth, a modular, multimodal
and interpretable framework for Dynamic Healthcare data analyt-
ics. In Figure 1, we illustrate how DyHealth allows us to keep up
with supporting COVID-19 diagnosis as diagnostic methods evolve,
by simply registering a new module or removing an existing mod-
ule. In the early stage of the pandemic, the confirmation of the

infection relied heavily on laboratory testing [42], and DyHealth
can initialize a suspected case detection by registering a module
that processes lab tests. Later on, chest imaging started to be used
in acute care of adult patients with suspected, probable or con-
firmed cases [43], and was included as a new criterion of the World
Health Organization (WHO) COVID-19 case definition [44]. In such
a scenario, DyHealth can readily adapt to the dynamic change of
modalities by plugging in a new module during runtime. Further,
due to the research development of computer vision, the existing
image module may need to be upgraded to a more advanced one for
boosted performance [41]. In this case, DyHealth allows to simply
replace the existing module for the modality.

In devising DyHealth, we first develop representative data mod-
ules for processing respective modalities in DyHealth. We then pro-
pose the Multimodal Fusion Module to capture the cross-modality
interactions and fuse the information from different modalities. We
also devise a modality-based attention mechanism for this module
to dynamically capture the importance of each modality given the
input sample, as the relative importance of different modalities
can vary from one sample to another. After fusing the comple-
mentary multimodal information, the Prediction Module is used
to perform the final prediction tasks. Therefore, DyHealth is de-
signed to support multimodality. DyHealth achieves modularity by
firstly, separating the processing of different modalities into their
respective data modules and secondly, integrating exponential in-
creasing/decreasing mechanisms to support the runtime plugging
in/out of a data module. With the proposed modality-based atten-
tion mechanism and other fine-grained interpretation techniques in
the data modules, DyHealth also provides interpretable predictions
for healthcare analytics. Our main contributions are as follows.

• We advocate modularity in the framework design for dynamic
healthcare analytics, which has not been considered before. We
also propose to support multimodality and provide interpretabil-
ity simultaneously.

• We devise a modular, multimodal, and interpretable framework
DyHealth for dynamic healthcare analytics. Different modalities
are first handled individually in our dedicated data modules and
then fused in the novel Multimodal Fusion Module based on
per-input importance for interpretability.

• We evaluate DyHealth on acute kidney injury (AKI) prediction in
the data from NUH. We also include two benchmark applications
in public datasets in the evaluation. Extensive results validate the
effectiveness of DyHealth in terms of modularity, multimodality,
and interpretability.

Structure. In Section 2, we review related work. We elaborate
on the overview of DyHealth and its detailed modular design in
Section 3 and Section 4, respectively. The experimental evaluation of
DyHealth is provided in Section 5. Finally, we conclude in Section 6.

2 RELATEDWORK
Researchers have investigated several key aspects in healthcare
analytics separately, including multimodality and interpretability.
There are also some related studies exploring modularity, despite
not being on healthcare analytics. Further, several healthcare frame-
works have also been proposed to support healthcare analytics.

3446



2.1 Multimodality in Healthcare Analytics
Modality is generally used to characterize how things are experi-
enced or take place, such as language, visual data, or vocal data. By
fusing the information from multiple modalities (i.e., multimodal-
ity), the complementary information from different modalities can
be captured, which generally contributes to more accurate and
robust predictions [3].

A number of studies have investigated multimodality [3, 21, 47],
and some of them focus on healthcare analytics [17, 45, 46, 63].
Specifically, MMDL is proposed in [45] with a Feedforward Neural
Network (FFN) and a Gated Recurrent Unit (GRU) [11] to handle
non-temporal and temporal features respectively. Then RAIM [63]
is proposed to model ICU patients’ multimodal time-series data
and capture the particular relationship between two modalities, i.e.,
the continuous monitoring data should be guided by the discrete
clinical data, which renders the two modalities closely coupled and
hence, makes RAIM hardly modular. Further, with a guided multi-
channel attention mechanism, RAIM provides interpretability for
continuous monitoring data while leaving out the modality of time-
series clinical data. MNN [46] considers textual clinical notes as
another modality for analytics, but neither modularity nor inter-
pretability is considered in the model design. Further, DCMN [17]
captures both the intra-modal dependencies and inter-modal inter-
actions. However, DCMN models the interactions between merely
two modalities in a complex manner and is hence inherently diffi-
cult to be modular.

2.2 Interpretability in Healthcare Analytics
Interpretability measures the degree to which the decisions made
can be understood by humans [4, 38]. In healthcare analytics, it
is essential to take into account interpretability in the model de-
sign, as doctors need concrete explanations for deriving insights
to help make certain decisions. In recent years, interpretability has
attracted increasing attention.

Some existing studies are based on traditional machine learning
models. Although these models can achieve certain interpretability,
they are typically ineffective in modeling the longitudinal EMR data.
With the attention mechanism [2] and recurrent neural networks
(RNN), such as the GRU model [11], some recent studies [12, 36,
65] manage to achieve both accurate analytics and interpretabil-
ity. Specifically, in [36], Dipole is proposed to capture the visit-
level importance via three different attention mechanisms to pro-
vide interpretable healthcare analytics. Further, RETAIN [12] en-
hances the interpretability with both the visit-level attention and
the variable-level attention via modeling EMR data in reverse time
order. TRACER [65] is also developed to capture both time-invariant
and time-variant feature importance for interpretations. In addi-
tion, some studies focus on interpreting the feature interactions.
For instance, ARMOR [7] models feature interactions in an adaptive
manner with interpretable insights, and ELDA [6] equips healthcare
analytics with interpretable feature-level and time-level interaction
learning simultaneously.

2.3 Modularity
Modularity measures the degree to which a framework is divided
logically into manageable modules for ease of implementation,

upgrade, and maintenance. There are several domains naturally
sticking to modularity, such as social networks [58], biology do-
main including protein networks [20], metabolic networks [48] and
human brain structures [9, 18]. However, these lines of research
rely on the intrinsic modular and hierarchical organizational struc-
tures in their respective domains, which is different from our aim
of modularizing the framework design for analytics.

