
ByteHTAP: ByteDance’s HTAP System with High Data Freshness
and Strong Data Consistency

Jianjun Chen, Yonghua Ding, Ye Liu, Fangshi Li, Li Zhang, Mingyi Zhang, Kui Wei, Lixun Cao*, Dan
Zou*, Yang Liu*, Lei Zhang*, Rui Shi*, Wei Ding, Kai Wu, Shangyu Luo, Jason Sun, Yuming Liang*

ByteDance US Infrastructure System Lab, *ByteDance, Inc

ABSTRACT
In recent years, at ByteDance, we see more and more business
scenarios that require performing complex analysis over freshly
imported data, together with transaction support and strong data
consistency. In this paper, we describe our journey of building
ByteHTAP, an HTAP system with high data freshness and strong
data consistency. It adopts a separate-engine and shared-storage
architecture. Its modular system design fully utilizes an existing
ByteDance’s OLTP system and an open source OLAP system. This
choice saves us a lot of resources and development time and al-
lows easy future extensions such as replacing the query processing
engine with other alternatives.

ByteHTAP can provide high data freshnesswith less than one sec-
ond delay, which enables many new business opportunities for our
customers. Customers can also configure different data freshness
thresholds based on their business needs. ByteHTAP also provides
strong data consistency through global timestamps across its OLTP
and OLAP system, which greatly relieves application developers
from handling complex data consistency issues by themselves. In
addition, we introduce some important performance optimizations
to ByteHTAP, such as pushing computations to the storage layer
and using delete bitmaps to efficiently handle deletes. Lastly, we
will share our lessons and best practices in developing and running
ByteHTAP in production.

PVLDB Reference Format:
Jianjun Chen, Yonghua Ding, Ye Liu, Fangshi Li, Li Zhang, Mingyi Zhang,
Kui Wei, Lixun Cao, Dan Zou, Yang Liu, Lei Zhang, Rui Shi, Wei Ding, Kai
Wu, Shangyu Luo, Jason Sun, Yuming Liang. ByteHTAP: ByteDance’s
HTAP System with High Data Freshness and Strong Data Consistency.
PVLDB, 15(12): 3411-3424, 2022.
doi:10.14778/3554821.3554832

1 INTRODUCTION
In recent years, at ByteDance, we start seeing more and more
business scenarios that require performing complex analysis over
freshly imported data, together with transaction support and strong
data consistency. For example, Bytedance’s User Growth Depart-
ment demands complex SQL queries over constantly changing data
such as business attribute relationships and advertisement costs,

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 12 ISSN 2150-8097.
doi:10.14778/3554821.3554832

Dr. Jianjun Chen is the corresponding author, jianjun.chen@bytedance.com.

where the latest data changes are expected to be visible in sub-
second delay.

However, we can not find an off-the-shelf solution to satisfy our
customer’s needs. Traditional OLAP systems typically load large
amounts of data in bulk periodically but suffer from the problem
of stale data. In contrast, traditional OLTP systems support DMLs
and can execute point look-up queries efficiently, but lack the mas-
sive parallel processing capability. Therefore, they cannot process
complex queries over large amounts of data efficiently. To meet our
business needs, a hybrid transaction/analytical processing (HTAP)
system is the most appropriate choice.

Specifically, we built a large-scale real-time analytics HTAP sys-
tem that supports both fresh data changes and strong data consis-
tency with the following design goals:

• Large scale. Several ByteDance’s popular apps, such as TikTok,
Douyin and Toutiao, have hundreds of millions of daily active
users. Hence, we want to build a distributed real-time analytic
system that can scale up to petabytes of data.

• Real time. We want OLTP and OLAP queries in ByteHTAP to
have comparable performance when running them in standalone
OLTP/OLAP systems. This is important for migrating existing
customers’ workloads to ByteHTAP, where those workloads are
currently run in standalone systems.

• Highly fresh data changes. To explore new business opportu-
nities, some customers want the most recent data changes to be
available for querying within a one-second delay. This imposes
a strong requirement on our system design. Currently, our cus-
tomers have a delay of minutes or even hours in terms of data
freshness.

• Strong data consistency. Currently, many customers import
data from their OLTP databases to their data warehouses to do
data analysis. Therefore, it is hard for them to get a consistent
global snapshot across OLTP and OLAP engines, and application
developers have to spend extra effort handling data consistency
issues. Hence, customers want ByteHTAP to provide native sup-
port for strong data consistency.

HTAP systems have beenwidely discussed in recent years in both
academia and industry [37, 51, 62]. Several dedicated HTAP sys-
tems have been developed, such as SAP Hana [32] , TiDB [34] and
MemSQL [13, 29]. In addition, many traditional OLTP and OLAP
vendors also claim that their systems support HTAP [38, 39, 44, 52].
In general, HTAP systems can have quite different architectures.
A fairly recent survey [50] classifies an HTAP system into the
following categories based on its architectural choice:

• Single engine. HTAP systems in this category normally have
unified HTAP engines, such as SAP Hana [32] and MemSQL [29].
These systems can further be divided into two categories based

3411

https://doi.org/10.14778/3554821.3554832
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3554821.3554832


on the data formats they support: single data format or mixed
data formats.

• Separate engine. HTAP systems in this category use separate
query engines to process OLTP and OLAP workloads, such as
WildFire [23] and TiDB [34]. These systems can further be di-
vided into two categories based on their storage structure: sepa-
rate storage or shared storage. Even though the former is widely
adopted in production, it has a shortcoming that data freshness
is usually low for OLAP queries.
After a careful study of the different design choices listed in [50],

we decide to go with the separate engine and shared storage design
due to the following reasons:
• Separate engine. Developing a single query engine that can

handle both OLTP and OLAP workloads is non-trivial. Few ex-
isting open source systems can handle such mixed workloads
well. In contrast, there are multiple standalone OLTP and OLAP
systems, either proprietary or open source, that are available
for us to use. Hence, we choose the separate-engine route to
allow each engine to do its best, while avoiding interference
between OLTP and OLAP workloads. We build ByteHTAP using
a proprietary OLTP system, ByteNDB, and an open source OLAP
engine, Apache Flink [5].

• Shared storage. ByteDance’s infrastructure systems usually
adopt a cloud native architecture that separates compute from
storage. ByteNDB has an architecture similar to Amazon Au-
rora [61]. We extend its replication storage to support columnar
storage beyond row storage. In this way, data changes are prop-
agated in the storage layer with minimal delay. Our columnar
storage also contains an in-memory Delta Store to allow the
most recent data changes to be queryable by the OLAP engine.
Note that the architectural choice is mostly transparent to users

since we provide a unified SQL API for OLTP and OLAP queries.
Queries are automatically routed to the corresponding engines
by ByteHTAP’s well-designed proxy. Besides the advantages men-
tioned above, such a modular design is also easy for future exten-
sions. For example, we are currently building a new distributed
MPP SQL engine that can easily replace Flink in ByteHTAP in the
future. We only need to implement a new connector for the new
engine to talk with our storage layer.

In this paper, we want to showcase our journey of building a
high data freshness and strong data consistency HTAP system with
a small engineering team. We started the design and development
at the beginning of 2020 with less than 10 developers and released
version 1.0 in the middle of 2021. By now, we already have multiple
internal customers using ByteHTAP in production and the number
of customers is expected to grow significantly in 2022. We have
learned tremendously from this journey and hope that our story
can be helpful to readers with similar needs.

In summary, our key contributions are as follows:
• We demonstrate how to build a competitive HTAP system with

a separate engine and shared storage architecture. Our modu-
lar system design fully utilizes an existing ByteDance’s OLTP
system and an open source OLAP system. This design saves a
lot of resources and development time, and allows easy future
extensions such as replacing the query processing engine with
other alternatives.

• ByteHTAP can provide high data freshness with less than one
second delay, which brings many new business opportunities
to our customers. Customers can also configure different data
freshness thresholds based on their business needs.

• ByteHTAP provides strong data consistency through global
timestamps across OLTP and OLAP systems, which relieves
application developers of handling complex data consistency
issues in their systems.

• ByteHTAP’s replication storage layer utilizes a unified replica-
tion framework to seamlessly build both row and column stores.
We also describe some important performance optimizations
inside ByteHTAP, such as pushing computations to the storage
layer and using delete bitmap to efficiently handle deletes.

• We talk about lessons we learned and our best practices in de-
veloping and running the ByteHTAP system in production.

The rest of the paper is organized as follows: Section 2 gives
an overview of related work. Section 3 describes the overall ar-
chitecture of ByteHTAP as well as the implementations of its key
components. Section 4 focuses on how ByteHTAP achieves high
data freshness. Section 5 describes the strong data consistency in
ByteHTAP. Section 6 shows some performance optimizations we
did inside ByteHTAP. In Section 7, we provide some empirical mea-
surements of ByteHTAP. Section 8 lists some of the major lessons
we learned in production. Finally, Section 9 concludes our work.

2 RELATEDWORK
In the past decade, HTAP has beenwidely discussed in both academia
and industry [28, 35, 37, 47, 48, 51, 53, 57]. Many database products
on the market claim themselves either HTAP databases or support-
ing HTAP functionalities [6, 7, 9, 10, 20]. In this section, we firstly
present several well known dedicated HTAP systems. Next, we
give an overview of HTAP extensions in existing OLTP and OLAP
database products. Finally, we discuss some recent work on HTAP.

SAP Hana [32, 41, 46, 60] is an in-memory multi-model database
system that supports both OLTP and OLAP. It provides a unified
interface for OLTP/OLAP components, including the language inter-
face, the plan tree, the operator framework, and the table interface
for storage. It contains a layered in-memory store that supports
both row and column formats. One recent work [59] extends Hana’s
in-memory column store to support both in-memory and on-disk
storage. Hana adopts a single-engine architecture that differs from
ByteHTAP’s separate-engine unified-storage architecture.

MemSQL [29] also adopts a single engine architecture. It is a
shared-nothing and memory-optimized distributed HTAP system.
It provides an in-memory row store with an on-disk column store.
It uses LLVM [40] and lock-free in-memory data structures for fast
query execution.

TiDB [34] is built on top of TiKV [34], a distributed row-based
store for transactional queries. TiDB enhances TiKV with TiFlash
[34], a column-based store for analytical queries. By deploying TiKV
and TiFlash on different servers, TiDB shows that it can process
transactional and analytical queries on isolated resources. TiDB
asynchronously replicates logs from TiKV to TiFlash, transforms
row-format data into column format, and provides data consistency
among logs. TiDB shares some architectural similarity with Byte-
HTAP, but has some design differences. For example, TiDB 5.0’s

3412



OLAP query engine adopts a massively-parallel-processing (MPP)
architecture where computing happens on TiFlash’s storage nodes.
In contrast, ByteHTAP separates computing from storage to allow
great elasticity in both computing and storage layers.

WildFire [22, 23, 43] utilizes Spark [63] as the compute engine
and uses a shared storage model. It extends OLTP support with
simple DML statements for fast data ingestion. DML statements are
committed when writing to sharded logs over SSD is finished. A
background grooming process periodically merges logs with data
in HDFS. The OLAP queries expressed in SparkSQL [19] can query
data in both logs andHDFS. Later,Wiser [21] is developed to provide
high availability for WildFire. While sharing some architectural
similarities with WildFire, ByteHTAP can support general OLTP
workloads with MySQL [8] compatibility.

Traditional relational databases usually store data in a row for-
mat and are usually more suitable for OLTP than OLAP. There-
fore, many relational databases propose specific solutions (such as
column-major data format) to accelerate OLAP workloads. Oracle
introduces Database In-memory Option [38, 49] (DBIM) as a dual
format architecture to support HTAP applications. In DBIM, the
row-format data is persisted in permanent storage and the column-
format data is purely stored in memory. Transaction consistency
is ensured between those two formats. Microsoft SQL Server 2016
[39] enhances column store indices to reinforce the processing of
HTAP workloads. IBM Db2 for Linux, UNIX, and Windows utilizes
BLU Acceleration [52] as a column store to accelerate Business
Intelligence queries. In contrast, our solution uses separate native
OLTP and OLAP engines over a unified storage layer, so it has more
isolation and flexibility for the OLTP and OLAP components.

Traditional data warehouse vendors [27, 44] are also enhancing
their OLTP capabilities to provide better support for HTAP work-
loads. For example, Greenplum Database [44] uses a resource group
model to separate OLAP and OLTP workloads, and processes them
with different amounts of resources. The experiments show that it
can boost OLTP’s performance while keeping OLAP’s performance.

NoSQL databases have also explored HTAP. For example, Couch-
base Server [24] introduces Couchbase Analytics Service [35] to
complement its Query Service to support complex analytical queries.
Different from Couchbase Server that focuses on document data,
ByteHTAP is developed for relational data.

Google proposes F1 Lightning [62] as an HTAP enhancement for
its existing transactional database systems. F1 Lightning consists
of three components: an OLTP database, the Lightning component,
and a federated query engine (F1 Query [56]). The Lightning com-
ponent reads data from the OLTP database, and transforms them
from the row-major, write-optimized format to a column-major,
read-optimized format. F1 Lightning adopts a Change Data Capture
[62] mechanism to improve data freshness for the OLAP engine.
Different from F1 Lightning, ByteHTAP uses unified storage for
OLTP and OLAP engines. ByteHTAP’s OLAP engine could read
newly-committed data directly from the unified storage. There-
fore, ByteHTAP provides strong data consistency and high data
freshness for both OLTP and OLAP engines.

Recently, IBM also enhances HTAP capability for IBM Db2 for
z/OS (Db2z), and proposes a new hybrid system named IBM Db2
Analytics Accelerator (IDAA) [26]. IDAA adds Db2 Warehouse as a
column-store to Db2z and processes OLAP workloads there. Db2

Warehouse maintains a copy of table data of Db2z and synchronizes
them with DB2z as per requested. Also, IDAA proposes a new
data replication method called Integrated Synchronization [26] to
support incremental updates of data. This method has improved
data freshness for Db2 Warehouse.

HTAP systems are also widely discussed in academia. BatchDB
[45] is a database system designed for HTAP workloads. It adopts
primary-secondary replicas for OLTP and OLAP workloads, where
the OLTP workloads operate on the primary replica, and the OLAP
workloads are executed on the secondary one. The updates on the
primary replica will be periodically propagated to the secondary
replica to ensure that data is consistent between replicas. Compared
to BatchDB, the newly-committed changes from ByteHTAP’s OLTP
engine are immediately available for its OLAP engine. Therefore,
ByteHTAP has a better data freshness.

Raza et. al [54] proposes a system that can dynamically adjust its
HTAP architecture to meet different requirements of data freshness
and runtime performance. The system has three components: an
OLTP engine, an OLAP engine, and a Resource and Data Exchange
engine. By adjusting the resource distribution between the OLTP
andOLAP engine, [54] can explore a spectrum of HTAP architecture
design, ranging from fully co-located OLTP-OLAP engines to fully
isolated OLTP-OLAP engines. Different from the single-server-
based in-memory store used by [54], ByteHTAP has a scalable,
distributed, and persistent storage. Also, ByteHTAP’s OLTP and
OLAP engines have good resource isolation as they operate on their
own resources (such as CPU and memory) independently.

VEGITO [58] is a distributed in-memory HTAP system. It utilizes
data backups to enhance data freshness and to improve its runtime
performance. Specifically, VEGITO added three new techniques to
its backups: a gossip-style log-apply scheme, a block-based multi-
version columnar data layout, and a tree-based index. Different
from VEGITO, ByteHTAP utilizes log sequence number (LSN) in the
storage layer to provide strong data consistency. Also, ByteHTAP
uses separate OLTP and OLAP engines to provide a good isolation
for HTAP workloads.

3 SYSTEM ARCHITECTURE AND IMPORTANT
COMPONENTS

ByteHTAP uses ByteNDB as its OLTP system. It also extends By-
teNDB’s Replication Framework to bridge its OLTP row store and
OLAP columnar store. In this section, we firstly give a brief overview
of ByteNDB and its Replication Framework. Then, we talk about
ByteHTAP’s architecture and some important components.

3.1 ByteNDB Overview
Figure 1 shows the overall architecture of ByteNDB. It supports the
“log is database” principle as Amazon Aurora [61] does, and can
have multiple read replicas besides a read/write master instance.
ByteNDB adopts the buffer pool, the transaction and lock manage-
ment components from MySQL [8], and makes some modifications
to achieve the master-replica synchronization. The main compo-
nents in the computing layer primarily consist of a proxy and a
SQL engine. The proxy knows the system configuration and the
routings of queries between the master and read-only replicas.