Relatively fewer efforts have been devoted to developing a flexi-
ble and extensible framework for healthcare analytics. In practice,
modularity should be one of the major concerns when designing
healthcare frameworks for analyzing multimodal EMR data. For
one thing, incorporating more modalities into the framework is nec-
essary and essential for better healthcare analytics [17, 45, 46, 63],
as different modalities contain complementary information. For an-
other, the availability of each data modality changes constantly after
the model deployment, which means that the framework needs to
be flexible and extensible at runtime to guarantee the model’s nor-
mal and smooth functioning when plugging in/out certain modality
processing modules. This requires an abstraction of the modality
processing and a uniform interface for fusing the information from
different data modules, such that the framework can process each
modality independently before the multimodal fusion. In DyHealth,
we follow these aforementioned system design principles.

2.4 Healthcare Frameworks
There are some frameworks proposed to support healthcare ana-
lytics [8, 24, 28, 31, 37, 55, 56, 60, 61, 64, 65]. Among them, some
manage to provide interpretable analytic results [8, 24, 28, 31, 37, 56,
60, 64, 65]. However, they do not handle multimodal healthcare data
and hence, fail to provide interpretability for multimodal healthcare
analytics. Further, these frameworks do not consider modularity in
the design.

In contrast to existing frameworks, DyHealth simultaneously
considers all three critical aspects, namely modularity, multimodal-
ity, and interpretability. It achieves modularity, and multimodality
through the system design, which allows to (i) process each modal-
ity independently, (ii) integrate the complementary information
from different modalities, and (iii) support modality hot-plug in a
flexible and extensibleway. Besides, DyHealth provides fine-grained
interpretability for each modality of multimodal EMR data.

3 DyHealth FRAMEWORK
An overview of DyHealth to equip the hospital with dynamic health-
care analytics is illustrated in Figure 2. In a nutshell, DyHealth
handles both historical EMR data and daily generated EMR data,
processes different modalities in respective data modules, then fuses
these modalities in the Multimodal Fusion Module, and finally con-
ducts predictive analytics in the Prediction Module. Through its
data processing pipeline, DyHealth provides the following core
functionalities: (i) it handles multimodal EMR data, (ii) it adapts
to dynamic changes in modalities in a plug-and-play manner, and
(iii) it provides interpretable prediction results for clinicians.
Data. Modern hospital databases are immutable in nature, in that
new data are appended without writing over the old values (e.g.,
those of chronic diseases). DyHealth makes use of historical EMR
data to train models for accurate analytics, and utilizes the newly
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Figure 2: DyHealth for dynamic healthcare analytics.

generated EMR data, such as the data of newly admitted patients or
newly prescribedmedications to a hospitalized patient, for inference
on a regular basis for patient monitoring and management.
Modality. DyHealth is designed to handle different modalities. For
each modality, we design a data module for deriving the represen-
tation for the subsequent multimodal fusion and prediction. We
illustrate four representative data modules in Figure 2 to showcase
howDyHealth manages different modalities: the Demographic Data
Module, the Time-series Categorical Data Module, the Time-series
Numerical Data Module, and the Image Data Module. We will elab-
orate on these data modules in Section 4.1. We note that for other
types of modalities, users can define new customized data modules
following the modular processing abstraction and the standardized
interface, and then readily integrate them into DyHealth.
Fusion & Prediction. After obtaining the respective representa-
tions from all the data modules, DyHealth integrates the comple-
mentary information from different modalities in the Multimodal
Fusion Module (Section 4.2). It devises a modality-based attention
mechanism to dynamically assign the importance of differentmodal-
ities for each sample. Further, DyHealth adopts exponential increas-
ing/decreasing mechanisms for plugging in/out data modules. As a
result, DyHealth can adapt to dynamic changes of modalities in a
plug-and-play manner (Section 4.4). With the integrated represen-
tation obtained by fusing different modalities, DyHealth supports
predictive analytics in the Prediction Module (Section 4.3).
Functionality. Based on the components above, DyHealth sup-
ports the following key functionalities for healthcare analytics.

• Multimodality.With theModality component, DyHealth can pro-
cess different modalities via respective data modules. Specifically,
DyHealth incorporates a number of representative data modules,
i.e., the Demographic Data Module, the Time-series Categorical
Data Module, the Time-series Numerical Data Module, and the
Image Data Module for demographic data, time-series categorical
data, time-series numerical data, and image data, respectively. In
this way, the intrinsic characteristics of different modalities can
be modeled effectively so that DyHealth can utilize the represen-
tations from these complementary information sources for more
accurate and responsive analytics.

• Modularity. Modularity is achieved in DyHealth in two aspects.
First, DyHealth provides a uniform interface for the modality
processing of different data modules so that each modality is
decoupled from other modalities and can be processed inde-
pendently. The interface stipulates that each data module ex-
tracts a compact representation of a predefined dimension for
the corresponding modality, and the representations for different
modalities can hence be readily integrated into the subsequent
Multimodal Fusion Module to model the cross-modality inter-
actions. Such a standardized interface decouples the design and
the implementation of each data module from other modules
in the framework, thereby enabling greater flexibility and ex-
tensibility in the implementation, upgrade, and maintenance of
DyHealth. Second, DyHealth supports modality hot-plug, i.e.,
adding or removing data modules at runtime. Specifically, these
two changes of data modules at runtime are supported by the ex-
ponential increasing/decreasingmechanisms in DyHealth, which
ensures that DyHealth adapts to the changes without affecting
the performance significantly.

• Interpretability. DyHealth supports interpretable healthcare an-
alytics at two levels. First, when fusing the information from
differentmodalities in theMultimodal FusionModule, a modality-
based attention mechanism is integrated into DyHealth so that
the relative importance of different modalities is dynamically
modeled for each sample. In this way, DyHealth provides person-
alized interpretation results at themodality level, e.g., “for Patient
A, MRI scans are the most dominant information source”. Second,
within each data module for each modality, more fine-grained
interpretation techniques can be incorporated. For instance, in
the Time-series Categorical Data Module (Section 4.1.2) and the
Time-series Numerical Data Module (Section 4.1.3), the temporal
attention with feature differentiation technique is able to provide
more in-depth interpretations both at the time level and at the
feature level for each sample. In summary, these interpretation
results at different levels of granularity can provide valuable
insights into the patients’ health conditions, and therefore, assist
clinicians in decision-making.

4 MODULAR DESIGN OF DyHealth
In this section, we first introduce several data modules for repre-
sentative modalities, which are used to showcase how DyHealth
processes different data types and therefore, demonstrate the exten-
sibility of DyHealth. We then elaborate on the proposed attention-
based Multimodal Fusion Module to integrate the complementary
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information from different modalities, which is subsequently fed
to the Prediction Module. We also discuss how DyHealth supports
the dynamic modality changes in a plug-and-play manner.