3413



Figure 1: An illustration of ByteNDB architecture.

ByteNDB’s replicated storage layer consists of a Log Store that
persists redo logs and a Page Store that stores versions of data
pages and continuously applies the redo logs to construct the latest
version of data pages. Both stores are built on distributed storage
to provide high availability and persistence. The Log Store utilizes
append-only distributed BLOB storage to provide fast redo log per-
sistence with large capacity. The Page Store provides the capability
of log apply to construct data pages and supports random read at
page granularity.

At the core of ByteNDB’s replicated storage layer, a Replication
Framework is adapted for the replication and distribution of the
redo logs. Each redo logwill be assigned a unique LSN based on their
persistence order. Redo logs in the same transaction are replicated
as a whole batch to ensure atomicity. Each log from Log Store is
replicated to three storage servers in Page Store and a quorum
protocol [33] is used to guarantee data consistency across these
replicas. To further ensure data consistency, the redo logs received
by the storage servers will be sorted by their LSNs and be persisted
in sequence. Each log also contains a back-link with the LSN of
the previous log, any potential holes (i.e. missing logs) in the log
sequence can be detected immediately. A gossip protocol [31] is
implemented between the storage servers, so that the missing logs
on one server can be retrieved from fellow storage servers. As a
result, logs are sorted as a sequence without any holes before they
are ready to be applied/replayed in the storage servers.

To improve read efficiency, Replication Framework keeps track
of the LSNs of each replica so that a query can be sent to a single
replica whose LSN is larger than the query’s LSN instead of reading
from two replicas required by the quorum protocol.

3.2 System Overview
As shown in Figure 2, ByteHTAP adopts an architecture of sepa-
rate engines over a shared storage. It supports one unified API and
queries can be automatically directed to OLTP or OLAP engines
by the proxy. ByteHTAP utilizes ByteNDB as the OLTP engine and
Flink as the OLAP engine. ByteHTAP employs a smart proxy layer
to automatically direct different queries to the OLTP and OLAP
engines. In short, DMLs, DDLs, simple queries and queries suitable
for OLTP (e.g. with predicates over indexes on OLTP tables) are
sent to the OLTP engine, while complex queries, such as those with
multiple joins and aggregations, are sent to the OLAP engine. This
approach avoids interference between OLTP and OLAP workloads
and allows queries to be processed by an appropriate engine.

Figure 2: An illustration of ByteHTAP architecture.

ByteHTAP follows ANSI SQL [4] standard, familiar to most data-
base users. One specific requirement is that each ByteHTAP table
must contain a primary key, based on which column store data files
are sorted to provide efficient data access. Users can issue DMLs to
update primary key values in ByteHTAP with data constraints auto-
matically enforced by the OLTP engine. In addition, users can also
specify partition keys for the OLAP column store, which enables
ByteHTAP’s OLAP query engine to process a query in parallel. Cur-
rently, ByteHTAP’s column store only supports hash partitioning
and we will support more partitioning schemes in the future.

ByteHTAP extends ByteNDB’s Replication Framework that pro-
vides a reliable log distribution to multiple storage nodes for each
partition to build a columnar data store, which may reside on differ-
ent storage nodes from its corresponding row store. Logical logs (i.e.
MySQL Binary logs) for committed DML transactions are continu-
ously dispatched to columnar storage nodes based on partitioning
scheme defined in user tables. ByteHTAP’s Columnar Store con-
sists of an in-memory Delta Store and a durable Base Store. OLAP
query scans both Base Store and Delta Store with a specified LSN
as its snapshot version. The Metadata Service provides centralized
metadata access for OLAP query optimizer and storage nodes. It
loads metadata at starting up and caches them in memory.

ByteHTAP guarantees strong data consistency by providing
consistent data snapshots for its queries. Each DML and DDL state-
ment generates a unique LSN in the system. Statements in the same
transactions are wrapped together and passed through the system
atomically. Metadata service relays a globally committed LSN to
the OLAP compute engine. Any LSN before this LSN is guaranteed
to be received (and persisted) by the OLAP Columnar Store. Meta-
data server clients in OLAP query engine can periodically fetch the
latest globally committed LSN from the storage layer and cache it.
A query will be assigned with a read LSN based on the globally
committed LSN. In most cases, ByteHTAP allows querying over
data changes with less than one second delay.

Note that ByteHTAP currently does not allow transactions with
mixed DMLs and OLAP read-only queries since it does not support
distributed transactions across OLTP and OLAP engines. We may
relax this restriction in the future if customers require this feature.

3414



3.3 Metadata Service
To provide a unified service aligning the catalog information and
partition scheme across both OLTP and OLAP engines and reduce
the state information in other ByteHTAP modules, a centralized
Metadata Service (MDS) is implemented, as shown in Figure 2. It
also provides the globally committed LSN from the Replication
Framework as the read LSN for OLAP queries.

In ByteHTAP, there are three different kinds of metadata that
we need to consider: catalog information, partition information for
OLTP and OLAP engines, and statistic information for OLTP and
OLAP data. ByteHTAP’s OLTP system manages its metadata in its
own data store. MDS stores other metadata information, such as
OLAP storage partitioning schema and statistics for the partitioned
columnar store.

TheMDS server is a dedicated process built on top of a Zookeeper
[36] cluster for high availability. MDS clients are integrated into the
OLAP compute engine and storage servers, in order to communicate
with the MDS server for multi-version metadata information. MDS
is integrated with a DDL parser that handles most MySQL DDLs.
DDL logical logs, which carry metadata changes, are generated on
the OLTP side, relayed by the Replication Framework, and parsed by
MDS upon arrival. The resultant catalog/partition scheme changes
are deserialized, persisted, and made available for service. More
details about DDL handling are discussed in Section 5.3.

3.4 OLAP Engine
To support complex analytical queries, we leverage Apache Flink
[5] as our OLAP compute engine. We evaluated several widely-used
open source compute systems including Flink [5], Presto [11] and
Apache Spark [63]. While we saw similar TPC-H [17] and TPC-DS
[16] performance in these engines, we decide to use Flink since it is
widely used within our company, and it can provide a good support
for streaming quires in the future. By combining Flink with our
own Columnar Store, we construct an OLAP system for ByteHTAP
in a short development time, and our OLAP system can directly
inherit the functionalities and benefits from Flink.

To enable Flink to read from our store efficiently, we built a cus-
tom connector that supports reading from the Columnar Store in
parallel. In addition, ByteHTAP supports a wide range of computa-
tion pushdown including but not limited to selection predicates and
aggregations. To reduce the read load to our store, we actively apply
partition pruning logic during the query compilation phase. The
query optimizer determines if there are any predicates on partition
columns that match our partition scheme so that it can remove
irrelevant partitions. We also made a few other important improve-
ments to Flink’s core engine to better serve our query patterns
(details are discussed in Section 6).

One of our major contributions is extending ByteNDB’s repli-
cated storage to support both row and column format data with
high data freshness and strong data consistency. In the next section,
we will describe ByteHTAP’s Columnar Store in detail.

4 SHARED STORAGEWITH HIGH DATA
FRESHNESS

In this section, we describe the columnar store of ByteHTAP, which
consists ofDelta Store and Base Store. The Delta Store is a distributed

in-memory and row-format store. It can apply logs in low latency
and provides high fresh data to the OLAP engine for querying. The
Base Store is a distributed and persistent columnar store. Delta Store
and Base Store plus Log Store and Page Store on the OLTP side are
governed under the unified Replication Framework. They form the
shared storage layer of ByteHTAP. We adopt several techniques to
ensure high data freshness in the storage.

4.1 Delta Store
In ByteHTAP, an OLAP table can be partitioned with each partition
having three replicas to ensure high availability. Therefore, we
maintain a Delta Store for each partition replica of a table. A Delta
Store consists of two lists: insertion list and deletion list, which
record insert and delete operations, respectively, in the order of the
LSN of rows. In ByteHTAP, an update operation is transformed to
a delete operation followed by an insert operation with the same
LSN in logic logs.

In ByteHTAP, a scan over both Delta Store and Base Store needs
to check if a scanning row has been deleted, i.e., if that row is in the
deletion list of Delta Store. Therefore, we maintain an additional
delete hash map to record all deletions in a Delta Store to accelerate
the lookup of the deletion list.

There are four major operations in a Delta Store: LogApply, Flush,
Garbage Collection, and Scan. Data structures and algorithms in
Delta Store are carefully designed so that these operations can run
in parallel with high data freshness and strong data consistency. We
will discuss how strong data consistency is achieved in Section 5.

LogApply. As shown in Figure 2, Replication Framework dis-
tributes logical logs to Delta Store based on the partition key of
a table. These logical logs are ordered by their LSNs. Then, the
LogApply operation appends each insert log and delete log entry
to the insertion list and deletion list, respectively. A delete log is
also inserted to the deletion hash map, where the key of the map is
the primary key stored in the log.

Flush. Flush is a background task in Delta Store that period-
ically transfers accumulated row-format data to column-format,
and stores them in corresponding durable Base Store located on
the same storage node. The process of a Flush can be described
as follows. First, we select an LSN as the end point of this Flush
based on a pre-defined threshold in terms of either data block size
or number of rows. The end point of the previous Flush and this
new end point form a flush range. Second, for all rows in the flush
range of the insertion list, we sort them based on their primary
keys, and convert them from row format to column format. Third,
we write the column data as a data block to the Base Store. Note
that we need to exclude the rows that are deleted in the flush range
by checking the deletion hash map in the Delta Store in the above
process. Lastly, we handle deletes in the deletion list by updating
the delete bitmap of data blocks in the Base Store. Details of the
delete bitmap will be described in Section 4.2.

Garbage Collection (GC). Garbage Collection is a background
task that periodically checks Delta Stores in a storage node. If the
flushed data in a Delta Store reaches a threshold and no active scans
need them, the GC task can truncate these flushed data from the
Delta Store to release memory.

3415



Scan. An OLAP query will scan both the Delta Store and Base
Store, and union the results together. In ByteHTAP, we provide
snapshot read with a read LSN for each query to achieve strong
data consistency.

As Delta Store currently does not support spilling data to disk,
we need to ensure that it utilizes memory efficiently, and never hits
an out-of-memory error in the case of a high rate of data changes.
ByteHTAP has a workload management module to monitor the
resource utilization, and manage the resource usage to prevent se-
vere performance issues in the system. For example, when memory
utilization is high, urgent Flushes are triggered to get the memory
utilization back to a normal state. Due to space constraints, we skip
the details of workload management in this paper.

4.2 Base Store
Base Store is a persistent column store that is created for each parti-
tion replica. It is co-located on the storage node with an associated
in-memory Delta Store. We explicitly made the decision that does
not store the LSN for each data record in the Base Store to reduce
storage overhead and to improve update and scan efficiency. The
disadvantage of this decision is that we cannot support reading
snapshot versions older than the oldest version in the Delta Store,
which is not a problem in our current use cases.

Base Store data is stored in a Partitioned Attributes Across (PAX)-
like [18] format in the local file system of a storage node. PAX-
like format is used in many open source OLAP systems such as
Kudu [42]. Each Base Store contains many data blocks, and each
block is a collection of rows with a default size of 32MB. Data within
each block is ordered by the table’s primary key. In each data block,
we persist both block-level metadata and the encoded data for
each column. A block’s metadata includes the number of rows, key
range, bloom filter for primary keys, and per-column statistics like
min/max, and they will be used during a read operation to trim the
data in advance. Currently, we only support value-based index on
primary keys, but we will support secondary indices in the future.

Flush operation from Delta Store will generate new Base Store
blocks. In order to support data changes, one important design
decision is that we use a delete bitmap to track deletes over a data
block. To efficiently apply Delta Store deletes on immutable data
blocks, we leverage RocksDB [12] to store delete bitmaps for rows
removed from the Base Store. Each data block’s delete bitmap is
stored inside RocksDB as a single key/value pair, with block id as
key, and the bitmap in bytes as value, since RocksDB provides a
reliable and fast lookup/update store in addition to the append-only
Base Store.

Groom. Base Store implements a groom mechanism that in-
cludes Compaction and Garbage Collection (GC) to reduce disk us-
age and improve query performance. Since a delete operation of
Base Store only marks bits corresponding to the deleted rows in the
delete bitmap but does not remove them from its data block, the
disk usage of Base Store will continue to grow without a grooming
process. In addition, the data blocks of a partition generated by
subsequent Flushes from its Delta Store may overlap in primary
key range. When a query scans Base Store for a given key range, it
may have to scan multiple data blocks with overlapping key ranges,
which will greatly reduce query efficiency.

Compaction.When the ByteHTAP is running, a background
thread periodically measures the percentage of deletes in data
blocks and the extent of overlapping of primary keys among differ-
ent data blocks to select data blocks for Compaction. Specifically,
data blocks with a high deletion rate or a high overlapping rate will
be prioritized for Compaction. The background thread aggregates
the data rows of two or more selected data blocks and writes the
aggregation result into new data blocks. The new data blocks do
not contain deleted rows and minimize overlap in the key range.
After new blocks are generated, the background thread atomically
updates the metadata of new blocks accordingly. At the end of
Compaction, the background thread also inserts the old data blocks
into a GC list. Data blocks stored in the GC list will be recycled
during the asynchronous GC.

Garbage collection. A background thread periodically checks
the data blocks stored in the GC list and reclaims the storage space
by permanently removing them if there are no active queries still
accessing them. Details will be described in Section 5.

4.3 High Data Freshness
We define data freshness as how long the recently changed data
(insert/update/delete) from the OLTP (TP) system can be visible to
an OLAP (AP) query. It is critical to query recently changed data in
an HTAP system, especially for real-time analytical workloads. In
ByteHTAP, a committed log in the TP system can be read by an AP
query in less than one second in most cases. We achieve this high
data freshness by adopting the following innovations:

Efficient Log Replication. As Figure 2 shows, Replication
Framework will replicate the transactional logs to TP and AP data
stores in the unified storage layer. As described in Section 3, the
Quorum-based voting protocol is adopted in log distribution to
achieve good performance and high availability. During the log
distribution, if there are holes due to the replica inconsistency,
we apply the gossip protocol using pull-and-push synchronization
mode to fill the holes. As such, the delay on the log replication is
typically low.

Fast LogApplywith Efficient DeleteHandling. In ByteHTAP,
an update operation is replaced by a delete and an insert operation.
ByteHTAP uses a soft delete approach to achieve fast LogApply
and Flush, which contributes to high data freshness, by pushing
delete handling to the time of query scans. During the LogApply,
delete logs are inserted into the delete list and delete hash map,
both at a constant cost in the Delta Store. With the use of delete
bitmap, Delta Store Flushes do not need to change existing data
blocks. In addition, our TP system guarantees that the logical logs
are valid, which saves the cost of validation on the insert/delete
logs during the LogApply. For example, LogApply does not need
to validate that an insert may contain duplicate primary keys with
existing data in the Base Store since such a primary key violation
would have been caught when the DML statement is executed in
the OLTP system.

Efficient Memory Management Using a Vector of Arenas.
An efficient memorymanagement using a vector of arenas improves
the performance of LogApply and Delta Store GC. There are lots of
memory allocations during LogApply and memory releases during
Delta Store GC. The cost of these operations is important to the

3416



Figure 3: LSNs kept in Delta Store and Base Store for Data
Consistency

high data freshness. To efficiently manage the in-memory Delta
Store, we introduce the vector of arenas for the memory manage-
ment of Delta Store. Each Delta Store initially has one arena with
configurable starting size. A new arena will be allocated with dou-
bled size (capped on 1MB) and added to the vector if the Delta Store
uses up the memory in the current arena. To efficiently allocate
and release arenas, we limit the arena size to one megabyte. Each
arena is associated with an LSN that is the LSN of the last row saved
in this arena. During the Delta Store GC, we release those arenas
whose LSN is smaller than the GC LSN.