4.1 Representative Data Modules
In DyHealth, we integrate several data modules tailored to represen-
tative modalities that are commonly collected in data acquisition
and highly informative to healthcare analytics. Essentially, Dy-
Health converts the raw data into a compact representation in each
data module. In the following discussion, we denote scalars, vectors,
and matrices as 𝑥 , x, and X, respectively.

4.1.1 Demographic Data Module. Demographic features in EMR
data refer to socio-economic information about patients (such as
age, gender, and race) and are acknowledged to play a crucial role in
healthcare analytics. Given 𝐷 input demographic features, the 𝑖-th
feature can be categorized and represented with a one-hot encoded
vector di. Next, by concatenating these vectors, we have the encoded
input vector d = [d1, . . . , di, . . . , dD] as the raw representation of
demographic features. We then transform the input vector d into
an embedding space:

Od = 𝜙𝑑 (Wdd) (1)

whereWd is the learnable transformation matrix, and 𝜙𝑑 applies
the element-wise rectified linear unit (ReLU) activation function.
The embedded representation Od is further transformed by:

sd = WsdOd + bsd (2)

whereWsd and bsd are the learnable weight matrix and bias vector.
sd is the representation of this data module and will be subsequently
fused with other modalities in the Multimodal Fusion Module. The
dimensionality of sd is predefined by the modality processing in-
terface of DyHealth, which is the same for all the data modules.

4.1.2 Time-series Categorical Data Module. There exist different
types of time-series categorical modalities in EMR data, such as
diagnoses and procedures, serving as key indicators of patients’
health conditions. In DyHealth, we devise a Time-series Categorical
Data Module to model such modalities as in Figure 3.

Formally, the time-series categorical data are collected over 𝑇𝑐
time steps, and each step obtains 𝐹 binary features. The features
at each time step 𝑡 can be denoted as ct = [𝑐𝑡,1, . . . , 𝑐𝑡,𝑓 , . . . , 𝑐𝑡,𝐹 ],
where 𝑐𝑡,𝑓 = 1 indicates the presence of the 𝑓 -th binary feature
at time 𝑡 , e.g., whether a particular diagnosis is made. We then
transform ct into an embedding space:

qt = 𝜙𝑐 (Wcct) (3)

where 𝜙𝑐 is the ReLU activation function, andWc is the learnable
embedding matrix for time-series categorical data.

Bidirectional RNN.We then feed all the𝑇𝑐 embedded vectors into
a bidirectional RNN model [52] to capture the temporal dynamics
of the time-series data:

(h(c)1 , . . . , h(c)t , . . . , h(c)Tc
) = 𝐵𝐼𝑅𝑁𝑁 (q1, . . . , qt, . . . , qTc ) (4)

where 𝐵𝐼𝑅𝑁𝑁 (·) is a bidirectional GRU model [52]. Specifically,

the hidden representation h(c)t is the concatenation of
−−→
h(c)t and

←−−
h(c)t , where

−−→
h(c)t is calculated from q1 to qt through a forward GRU

Temporal attention
with feature 

differentiation

𝒒𝟏 𝒒𝒕 𝒒𝑻𝒄

𝒉𝒕
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𝒄𝒉𝟏
𝒄

𝒉𝒕
𝒄 𝒉𝑻𝒄

𝒄𝒉𝟏
𝒄
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𝒄 𝒉𝒕
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𝒄

⋯ ⋯
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𝒄

Bidirectional RNN

Figure 3: Time-series Categorical Data Module of DyHealth.

model, and
←−−
h(c)t from qTc to qt through a backward GRU model.

The bidirectional RNN model is adopted in this data module in
order to obtain a more comprehensive representation of a patient’s
time-series EMR data. This is achieved due to the capability of
bidirectional RNN in modeling time-series dynamics from both
directions, which imitates how clinicians examine a patient’s EMR
data to analyze the patient’s health conditions.

Temporal attention with feature differentiation. Further, in
order to differentiate the varying influence of medical features at
different time steps, we devise a self-attention mechanism that has
been shown to support similar tasks well [10, 62]. In particular, our
attention mechanism can give the importance of each time step,
and meanwhile, differentiate the influence of different features at
each time step. We calculate the temporal attention vector 𝜶 (c)t :

𝜶 (c)t = tanh(W(c)𝜶 h(c)t + b(c)𝜶 ) (5)

where 𝜶 (c)t denotes the influence of each medical feature at each
time step, which thus supports both temporal and feature-wise
interpretability. With 𝜶 (c)t , we can aggregate the outputs qt from
bidirectional RNN at each time step to calculate a compact repre-
sentation Oc of the time-series categorical modality:

Oc =

𝑇𝑐∑︁
𝑡=1

𝜶 (c)t ⊙ qt (6)

where ⊙ denotes Hadamard product, and Oc summarizes the in-
formation from all the 𝑇𝑐 time steps. We then transform Oc to the
final representation of the predefined dimension:

sc = WscOc + bsc (7)

where Wsc and bsc are the learnable weight matrix and bias vector.
sc is the representation of this data module and will be forwarded
to the Multimodal Fusion Module.

4.1.3 Time-series Numerical Data Module. Time-series numerical
modalities constitute an essential part of EMR data, including lab
tests, prescribed medications with the recommended dosages, etc.
In DyHealth, we design a Time-series Numerical Data Module to
incorporate the information of such modalities.

Given 𝐺 numerical features collected over 𝑇𝑛 time steps, the
numerical features at each time step can be represented as nt =
[𝑛𝑡,1, . . . , 𝑛𝑡,𝑔, . . . , 𝑛𝑡,𝐺 ], where 𝑛𝑡,𝑔 records the 𝑔-th feature value
at time 𝑡 . Then, we can obtain the time-series numerical data nt for
𝑡 = 1, 2, . . . ,𝑇𝑛 . In a way similar to the Time-series Categorical Data
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Figure 4: Image Data Module of DyHealth. Conv: convolu-
tional layer, BN: batch normalization, MaxPooling: max pool-
ing layer, ResBlock: residual block, AvgPooling: average pool-
ing layer, FC: fully connected layer.

Module in Figure 3, the time-series representation nt is first fed into
a bidirectional RNN model for modeling the temporal dynamics:

(h(n)1 , . . . , h(n)t , . . . , h(n)Tn
) = 𝐵𝐼𝑅𝑁𝑁 (n1, . . . , nt, . . . , nTn ) (8)

where 𝐵𝐼𝑅𝑁𝑁 (·) is a bidirectional GRU, and h(n)t = [
−−−→
h(n)t ;

←−−−
h(n)t ]

is the concatenation of the calculated representations from both
directions likewise.

With the representation h(n)t , we further differentiate the impor-
tance of different numerical features at different time steps, via the
temporal attention to obtain fine-grained interpretations. Then we
calculate the representation of this time-series numerical modality
in a similar way as in the Time-series Categorical Data Module:

𝜶 (n)t = tanh(W(n)𝜶 h(n)t + b(n)𝜶 ) (9)

On =

𝑇𝑛∑︁
𝑡=1

𝜶 (n)t ⊙ nt (10)

where 𝜶 (n)t indicates each feature’s influence at each time step and
contributes to fine-grained interpretability in DyHealth. We further
transform the derived representation On into a final representation
for this modality (with the weight matrix Wsn and the bias vector
bsn) as follows:

sn = WsnOn + bsn (11)
The representation sn follows the dimension predefined by the

modality processing interface of DyHealth and will be integrated
with other modalities in the Multimodal Fusion Module.

4.1.4 Image Data Module. EMR data contain medical image data
such as MRI scans and CT scans which are generally 3D scans.
Such image modalities are useful for medical diagnosis in that they
can help detect organ abnormality in patients and hence, facilitate
diagnostic medicine and biomedical research.

In DyHealth, we integrate 3D-ResNet [22], a state-of-the-art
model for 3-dimensional data, into our Image Data Module for pro-
cessing 3D medical images. The detailed architecture of this module
is shown in Figure 4. The input 3D image is first transformed by
a convolutional layer, which is followed by batch normalization,
ReLU, and max pooling sequentially. Then, the transformed repre-
sentation is further processed by four consecutive ResNet layers.
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⋯ ⋯
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Figure 5: Multimodal Fusion Module of DyHealth.

Each ResNet layer has two residual blocks with shortcut connec-
tions that help signals flow to the next layer for residual learning
and ease of training. Next, after an average pooling layer, the origi-
nal 3D medical image is transformed into a compact representation
Ov. We then feedOv into a fully connected layer for an affine trans-
formation to obtain the final representation sv. We note that sv is of
the same dimension predefined by the data module interface of Dy-
Health, and sv will interact with other modalities in the Multimodal
Fusion Module.

4.2 Multimodal Fusion Module
As discussed in Section 4.1, we can obtain a compact representa-
tion of each modality from respective data modules, i.e., sd, sc, sn
and sv that are of the same dimension defined by the data mod-
ule interface of DyHealth. We note that the standardization of the
data module dimension is necessary to achieve flexibility and ex-
tensibility in DyHealth. These modalities provide complementary
information and hence, can be integrated for a more comprehensive
view of the available EMR data. Further, for a given sample, the
modalities are not equally important, and the relative importance of
different modalities varies from one sample to another. Therefore,
when fusing the information from different modalities, we need a
modality-based attention mechanism to model the importance of
each modality in a per-instance manner. To this end, we design the
Multimodal Fusion Module for DyHealth as illustrated in Figure 5
and its detailed design is introduced as follows.

Modality-based attention. Suppose there are𝐾 modalities to fuse,
we denote their representations derived from the corresponding
datamodules as {s1, . . . , sk, . . . , sK}. Then, the proposedmultimodal
fusion with modality-based attention computes the integrated data
representation z:

z = tanh(
𝐾∑︁
𝑘=1

𝛽𝑘sk + 𝑏) (12)

where sk is the compact representation of the 𝑘-th modality, and
the modality-based attention weights 𝜷 (i.e., [𝛽1, . . . , 𝛽𝑘 , . . . , 𝛽𝐾 ])
are computed as follows:

[𝛽1, . . . , 𝛽𝑘 , . . . , 𝛽𝐾 ] = softmax( [𝑟1, . . . , 𝑟𝑘 , . . . , 𝑟𝐾 ]) (13)

where 𝑟𝑘 is obtained by:

𝑟𝑘 = w⊤𝜷 sk + 𝑏𝛽 (14)
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Based on such a modality fusion mechanism, the advantages
of the Multimodal Fusion Module are threefold. First, the cross-
modality interactions only need to be handled within this module
instead of preceding data modules. Such a functionality division
renders DyHealth modular, flexible and extensible during runtime,
which will be further discussed in Section 4.4. Second, the Mul-
timodal Fusion Module integrates the information from different
modalities and meanwhile learns the varying importance of differ-
ent modalities for each sample. Hence, this module provides a more
comprehensive representation taking account of all the collected
modalities of EMR data, which contributes to more effective ana-
lytics. Third, with the modality-based attention, the Multimodal
Fusion Module is able to support fine-grained interpretability in a
per-instance manner, e.g., showing which modality is more promi-
nent for the given instance. Such interpretation results are valuable
for the reference of clinicians on patient management, etc.

4.3 Prediction Module
After fusing the information from multimodal EMR data, we feed
the integrated representation into the Prediction Module for predic-
tive analytics. Specifically, we feed the integrated data z obtained
in the Multimodal Fusion Module into a multilayer perceptron
(MLP) model: ŷ = Ψ𝑀𝐿𝑃 (z), where the prediction labels ŷ is a𝑚-
dimension vector for an𝑚-class classification task and a scalar for a
regression task. In the case of binary classification, the loss function
is the cross-entropy loss (CEL), while in the case of regression, the
loss function is the mean squared error (MSE).

With the loss function specified, we can train the model parame-
ters of DyHealth in an end-to-endmanner, including the parameters
of all the data modules, the Multimodal Fusion Module, and the
Prediction Module via gradient-based optimizers.

4.4 DyHealth’s Support for Modality Hot-plug
We further elaborate on how DyHealth supports modularity. As
shown in Figure 2, in a practical application scenario that involves
multiple modalities, we design a uniform modality processing in-
terface, where each modality is processed independently within
its own data module for extracting intra-modality representation.
After the processing of each data module, the extracted and stan-
dardized representations for all modalities can be readily integrated
into the Multimodal Fusion Module to model the inter-modality
correlation. As a result of such a processing pipeline, the detailed
processing of each modality can be decoupled from the framework,
which thus provides modularity for DyHealth.

In real-world healthcare delivery, the availability of different
modalities changes constantly, and the deployed models need to
provide uninterrupted service for life-and-death medical decisions,
e.g., to predict the health conditions of a hospitalized patient for
taking timely interventions. As a consequence, it is necessary and
imperative to support modality hot-plug in the framework, i.e.,
plugging in a new modality or plugging out an existing modality.
Such flexibility and extensibility at runtime enable the framework
to adapt to dynamic modality changes without a drastic decrease
in performance. DyHealth achieves this by adopting an exponential
increasing mechanism for plugging in a new modality, and an expo-
nential decreasing mechanism for plugging out an existing modality.