5 LSN-BASED STRONG DATA CONSISTENCY
As mentioned in Section 3, ByteHTAP guarantees strong data con-
sistency with an LSN-based versioning mechanism. At a high level,
our OLAP storage can provide consistent snapshot reads. Delta
Store keeps a limited history of recent versions to support con-
current queries. On the other hand, Base Store only keeps a single
version that is the maximum data version generated by Delta Store’s
most recently Flush. Each query carries a read LSN obtained from
Metadata Service that it can use to get its read snapshot. Also, the
data operations on OLAP side are carefully coordinated through
various LSNs as there can be many concurrent operations in our
shared storage. In addition, not keeping record-level versions in
Base Store also brings additional challenges for supporting snap-
shots in ByteHTAP. In this section, we describe our algorithms for
supporting consistent data operations in detail.

5.1 Important LSNs in ByteHTAP
As the essential building blocks of the versioning mechanism, sev-
eral LSNs are maintained in a Delta Store as shown in Figure 3,
including:
• 𝐿𝑆𝑁𝐷𝑆𝑚𝑖𝑛 : The lowest LSN for the active data entries in a Delta

Store that have not been flushed to the Base Store.
• 𝐿𝑆𝑁𝐷𝑆𝑚𝑎𝑥 : The highest LSN of the active data entries in a Delta

Store.
• 𝐿𝑆𝑁𝑟 : The read LSN of a scan. It is also the upper bound of a

scan snapshot.
• 𝐿𝑆𝑁𝑟𝑒𝑎𝑑𝑚𝑖𝑛 : Smallest 𝐿𝑆𝑁𝑟 of all active scans. We use a min

heap to track the read LSNs of all active scans.
• 𝐿𝑆𝑁𝑠𝑐𝑎𝑛_𝑠𝑡𝑎𝑟𝑡 : The lower bound of a scan’s snapshot, which is

the 𝐿𝑆𝑁𝐷𝑆𝑚𝑖𝑛 when a scan arrives at the Delta Store. We also
maintain a min heap for 𝐿𝑆𝑁𝑠𝑐𝑎𝑛_𝑠𝑡𝑎𝑟𝑡 for all active scans in the
system.

• 𝐿𝑆𝑁𝑓 𝑙𝑢𝑠ℎ𝑒𝑛𝑑 : The largest LSN of a Delta Store’s data entries in
the next Flush. Once a Flush succeeds, logically speaking, the
Base Store’s version is upgraded to the value of that Flush’s
𝐿𝑆𝑁𝑓 𝑙𝑢𝑠ℎ𝑒𝑛𝑑 .

• 𝐿𝑆𝑁𝑑𝑠𝑔𝑐 : Delta Store’s data entries with LSNs less than this LSN
will be truncated by the next Delta Store GC.

• 𝐿𝑆𝑁𝑏𝑠_𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒 : An LSN-based version assigned to the stale data
block at the end of Base Store Compaction, depicting the Delta
Store’s state at that time and is used for Base Store GC.

These LSNs, along with conventional concurrency control tech-
niques, ensure snapshot read consistency for concurrent scans on a
data partition, even whenmultiple foreground and background data
operations are conducted concurrently within the same partition.

5.2 Query and DML Handling
In this section, we explain how snapshot read consistency is guar-
anteed by examining the interactions between a scan and other
data operations on a data partition.

Scan. From the whole system’s perspective, an OLAP scan on a
table is distributed as one scan task per partition, using the same
read LSN (i.e. 𝐿𝑆𝑁𝑟 ) across all tasks. As for a single partition, LSNs
of all the unflushed data in the Delta Store of a partition form
an LSN window [𝐿𝑆𝑁𝐷𝑆𝑚𝑖𝑛 , 𝐿𝑆𝑁𝐷𝑆𝑚𝑎𝑥 ]. There are three possible
situations:
• 𝐿𝑆𝑁𝑟 > 𝐿𝑆𝑁𝐷𝑆𝑚𝑎𝑥 : Not all visible logs of the scan have been

applied in the Delta Store, and Replication Framework will put
this scan on hold until the data is available.

• 𝐿𝑆𝑁𝑟 < 𝐿𝑆𝑁𝐷𝑆𝑚𝑖𝑛 : The snapshot is no longer valid in this case
and an error will be returned. The OLAP compute engine will
fetch updated LSNs from Metadata Service and will retry the
query with an up-to-date 𝐿𝑆𝑁𝑟 .

• 𝐿𝑆𝑁𝐷𝑆𝑚𝑖𝑛 <= 𝐿𝑆𝑁𝑟 <= 𝐿𝑆𝑁𝐷𝑆𝑚𝑎𝑥 : This is the most common
case and the visibility of data includes all inserts and deletes in
[𝐿𝑆𝑁𝐷𝑆𝑚𝑖𝑛 , 𝐿𝑆𝑁𝑟 ] in the Delta Store, plus all the data in the
Base Store. Since Base Store does not maintain LSNs for data
records, when ByteHTAP generates the execution plan, it takes
a snapshot by fetching all the relevant persisted data blocks’
names and making a copy of the current delete bitmaps over
those blocks.

In addition, we need to make sure that other concurrent operations
on a partition will not affect existing snapshots of active scans.

LogApply. LogApply is a foreground operation that appends a
batch of inserts and deletes to the end of a Delta Store’s lists. It will
only increase 𝐿𝑆𝑁𝐷𝑆𝑚𝑎𝑥 , but will not affect the scan snapshots.

Flush. Flush is a background operation that persists Delta Store
data in the window [𝐿𝑆𝑁𝐷𝑆𝑚𝑖𝑛 , 𝐿𝑆𝑁𝑓 𝑙𝑢𝑠ℎ𝑒𝑛𝑑 ] to the Base Store in
columnar format. Normally, we choose current 𝐿𝑆𝑁𝑟𝑒𝑎𝑑𝑚𝑖𝑛 as the
𝐿𝑆𝑁𝑓 𝑙𝑢𝑠ℎ𝑒𝑛𝑑 at the beginning of a new Flush to prevent later arrived
scans suffering from invalid snapshots (i.e. 𝐿𝑆𝑁𝑟 < 𝐿𝑆𝑁𝐷𝑆𝑚𝑖𝑛). At
the end of the Flush, it will atomically add new data blocks into the
Base Store, updates delete bitmaps of existing data blocks, persists
𝐿𝑆𝑁𝑓 𝑙𝑢𝑠ℎ𝑒𝑛𝑑 and updates the new 𝐿𝑆𝑁𝐷𝑆𝑚𝑖𝑛 to the LSN of the
oldest active data entry accordingly (setting to 𝐿𝑆𝑁𝑓 𝑙𝑢𝑠ℎ𝑒𝑛𝑑 + 1 if
no data is left in Delta Store). The above procedures in Scan and
Flush are synchronized by appropriate locking for concurrency
control. ByteHTAP users can configure the Flush frequency to

3417



control how much data to be preserved in the Delta Store. The
more data kept in the Delta Store, the larger range of valid snapshot
windows ByteHTAP can support, with the cost of more memory
consumption. The persisted 𝐿𝑆𝑁𝑓 𝑙𝑢𝑠ℎ𝑒𝑛𝑑 also marks the latest data
that has been persisted, which is used as the starting point for the
Replication Framework to synchronize logical logs in the case of
failure recovery. One potential issue is that a long running query
may block Delta Store Flush for a long period of time. Currently,
a long running query will be automatically killed after it is over a
pre-defined time threshold in ByteHTAP.

Delta Store GC. Delta Store GC is a background operation
to remove already-flushed data (i.e. LSN < 𝐿𝑆𝑁𝐷𝑆𝑚𝑖𝑛) on which
there are no active scans. 𝐿𝑆𝑁𝑑𝑠𝑔𝑐 is set tomin(min(𝐿𝑆𝑁𝑠𝑐𝑎𝑛_𝑠𝑡𝑎𝑟𝑡 ),
𝐿𝑆𝑁𝐷𝑆𝑚𝑖𝑛) when the GC starts.

Base Store Compaction. A Base Store Compaction operation
makes an atomic switch between metadata of new and stale data
blocks upon its completion. During the atomic metadata switch,
the largest read LSN of all the currently active scans in Delta Store
will be recorded as the 𝐿𝑆𝑁𝑏𝑠_𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒 of the stale data blocks, in
order to make sure that no active scans are accessing the blocks
when they get GC-ed. The stale blocks will be appended to the Base
Store GC list along with their 𝐿𝑆𝑁𝑏𝑠_𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒 , as shown in the Base
Store part of figure 3.