Exponential increasing mechanism to plug in a modality.
Suppose a new modality sK+1 arrives, for instance, the hospital em-
ploys some MRI scanners to collect patients’ MRI images for better
analytics. We design an exponential increasing mechanism for such
a scenario. Specifically, we introduce an increasing multiplier 𝜏 (·)
to gradually increase the importance of sK+1’s representation when
fusing different modalities in Equation 12. The mechanism ensures
that sK+1 can be integrated smoothly without causing a sudden and
drastic change in DyHealth’s performance. 𝜏 (·) is calculated as:

𝜏 (𝐻 ) =
exp( 𝐻

𝐻𝑚𝑎𝑥
) − 1

𝑒 − 1 (15)

where 𝐻 is the number of iterations. This means that the new
modality sK+1 is not entirely plugged into DyHealth until after
𝐻𝑚𝑎𝑥 iterations. The integration of sK+1 starts from 𝐻 = 0 (𝜏 (𝐻 ) =
0) to 𝐻 = 𝐻𝑚𝑎𝑥 (𝜏 (𝐻 ) = 1).

Exponential decreasing mechanism to plug out a modality.
Similarly, when an existing modality sk is going to be plugged
out of DyHealth, we multiply the decreasing multiplier 𝜆(·) to the
representation of sk in Equation 12. The 𝜆(·) gradually decreases
the influence of the modality to be removed for iterations 𝐻 =

{0, 1, . . . , 𝐻𝑚𝑎𝑥 }:

𝜆(𝐻 ) =
exp(𝐻𝑚𝑎𝑥−𝐻

𝐻𝑚𝑎𝑥
) − 1

𝑒 − 1 (16)

Therefore, the modality is not entirely plugged out until after𝐻𝑚𝑎𝑥
iterations. With such a gradual decreasing mechanism, DyHealth
can still function properly with only a small decrease in perfor-
mance when plugging out certain modalities at runtime.

We note that in these two modality change scenarios, DyHealth
can readily support plugging in a new modality sK+1 or plugging
out an existing modality sk in the Multimodal Fusion Module (Equa-
tion 13) without any further changes. Therefore, with the proposed
exponential increasing/decreasing mechanisms, DyHealth can read-
ily adapt to dynamic changes in modalities during runtime.

5 EXPERIMENTS
We demonstrate the experimental results of DyHealth in the pilot
evaluation in NUH, specifically on the hospital-acquired AKI pre-
diction application. In this evaluation, clinicians validate and verify
DyHealth’s interpretation results, and in turn, DyHealth assists
clinicians in understanding why a certain patient develops AKI. As
the NUH patients’ EMR data (i.e., NUH dataset) are highly private,
we further adopt two other public and popular benchmark EMR
datasets, MIMIC-III dataset [26] and IXI dataset3 for evaluation.

5.1 Hospital-acquired AKI Prediction
AKI, short for acute kidney injury, develops in 4% of patients who
are admitted to NUH, which translates to more than 3000 hos-
pitalised patients annually [34]. AKI generally indicates a poor
prognosis for patients in terms of prolonged hospitalization, sus-
tained kidney function deterioration, and even a significant risk of
kidney failure and mortality in the long run [13, 23]. For patients
with a high risk of developing AKI, existing management measures
3https://brain-development.org/ixi-dataset/

3451

https://brain-development.org/ixi-dataset/


2 days
Time

7 days

Feature Window Prediction Window

SCr

SCr increases to 1.5×Lowest SCr
within 7 days

Relative Criterion

Increase of SCr ≥ 26.5umol/L
within 48 hours

Absolute Criterion

Lowest SCr

Figure 6: Detection criteria of hospital-acquired AKI.

may reduce the incidence of the disease or its downstream com-
plications, even if AKI still develops. Nonetheless, such strategies
must be promptly implemented, which requires AKI to be diag-
nosed in the subclinical phase, i.e., way before the onset of AKI.
As a consequence, AKI prediction is significantly motivating and
valuable for clinicians to take preemptive measures for optimized
patient management [14].

We use theNUHdataset that records over 100,000 patients’ EMR
data including diagnoses, lab tests, etc, to predict if a hospitalized
patient will develop AKI in the current admission, i.e., the hospital-
acquired AKI prediction. The medical definition of AKI is given
by the KDIGO clinical practice guideline [29]. Specifically, AKI
is defined based on a lab test serum creatinine (SCr), i.e., AKI is
detected when there exists an increase in SCr of 26.5 or more within
48 hours, or when there is an increase in SCr by 1.5 times baseline
(i.e., the lowest SCr value) or higher within the last 7 days. The
detection of AKI by absolute or relative criterion respectively is
illustrated in Figure 6. For each hospitalized admission, we check
both criteria to derive the corresponding label, and satisfying either
criterion corresponds to a positive label.

Further, if a hospitalized admission has a positive label, i.e., AKI
is developed in this admission, we record the corresponding AKI
detection time, trace two days back as “Prediction Window” (not
used as input), and trace seven more days back as “Feature Window”
(used as input). Otherwise, if an admission is negative, we take the
time when the latest medical feature appears in the corresponding
patient’s EMR data and set it as the end of the Prediction Window
to derive the Feature Window accordingly. The relationship be-
tween the Feature Window and the Prediction Window is shown in
Figure 6. With such settings, we can predict hospital-acquired AKI
by a two-day lead time, with DyHealth serving as an AKI surveil-
lance framework that is deployable in real time. Moreover, such
a lead time is preferred for AKI preventive strategies to make a
meaningful impact on clinical outcomes when implemented in a
timely manner, which may contribute to reducing the AKI duration
and hospital days in affected patients [30, 53].

5.1.1 Experimental Set-up.
Data Preprocessing.We utilize the patients’ demographics (age
and gender), time-series diagnoses, and time-series lab tests in the
NUH dataset as input. For non-time series demographic features,
we first conduct binning on them, convert the value of each feature

Hospital-acquired AKI Prediction

Multimodal Fusion
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Demographic 
Representation

Demographic
Data Module
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Diagnosis 
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Time-series
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Time-series 
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Figure 7: DyHealth for hospital-acquired AKI prediction.

to a one-hot encoding representation, concatenate the representa-
tions and then conduct an embedding for this representation. As
illustrated in Figure 7, such demographic information is processed
in DyHealth via a Demographic Data Module.

For time-series medical features, we divide the Feature Window
with a length of seven days into seven “Time Windows”, aggregate
the time-series features within each Time Window as input, and
predict if the patient will develop AKI in this admission in two days.
The time-series diagnoses and lab tests are handled by DyHealth
through a Time-series Categorical Data Module, and a Time-series
Numerical Data Module respectively as in Figure 7. We note that
for the lab test with a numerical value 𝑥 , we conduct a min-max
normalization, i.e., 𝑥 ′ = (𝑥 −𝑚𝑖𝑛)/(𝑚𝑎𝑥 −𝑚𝑖𝑛) and then use the
normalized feature value 𝑥 ′ for further analytics.

In the NUH dataset, we have 16700 samples with all three modal-
ities available. The feature number of each modality and the archi-
tecture of DyHealth for the hospital-acquired AKI prediction are
illustrated in Figure 7.
Baseline Methods. We first compare DyHealth with several state-
of-the-art methods in time-series healthcare analytics.

• RETAIN [12] proposes a two-level attention mechanism based
on a reverse time attention model structure, to achieve improved
interpretability for healthcare analytics.

• Dipole [36] devises an attention mechanism based on a bidi-
rectional RNN model to achieve the visit-level interpretability.
Specifically, there are three attention mechanisms as follows.

• Dipole𝑙𝑜𝑐 uses a location-based attention mechanism to capture
the attention weights solely based on the current hidden state.

• Dipole𝑔𝑒𝑛 uses a general attention mechanism to capture the
relationship between the current hidden state and each previous
hidden state, via learning a weight matrix.

• Dipole𝑐𝑜𝑛 uses a concatenation-based attention mechanism to
capture the relationship between the current hidden state and
each previous hidden state, via learning the attention weights
based on their concatenation.

• TRACER [65] models the time-invariant and the time-variant
feature importance through a feature-wise transformation sub-
network and a self-attention subnetwork respectively for inter-
pretable healthcare analytics.
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Figure 8: Comparison results for AKI prediction.

In these baseline methods, we concatenate the medical features
of different modalities as input in each Time Window. Apart from
these baselines, we also compare DyHealth with the following
modality fusion methods to validate its effectiveness in integrating
the complementary information from different modalities.
• Late Fusion first calculates the final prediction results of each

modality separately, i.e., the probability distribution for classi-
fication applications, or the value of the predicted target for
regression applications. It then averages the prediction results
of different modalities to fuse the complementary information.

• MMDL [45], short for multimodal deep learning model, uses
an ensemble of feedforward network (FFN) and GRU to process
non-temporal features and temporal features separately and then
learns a shared representation from different modalities. Two
variants of MMDL are discussed as follows.

• MMDL𝑆𝑡 first handles the non-temporal features in an FFN
model. It then concatenates the temporal features from different
time-series modalities and further learns the temporal dynamic
behavior with a GRU model. Finally, it combines the learned
representation from the FFNmodel and that from the GRUmodel
into a shared latent representation for prediction.

• MMDL𝑆𝑚 processes the non-temporal features in an FFN model,
similar to MMDL𝑆𝑡 . However, MMDL𝑆𝑚 uses different GRU
models for different temporal modalities separately. Next, it fuses
the learned representations from the FFN model and different
GRU models to derive the shared representation.

• Intermediate Fusion integrates different modalities in an un-
weighted manner, i.e., in Equation 12 when fusing the extracted
representations of different modalities, the modality-based atten-
tion weights 𝜷 are not taken into account.

Evaluation Metrics. The hospital-acquired AKI prediction is for-
mulated as a binary classification problem. We evaluate the effec-
tiveness of DyHealth in terms of the area under the ROC curve
(AUC) and the average CEL per sample. A better-performing classi-
fier should achieve a higher AUC value and a lower CEL value. In
the experiments, we partition the dataset into the following parts:
80% for training, 10% for validation, and 10% for testing. Based on
the best performance achieved on the validation data, we choose
the hyperparameter setting, apply the model to testing data and
report the average AUC value and CEL value on the testing data of
three different repeats.

5.1.2 Experimental Evaluation.
Comparison with Baseline Methods.We demonstrate the exper-
imental results of DyHealth compared with the baselines in Figure 8.
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Figure 9: Ablation study results for AKI prediction.

DyHealth achieves the best performance with the highest AUC and
the lowest CEL, which confirms the effectiveness of DyHealth in
making use of multimodal EMR data.

Specifically, compared with RETAIN, the three variants of Dipole
(among which Dipole𝑐𝑜𝑛 outperforms the other two) and TRACER,
DyHealth can provide more accurate analytics. The superior per-
formance of DyHealth can be attributed to its modular design for
processing each modality and the integration of the complementary
information from different modalities.

Analyzing the performance of different fusion methods, we have
the following observations. First, MMDL and Intermediate Fusion
outperform Late Fusion, since Late Fusion only fuses the final pre-
dictions, and thus lacks the capability to exploit the cross-modality
interactions effectively. Further, for the two variants of MMDL,
MMDL𝑆𝑚 achieves a higher AUC than MMDL𝑆𝑡 , and performs
similarly to Intermediate Fusion in terms of AUC. This indicates
that processing different time-series modalities separately as in
MMDL𝑆𝑚 can improve the analytic performance. Finally, com-
pared with Intermediate Fusion, DyHealth is more accurate, which
validates the effectiveness of DyHealth in modeling the varying
importance of modalities on a per-input basis.
Ablation Study.We next conduct an ablation study of DyHealth
in terms of multimodality modeling. The experimental results are
shown in Figure 9. We find that among the three modalities, the di-
agnosis modality is the most informative one, the removal of which
leads to the largest decrease in AUC. This confirms the crucial
importance of clinicians’ judgment on patients’ health conditions.
Besides diagnoses, the demographics are also critical to the perfor-
mance, which means that the patients’ intrinsic characteristics play
an essential role in the prediction. Finally, the importance of the lab
test modality is relatively lower than the other two. This indicates
that the underlying information of lab tests may be partially carried
by diagnoses which therefore can be considered a surrogate data
source for lab tests.