Base Store GC. To prevent deleting on-disk data which is being
accessed by an active scan, the Base Store GC thread compares the
current 𝐿𝑆𝑁𝑟𝑒𝑎𝑑𝑚𝑖𝑛 with the 𝐿𝑆𝑁𝑏𝑠_𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒 of each staled block.
Only data blocks with 𝐿𝑆𝑁𝑏𝑠_𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒 < 𝐿𝑆𝑁𝑟𝑒𝑎𝑑𝑚𝑖𝑛 are guaranteed
not serving any active scan, thus can be safely GC-ed.

We can use an example to illustrate the usages of the LSNs dis-
cussed above. Figure 3 illustrates a specific time point in a partition.
At the time point, the 𝐿𝑆𝑁𝐷𝑆𝑚𝑖𝑛 and 𝐿𝑆𝑁𝐷𝑆𝑚𝑎𝑥 in Delta Store
are 200 and 500, respectively. Assume 𝑆𝑐𝑎𝑛𝑎 with 𝐿𝑆𝑁𝑟=400 just
arrives, while a Flush, a Delta Store GC and a Base Store GC are
scheduled to happen concurrently. Assume there is an ongoing
scan that arrived earlier than 𝑆𝑐𝑎𝑛𝑎 , i.e. a 𝑆𝑐𝑎𝑛𝑏 with a 𝐿𝑆𝑁𝑟=300,
which takes its snapshot when 𝐿𝑆𝑁𝐷𝑆𝑚𝑖𝑛 is 100. Thus, the current
min(𝐿𝑆𝑁𝑠𝑐𝑎𝑛_𝑠𝑡𝑎𝑟𝑡 ) is 100, and 𝐿𝑆𝑁𝑟𝑒𝑎𝑑𝑚𝑖𝑛 is 300.

𝐿𝑆𝑁𝑓 𝑙𝑢𝑠ℎ𝑒𝑛𝑑 of the concurrent Flush is set to 𝐿𝑆𝑁𝑟𝑒𝑎𝑑𝑚𝑖𝑛 , thus
the concurrent Flush will flush data entries in [200, 300] to Base
Store. At the end of the Flush, the new 𝐿𝑆𝑁𝐷𝑆𝑚𝑖𝑛 will be set to
the LSN of the next data entry, say, 301. Concurrently, 𝑆𝑐𝑎𝑛𝑎 will
atomically take a snapshot of Delta Store and Base Store data blocks
(not shown) with 𝐿𝑆𝑁𝑠𝑐𝑎𝑛_𝑠𝑡𝑎𝑟𝑡 and 𝐿𝑆𝑁𝑟 inserted into the twomin
heaps respectively. So if 𝑆𝑐𝑎𝑛𝑎 takes its snapshot before the end of
the Flush, it will have a snapshot window of [200, 400] with the old
metadata, Base Store data blocks and delete bitmap, otherwise it
will have a snapshot window of [301, 400] with the newly Flush-
modified metadata, data blocks and delete bitmap.

As for theDelta Store GC,𝐿𝑆𝑁𝑑𝑠𝑔𝑐 is set to 100. An𝐿𝑆𝑁𝑏𝑠_𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒
value of 250 means that when its corresponding data blocks are
turned stale by a previous Compaction, the largest read LSN of
active queries at that time in Delta Store is 250, thus the current
oldest active scan 𝑆𝑐𝑎𝑛𝑏 must come later than that. Thus, this block
and other older staled blocks can be safely purged, but not the data
blocks with LSN=310 or newer, as they may be accessed by 𝑆𝑐𝑎𝑛𝑏 .

5.3 DDL Handling
Besides DML and query operations, ByteHTAP also needs to make
sure its DDL operations can provide strong data consistency. To
achieve this, ByteHTAP keeps multiple versions of database meta-
data in its Metadata Service (MDS), which is the source of truth for
metadata in ByteHTAP.

When a DDL statement arrives in ByteHTAP, it will first be
processed by the OLTP engine in a MySQL-compatible fashion.
Next, the Replication Framework is responsible to send the DDL
logical log generated for the DDL operation to MDS and the AP
storage servers. MDS will parse the DDL logical log to generate a
new version of metadata, and the LSN of the logical log is served
as the metadata version number. MDS will persist and then make
this new version of metadata available for AP queries, along with
all historical versions of metadata.

AP storage servers are integrated with an MDS client, which is
capable of periodically pulling the newly available metadata, and
caching a copy of a complete history of metadata locally. When
a DDL logical log reaches a Columnar Store partition, during the
LogApply, the MDS client will fetch the corresponding metadata
according to the received DDL LSN from MDS. Currently, we only
support DDL changes that do not require data-reorganization, such
as ADD, DROP and RENAME COLUMN. More advanced support
is under development.

6 OLAP QUERY PERFORMANCE
OPTIMIZATION

Besides the high data freshness and strong data consistency, perfor-
mance is another important metric for ByteHTAP, especially when
it needs to handle the real-time analytical workloads. In this section,
we discuss our performance optimizations for the storage engine
and OLAP query engine, including delete handling, computation
pushdown, statistics collection, asynchronous read, and parallelism
optimization. We currently do not have an OLAP plan cache so
each query is compiled freshly with its own read LSN. We plan to
add this feature in the future.

6.1 Delete Optimization for Scans
To support efficient deletes handling, we store delete bitmaps that
contain information about rows that are removed from Base Store
after the original Flush. We have described the bitmap format in
Section 4.2.

During a Base Store scan operation, the scanner firstly takes a
snapshot of the block ids to be scanned, then fetches the bitmap
based on each block id, and finally, scans the base column data and
applies the deletes. In addition to checking deletes from a bitmap
during a Base Store scan, we also need to efficiently handle deletes
that are still residing in Delta Store. We implemented two methods
to achieve this:
• Lazy approach: Since the deletes in Delta Store are stored in a

delete hash map within Delta Store, we scan the Base Store first,
then for each row in the result, we do a hash lookup to see if it
has already been deleted before we return the final result.

• Eager approach: During the Base Store scan initialization stage,
deleted keys fromDelta Store in the scan’s snapshot are retrieved
first. For each deleted key, we leverage our primary key index

3418



in Base Store to do an index lookup and construct a selection
vector before we scan the Base Store data.

Each approach has its advantages and disadvantages. The lazy
approach is similar to a hash join where we probe the base data, and
then for each row we do a hash lookup using the Delete Hashmap
in Delta Store, and return the joined result. Note that this approach
always requires primary key columns being selected even if it is
not required by the query. The eager approach, on the other hand,
is similar to an index-based nested loop join where we read the
deletes from the Deletion List in Delta Store first, then for each
delete, we do index lookup on the Base Store table, and return the
joined result. The advantage of the eager approach is that it can be
very efficient when there are not many deletes in Delta Store and a
large amount of data resides in Base Store. On the other hand, the
eager approach is less efficient when Delta Store contains a large
number of deletes that affect many data blocks in Base Store. To
produce the optimal execution plan, we have built a cost model
to intelligently determine the best approach to use based on the
actual statistics. The statistics are collected on the fly from Delta
Store as well as Base Store during each Flush. The experimental
results (given in Section 7.4) show that our cost model can select
the proper approach and yield the best performance.

6.2 Computation Pushdown to Storage Engine
As Figure 2 shows, ByteHTAP decouples storage and compute.
Therefore, we design and implement predicate pushdown and aggre-
gate pushdown to reduce data transferring from the storage engine
to the query engine.

Predicate Pushdown. Query planner decides if a predicate
of a scan operator can be pushed down to the storage engine by
checking whether the predicate can be evaluated by the storage en-
gine and its corresponding cost savings. With predicate pushdown,
scanned data will be filtered by the predicate at the storage layer
and only results satisfying the predicate will be sent back to the
query engine for further processing. Base Store maintains min/max
column values for each column of a data block as metadata, which
is computed during Delta Store Flush or Base Store Compaction.
If the predicate evaluation based on the min/max values can filter
out a data block, we do not need to load the data from disk for that
data block at all. In addition, we also perform lazy materialization
on the Base Store data by evaluating the columns with predicates
first. In the case that the evaluation of predicates can filter out all
rows in a data block, we can skip that data block to avoid reading
unneeded columns.