5.1.3 Interpretability. With clinicians validating and verifying the
interpretation results provided by DyHealth, we demonstrate the
interpretability of DyHealth. Specifically, we show DyHealth’s in-
terpretations for a patient who developed AKI after two days in
Figure 10. The x-axis denotes each Time Window in the Feature
Window as input, and the y-axis “Feature Importance” corresponds
to 𝜶 (n)t in Time-Series Numerical Data Module for processing the
lab tests (in Equation 9). The features involved in Figure 10 are:
“Neutrophils %” (NEUP), “Ionised CA, POCT” (ICAP), “Sodium, POCT”
(NP), “Serum Potassium” (K), and “White Blood Cell” (WBC).
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Figure 10: Interpretation results of an example patient who
developed AKI in the NUH dataset.

As in Figure 10, we find that NEUP shows the highest Feature
Importance among all features, and WBC shows relatively stable im-
portance across time. These suggest infection or inflammation that
directly contributes to AKI causation. Further, when we investigate
K, NP, and ICAP, we find these three kinds of ionised electrolytes
show similarly increasing changing patterns in terms of their impor-
tance over time. K and NP are important electrolytes in the human
body, which are vitally important to cellular metabolism, especially
K. NP levels also reflect the free water balance. Both K and NP are
regulated by the kidneys, and thus derangements may be seen as
AKI evolves [5]. Besides, ICAP is related to hypocalcemia which
is associated with evolving kidney dysfunction, deranged mineral
metabolism, and hyperphosphatemia [32]. Hence, the increasing
patterns of these features indicate the presence of the electrolyte
and water imbalance.

In a nutshell, based on the interpretation results, we presume this
patient has worsening inflammation or infection that contributes to
a high risk of developing AKI; evolving kidney injury is accompa-
nied by worsening serum electrolyte and water imbalance, which
therefore explains the predictive performance.

5.1.4 Summary. Based on this pilot evaluation, DyHealth achieves
an AUC exceeding 0.85 on AKI prediction with different modali-
ties modeled in a modular manner, which is validated to be med-
ically effective in clinical practice. With such accurate predictive
analytics, DyHealth enables the risk stratification of hospitalized
patients for detailed biomarker or clinical assessment of the true
AKI risk. As for interpretability, DyHealth unveils valuable refer-
ence information on a patient’s underlying problems and insightful
patient-specific trends via its interpretations and hence, aids the
evaluation of AKI etiology and guides clinicians in NUH to take
timely interventions accordingly. In the near future, we expect the
promising roll-out of DyHealth for hospital-wide real-time deploy-
ment to highly facilitate our upstream endeavors to prevent AKI
and/or its complications in hospitalized patients.

5.2 In-hospital Mortality Prediction
In this application, we make use of the MIMIC-III dataset [26],
a public EMR dataset that records the data of more than 40, 000
patients in critical care units. In this dataset, we investigate the
in-hospital mortality prediction, i.e., to predict if a patient will pass
away during the current admission. Specifically, each admission
corresponds to one visit of a patient, and the admissions lasting
over 48 hours are selected as samples.
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Figure 11: DyHealth for in-hospital mortality prediction.

5.2.1 Experimental Set-up.
Data Preprocessing. We take into account the patients’ non-time
series demographic information and time-series lab tests, output
events, input events, and prescriptions, which are all in the struc-
tured form. The demographic features include age and gender as
illustrated in Figure 11, and they are processed by DyHealth via a
Demographic Data Module.

For the other modalities, we adopt a 48-hour Feature Window
with a 2-hour Time Window. We then aggregate the time-series
features of each modality within each Time Window as input and
predict if the patient will pass away in the hospital.

Specifically, lab tests refer to the lab events in the MIMIC-III
dataset, recording laboratory-based measurements. As lab tests
indicate the patients’ health conditions, we average the values of
the same lab test appearing in each TimeWindow and then conduct
a min-max normalization of the values. We then configure a Time-
series Numerical Data Module to process lab tests.

Input events and output events form a crucial information source
for analyzing the patients in ICU. Input events correspond to the
fluids administered to the patients including oral/tube feedings,
intravenous solutions with medications, etc, while output events
refer to the fluids excreted from the patients such as urine output.
Both modalities represent an accumulated feature of the patients’
human body; therefore, the values of the same feature in each Time
Window are then aggregated by sum. Then these two modalities
are both handled by DyHealth through a Time-series Numerical
Data Module as shown in Figure 11.

Prescriptions record medications prescribed to the patients. As
an accumulated type of features given over a time period, we also
sum the feature values within each Time Window and configure a
Time-series Numerical Data Module for prescriptions.

The architecture of DyHealth for in-hospital mortality is illus-
trated in Figure 11.We extract 15571 samples with all five modalities
available. In this application, we compare DyHealth with the same
set of baseline methods as in Section 5.1, as both applications are
predictive analytics based mainly on time-series EMR data. Besides,
because this application is formalized as a binary classification
problem, we also adopt AUC and CEL as the evaluation metrics.

5.2.2 Experimental Evaluation.
Comparison with Baseline Methods. As illustrated in Figure 12,
we find that DyHealth achieves the best-performing analytics among
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Figure 12: Comparison results for mortality prediction.
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Figure 13: Ablation study results for mortality prediction.

all methods in terms of both AUC and CEL. To be specific, DyHealth
outperforms RETAIN, Dipole, and TRACER due to the ability to
process each individual modality in a modular and effective man-
ner. Further, DyHealth is more accurate than Late Fusion, MMDL
with two variants, and Intermediate Fusion, as a result of its Mul-
timodal Fusion Module for integrating various modalities in an
attention-based manner.
Ablation Study. We remove one modality from input each time
in order to evaluate its influence on the overall performance. The
experimental results are illustrated in Figure 13.

We find that the demographics have the most significant influ-
ence on the mortality prediction, which indicates that the mortality
of a hospitalized patient is highly related to his/her personal charac-
teristics. Next, both lab tests and prescriptions are more important
as compared with input events and output events. We conjecture
that lab tests and prescriptions directly represent patients’ health
conditions and reflect clinicians’ judgment; hence, these two modal-
ities tend to be more informative than other implicit modalities,
e.g., input events and output events.

5.2.3 Modularity. Since the MIMIC-III dataset has a larger number
of modalities than the other two datasets, we evaluate the modular-
ity of DyHealth in this dataset.

To start with, we illustrate the distribution of 𝜷 (calculated in
Equation 13) for the five involved modalities in the MIMIC-III
dataset over all samples in Figure 14. The experimental results
demonstrate that our proposed modality-based attention mecha-
nism can reflect the relative importance of various modalities on
a per-sample basis. Further, when all modalities are incorporated
in DyHealth for analytics, the relative importance from higher to
lower tends to be: lab tests, prescriptions, demographics, input
events, and output events.

We also design an experiment to demonstrate how DyHealth
supports modality hot-plug by first plugging out the lab test data
module and then plugging this data module back in. The exper-
imental results are illustrated in Figure 15, in which the x-axis
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Figure 14: The distribution of
𝜷 over all samples for mortal-
ity prediction.
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Figure 15: Modularity experi-
mental results w.r.t. lab tests
in the MIMIC-III dataset.

denotes the iterations, and the y-axis is the corresponding AUC
achieved on the testing data. Specifically, we start with DyHealth
incorporating all modalities with an AUC of around 0.86. To keep
the deployed framework up to date, we regularly train the param-
eters of DyHealth on the training data available at each iteration.
At Iteration 0, we start plugging out the lab test data module via
the proposed exponential decreasing mechanism with 𝐻𝑚𝑎𝑥 = 20.
At Iteration 20, the lab test data module is totally plugged out with
AUC decreased to around 0.82. Next, DyHealth operates with the
remaining four modalities for another 20 iterations. At Iteration
40, we start plugging in the lab test data module back to DyHealth
via the proposed exponential increasing mechanism. The plug-in
process is completed at Iteration 60 (with 𝐻𝑚𝑎𝑥 = 20), after which
DyHealth continues to be trained with all the five modalities in the
training dataset. As shown in Figure 15, we can observe that during
the plug-out process (Iterations 0 − 20), DyHealth still functions
properly and its performance decreases smoothly, and during the
plug-in process (Iterations 40 − 60), DyHealth does not undergo
sudden changes. These findings confirm the efficacy of DyHealth
in supporting modality hot-plug with our proposed exponential
increasing/decreasing mechanisms and further validate the modu-
larity of DyHealth.

5.3 Brain Age Prediction
Aging tends to have a significant influence on the brain [27] that is
generally visible in MRI scans. In recent years, it is demonstrated
that MRI scans can be used to predict the chronological age ac-
curately [19], which is considered an estimation of the biological
brain age. Brain age prediction is to predict a person’s chronological
age based on his/her brain data. An accurate brain age prediction
model is of high medical significance in that it provides a way
of estimating biological brain age and therefore, can be used to
discover possible diseases and genetic factors related to abnormal
brain aging.

In this brain age prediction application, we use the Information
eXtraction from Images (IXI), i.e., IXI dataset. The IXI dataset
collects about 600magnetic resonance images of healthy and normal
subjects, recording their different types of MRI data, such as T1-
weighted MRI, T2-weighted MRI, and demographics.

5.3.1 Experimental Set-up.
Data Preprocessing.We utilize the demographics, T1-weighted
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Figure 16: DyHealth for brain age prediction. For both T1-
weighted MRI and T2-weighted MRI which are 3D medical
images, three views of the MRI scan are shown (from left to
right): sagittal, coronal, and axial.

MRI, and T2-weighted MRI of the subjects as input, and aim to
predict the chronological age of the subjects.

The demographics include each subject’s gender, height, weight,
ethnicity, marital status, occupation, and qualification. For height
and weight, we first conduct binning on the values and then trans-
form each feature into the corresponding one-hot encoding vector.
For other demographic features that are categorical, we convert
them into one-hot representations as well. We next concatenate
the representations of all the seven features above and configure a
Demographic Data Module for processing (as in Figure 16).

For MRI images, we conduct the following standard prepro-
cessing workflow for medical brain image data: (i) skull stripping
based on a pre-trained model of UNET [50], (ii) N4 bias field cor-
rection [59], (iii) template registration [25], and (iv) voxel intensity
normalization via a Gaussian mixture model. After such standard
preprocessing of MRI images, we configure two Image Data Mod-
ules for T1-weighted MRI and T2-weighted MRI respectively.

The architecture of DyHealth for brain age prediction is shown
in Figure 16. We have 559 samples with all the modalities available.
EvaluationMetrics. In brain age prediction, we compareDyHealth
with Intermediate Fusion and Late Fusion. The other baselines are
not compared as they are not applicable to processing image data.
Since the goal is to predict the chronological age of the subjects, the
problem is formulated as a regression task, with the loss function
of MSE. In the experimental evaluation, we adopt mean absolute
error (MAE), root mean square error (RMSE), and coefficient of
determination (𝑅2) as evaluation metrics, and report their values
on the testing data. A better-performing regression model has a
lower MAE value and a lower RMSE value, while a higher 𝑅2 value.

5.3.2 Experimental Evaluation.
Comparison with Baseline Methods. Results in Figure 17 show
that DyHealth outperforms the baselines consistently in terms of
MAE, RMSE, and 𝑅2. Such superior performance of DyHealth can
be attributed to the effectiveness of our proposed modality-based
attention mechanism in the Multimodal Fusion Module for inte-
grating the complementary information from different modalities.
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Figure 17: Comparison results for brain age prediction.
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Figure 18: Ablation study results for brain age prediction.

Ablation Study. We conduct an ablation study to evaluate the
influence of each modality. According to the experimental results
in Figure 18, we find that demographics are the most influential
modality on the performance of brain age prediction, followed by
the T2-weighted MRI modality and the T1-weighted MRI modality.
These findings confirm that among the factors that are related to the
aging of the human brain, demographics are of vital importance [1],
including gender [49, 51], education [40, 57], etc.

6 CONCLUSIONS
Based on our observations on real-world healthcare analytics, dy-
namic modality changes are prevalent. However, to the best of our
knowledge, no existing studies take modularity into consideration,
and support modularity, multimodality, and interpretability simul-
taneously and satisfactorily. To achieve this, we design DyHealth,
a modular, multimodal, and interpretable framework for dynamic
healthcare analytics. The key idea is to distill the information from
different modalities in respective data modules that adhere to the
same interface defined by DyHealth, and then integrate the de-
rived complementary information. With such a modular design and
the devised mechanisms for handling dynamic modality changes,
DyHealth supports modality hot-plug. Furthermore, to fuse infor-
mation from different modalities, we propose a modality-based
attention mechanism that contributes to the fine-grained inter-
pretability on a per-input basis. Through extensive experiments on
AKI prediction in the data from NUH and two other benchmark
applications in public datasets, we demonstrate the effectiveness,
flexibility, and extensibility of DyHealth in supporting multimodal
healthcare analytics through modularity. Experimental evaluations
also showcase howDyHealth supports interpretability and dynamic
changes in modalities.
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