Aggregate Pushdown. In a typical AP workload, aggregate
operations are widely used over a large volume of data. Usually, an
aggregate operation can be split into partial aggregates (local aggre-
gates) and final aggregates. The AP query optimizer can consider
pushing down qualified partial aggregates to the storage engine,
e.g. when there is only a table scan under the aggregate and all
filtering predicates (if exist) of the scan can also be pushed down
to the storage engine. In each partition, storage engine will aggre-
gate the scanned data after applying filtering predicates (if exist)
and returns the partially aggregated results to the compute engine.
Then, the compute engine will conduct a final aggregate over the
partial results.

6.3 OLAP Query Engine Optimization
Since we leverage Flink to support complex analytical queries, we
have made a few improvements to Flink’s core engine to improve
its OLAP capability. As our current customers’ OLAP queries are
time-sensitive and require a high queries-per-second (QPS), our
optimizations focus on reducing latency in query optimization and
query execution, and improving the overall system throughput.
Below are some improvements we have done.

Statistics Collection. We use Flink to compute statistics of
tables, and store the results in ByteHTAP’s Metadata Service (MDS).
During query compilation, our Flink connector will fetch those
statistics, either from local cache or MDS, to help Flink’s cost-based
optimization. For simple queries, we also provide a fast path to
bypass the full cost-based optimization. To provide queries with
up-to-date statistics, we also collect the incremental statistics from
Flush and Compaction operations, and store them in MDS. Those
additional statistics may trigger Flink to re-compute full statistics
when changes seem significant enough.

Asynchronous Read. By default, a Flink connector is a single
thread repetitively reading and processing data segments until it
finishes processing the entire data set. As a sequential process, it
takes significant I/O wait time during the reading and processing of
data, making the whole process less efficient. We split the connector
into two separate threads, one for reading from columnar store
and the other for processing the data and passing them to other
operators. They communicate through an adjustable buffer. With
this approach, we see significant improvement in I/O throughput
and TPC-DS total running time reduces by 10%.

Parallelism Optimization. Flink uses pre-configured task par-
allelism that does not consider the size of data and the scale of the
job. This design wastes task container resources for simple queries,
and increases end-to-end delay for complex queries that need larger
parallelism. We added optimizer rules to adjust source scan paral-
lelism based on the data statistics and the number of partitions. In
addition, operators above scan can adjust their parallelism accord-
ing to the source parallelism. This work improves our cluster QPS
by 20% on TPC-DS workloads.

7 PERFORMANCE STUDY
In this section, we describe our system’s evaluation through a set
of experiments. First, we present experiments conducted for mea-
suring our system’s HTAP capability. We measure the performance
interference between OLTP and OLAP engines using the bench-
mark, CH-benCHmark [30], and measure data freshness using Sys-
bench [14]. Then, we evaluate our system’s OLAP compatibility
and performance using TPC-DS [16]. Lastly, we present the results
of OLAP query performance optimization discussed in Section 6.
All of the experiments are conducted on a cluster of seven machines.
The machine and cluster’s setup are listed in Table 1. Note that
some ByteHTAP components are co-located on the same machine
for saving resources.

7.1 Hybrid OLTP and OLAPWorkload
An HTAP system’s performance on mixed OLTP/OLAP workloads
is critical. Therefore, we run CH-benCHmark [30] on ByteHTAP
to test its performance on mixed workloads. CH-benCHmark is a

3419



Figure 4: Throughput for OLTP Figure 5: CH-benCHmark queries latency Figure 6: Operation latency over time
in CH-benCHmark

Table 1: Machine and cluster setup.

CPU Intel(R) Xeon(R) Gold 5218
(2 NUMA Nodes, 32 cores)

Memory 378GB
Cache 22MB shared L3 cache
OS Debian 4.14.81
Network 25Gbps Ethernet
Page Store & Log Store 3 servers
Columnar Store & OLAP engine 3 servers
OLTP engine &Metadata Service 1 server

standard HTAP benchmark, which bridges the gap between the
standard TPC-C benchmark for OLTP and TPC-H benchmark for
OLAP. CH-benCHmark is built on the unmodified version of the
TPC-C benchmark, and its OLAP part contains 22 analytical queries
inherited from TPC-H. It enables running both OLTP and OLAP
queries on a set of shared tables in one database. Our experiments
are conducted based on CH-benCHmark with 100 warehouses data
set [30]. The data is firstly loaded into ByteHTAP’s OLTP data store
and is then replicated to the OLAP columnar store.

Figure 4 shows the throughput of the TP engine with a differ-
ent number of TP and AP clients. The throughput is measured
as transactions-per-minute (tpmC [15]). As the figure shows, the
throughput of TP engine increases almost linearly as the number
of TP clients increases. For a fixed number of TP clients, the TP
throughput is almost the same with different number of AP clients.
The results show that ByteHTAP’s OLTP performance is barely
impacted by the OLAP workloads due to its separate-engine design.

Next, we look at the AP performance on CH-benCHmark, where
the accumulated query latency of the 22 analytical queries is used
as the performance metric. When we keep updating the data from
the TP side through multiple TPC-C transactional queries, binary
logs are replicated to the Delta Store on the AP side that triggers
Flush operations. As Figure 5 shows, when increasing the TP clients
from 0 to 64, there is only about 5% performance reduction. This is
because that most of the flush latencies are less than 20ms and the
scan latencies remain low during the flush operations, as shown in
Figure 6.

However, when the number of TP clients is increased to 128 in
Figure 5, the accumulated query latency shows an obvious increase.
This is because in this case the log replication between TP and AP

Figure 7: Data freshness with different throughputs

becomes a bottleneck, which could introduce 2s to 3s delay in log
replication. When this happens, if an AP query wants to fetch the
data with latest committed LSN, it needs to wait until the latest logs
up to this LSN are replicated and become visible to AP. We could
solve this issue through adding more machine resources to avoid
overloading the Replication Framework. So far this rarely happens
in our production scenarios.

In summary, ByteHTAP’s AP performance is stable in most cases,
even during the execution of Flush and Compaction operations.

7.2 High Data Freshness Experiment
Data freshness is an important metric to HTAP systems. However,
we cannot find a common benchmark for measuring it. Some previ-
ous work adopts freshness-rate metric [25, 55]. However, we decide
to use freshness-time metric, that is, how fast the data modification
on the OLTP side becomes available to queries on the OLAP side.
From our perspective, this metric is more appropriate for our users
as it matches well with their requirements.

As described before, the logical logs of a transaction will be
synced from TP store to the AP storage servers, and become visible
to AP queries after being applied to Delta Store. Thus, the total
time of this process can be used as our freshness-time metric 𝑇𝑓 .
According to our design goal, 𝑇𝑓 should be less than one second
for a typical workload.

We use the same experiment setup given in Table 1. We de-
sign our data freshness experiment based on the SysBench [14]
benchmark and use a hash-partitioned table with 257 partitions.
We choose to use 16 concurrent write threads, which represents
one of the typical numbers of TP clients observed in the produc-
tion environment. We vary the transaction sizes by adjusting the
number of data operations within one transaction during the ex-
periment. We start from 1 update, 1 delete, and 1 insert, and double

3420



Figure 8: CH-benCHmark
OLAP performance

Figure 9: Cost-based mode
optimization

Figure 10: Computation
pushdown improvement

Figure 11: Compaction impact
on range scan

each operation subsequently until 128. The throughput is calculated
by multiplying the transaction size with transactions-per-second
obtained from SysBench.

Figure 7 shows the average freshness-time metrics over 257
partitions with different transaction throughput. As expected, the
freshness-time metric generally increases with the increase of total
data throughput. Note that with 16 write threads and a relatively
high data throughput of 22681 KB/s we still observe a low 𝑇𝑓 of
606 ms. This satisfies our design goal. We also conduct experiments
with 32 write threads, and observe similar patterns.

7.3 OLAP Compatibility and Performance
In this section, we discuss our experiments for evaluating Byte-
HTAP’s OLAP performance. We firstly test ByteHTAP using TPC-
DS [16] benchmark that is a standard benchmark for general-purpose
decision support systems. The results show that our system can
support all TPC-DS queries. The ability to support complex OLAP
queries is very important for users to adopt ByteHTAP. We also
evaluated the TPC-DS performance of a well-known open source
HTAP system on the market, referred to as HTAP-T 1. The results
show that only 66 out of 103 TPC-DS queries are supported in
HTAP-T. Due to space constraints, we omit the benchmark results.

We next discuss ByteHTAP’s performance on CH-benCHmark.
Currently, ByteHTAP supports all 22 analytical queries, but in
HTAP-T, the query 16 has inconsistent results on its OLTP and
OLAP engines. Figure 8 shows our system’s performance on CH-
benCHmark with 100 warehouses. We can see that the latency of
most queries is less than 5 seconds, and the accumulated latency
of 21 queries is comparable to that of HTAP-T. We also test Byte-
HTAP’s performance on CH-benCHmark with 1000 warehouses
with seven more OLAP nodes. All queries finish within 10 seconds.
We omit the details due to space constraints.

7.4 Performance Optimization Evaluation
In this section, we conduct multiple experiments to evaluate the
performance optimization presented in Section 6.

Scan Optimization.We conduct an experiment to test the three
delete-handling modes described in Section 6.1: lazy-mode, eager-
mode and cost-based-mode. In the experiment, we create a base
case (test1) with 500, 000 rows in Base Store, and half of them are
deleted in Delta Store. As shown in Figure 9, when we scan a small
number of rows (i.e. 500) in test1, the lazy mode has a slightly better
scan time, since the eager mode would pay a relatively high upfront

1Due to the restrictive proprietary licensing agreement, we omit the vender’s name.

cost to pre-process Delta Store deletes. In test2, we increase the
number of deletes to 99% in Delta Store. The result shows that the
upfront cost paid by eager mode increases accordingly, while the
time in lazy mode does not have a big change. In test3, instead of
changing the number of deletes, we increase the number of rows
to scan to 50, 000. The scan cost in lazy mode grows more sharply
than the eager mode, as it needs to pay a fixed hash-lookup cost
for each scanned row.

Figure 9 also shows that our cost-basedmodel can smartly choose
between lazy and eager mode for a good scan performance based
on collected statistics.

Computation pushdown. To evaluate the effectiveness of com-
putation pushdown from the query engine to the storage engine,
we conduct experiments using the TPC-DS [16] benchmark. We
use the query with predicate and aggregate on the table, store_sales,
in TPC-DS:

SELECT sum(ss_net_profit) AS profit

FROM store_sales

WHERE ss_ticket_number < C

GROUP BY ss_store_sk

ORDER BY profit DESC;

The constant C in the query is chosen with different filter rates: 99%,
50%, and 1%. For each filter rate, we have three modes: no pushdown,
predicate pushdown, and predicate and aggregate pushdown.

Figure 10 shows that both predicate pushdown and aggregate
pushdown can substantially improve ByteHTAP’s performance.

Compaction. Figure 11 shows the scan performance with and
without using compaction. In the experiment, we develop unit
tests that can precisely generate data blocks overlapping in their
primary key ranges. We run the tests on a server with the specifica-
tion described in Table 1. Three tables are defined using the same
schema and are populated with different amounts of data. The total
number of data blocks in the three tables are 1500, 2000, and 2500,
respectively. We make the data blocks in each table overlap at their
primary key ranges. The rows in the key range between 0 and 100
are further deleted and re-inserted 100 times to add additional 100
overlapping data blocks. A range scan is executed on each table to
select the data with a primary key range between 0 and 100.

Figure 11 shows that the scan time reduces dramatically when
compaction is used, since without compaction all data blocks with
overlapping primary keys have to be accessed. In contrast, com-
paction merges overlapping data blocks and removes data blocks
that have been deleted. Therefore, fewer data blocks are scanned,
and the scan efficiency is significantly improved.

3421



Delta Store vs Base Store Scan Performance. In this experi-
ment, we measure the scan performance on column-format data in
Base Store vs. row-format data in Delta Store. The test query scans
one of the 34 columns in the web_sales table of TPC-DS (100GB).
Table 2 shows the scan performance with different flush rates: all
data in Delta Store flushed to Base Store (100%), half amount of
the data flushed (50%), and none of the data flushed (0%). Table 2
shows the scan performance in Base Store is better than Delta Store
although data in Delta Store resides in memory, and Scan Speedups
increases with Flushed Data (%) increasing. In the ByteHTAP sys-
tem, most data is typically flushed to Base Store and stored in the
column format, and only the most recent data temporarily resides
in Delta Store and is stored in the row format.

Table 2: Scan performance with different flush rates.

Flushed Data (%) Scan Speedups
100% 2.90
50% 1.78
0% 1.00

8 LESSONS LEARNED FROM PRODUCTION
Ever since ByteHTAP becomes generally available, it has attracted
many ByteDance internal customers that have HTAP needs. Before
ByteHTAP, many customers’ pipelines consist of multiple con-
nected systems. For example, in certain settings, their row data
often comes from a large number of MySQL databases and are
pre-aggregated by an Extract-Transform-Load (ETL) system. Then,
the data gets loaded into a specialized OLAP system for analysis.
The whole process imposes a delay of more than 1 − 2 hours be-
fore analysts can get the reports, which becomes unsuitable when
data freshness requirement is under a few minutes. Another draw-
back is that customers have to maintain multiple systems and ETL
pipelines for above processing that incur significant operational
overhead. After switching to ByteHTAP, they see a data freshness
improvement from hours to less than 1 minute, as well as a great
reduction in management overhead.

While ByteHTAP is still at an early stage of product adoption,
we have learned some important lessons from our production ex-
perience. As more and more customers start using ByteHTAP, we
expect to learn more in the future.

Allow ByteNDB customers to painlessly upgrade to Byte-
HTAP.Many ByteHTAP’s potential customers come from existing
customers of ByteNDB, which typically have multiple online By-
teNDB clusters with several hundred GB of data generated daily.
Thanks to the decoupled OLTP/OLAP design of ByteHTAP, migrat-
ing these ByteNDB clusters is fairly easy, as OLAP components
can be deployed and enabled separately. No data migration or of-
fline time is needed for the existing online OLTP clusters, and the
whole process can be transparent to the customer. In general, we
think in practice many HTAP use cases come from existing OLTP
customers. Because of this observation, we decide to add a single-
button upgrade option for ByteNDB customers to upgrade their
OLTP databases to ByteHTAP.

Cross OLTP database query ability. Customers often have
multiple ByteNDB databases for their OLTP workload, e.g. one for
each department. However, when they performOLAP analysis, they
want to be able to query across these databases. After learning this
requirement from some early customers, we made simple changes
to allow ByteHTAP OLAP tables to sync from multiple databases
inside ByteNDB, which makes the customer’s life much easier. In
general, providing some flexibilities between the mapping of OLTP
and OLAP data seems a good choice.

Efficient data import. In the case of migrating a large database
instance from traditional OLTP to HTAP systems, we need to create
the initial AP store based on the TP database. One naive approach is
to simply stream the historical logical log to OLAP columnar store,
which is very slow and not practical in practice. We develop a tool
to obtain a consistent snapshot from the Page Store, then parse the
data pages in the snapshot, directly write them to the Base Store in
batches to create the instance data, which significantly reduced the
time to migrate large instances.

Flink enhancements. As our users migrate more and more
workloads to our ByteHTAP system, we are seeing a high QPS
growth and more diverse query types that expose performance
bottlenecks of Flink’s query engine. Accordingly, we need to modify
Flink to address those issues. For example, we improved Flink’s plan
generation from a single-threaded method to a parallel approach.
We also redesigned Flink’s core scheduler to remove the heavy role
of task manager, which greatly improved the throughput of task
scheduling by up to 200%. With all these efforts, we are seeing up
to 25% performance improvements on TPC-H queries compared to
Flink’s open source version. This work has been presented at Flink
Forward Asia 2021 [1–3].

9 CONCLUSIONS
ByteHTAP is a large-scale real-time analytics system supporting
both fresh data changes and strong data consistency, and is de-
signed to meet ByteDance’s growing business demands. In this
paper, we demonstrate how a competitive HTAP system with a
separate-engine and shared-storage architecture is built. Our mod-
ular system design fully utilizes an existing ByteDance’s OLTP
system and an open source OLAP system. ByteHTAP can provide
high data freshness with less than one second delay, which en-
ables many new business opportunities for our customers. Since
its launch around the middle of 2021, we have seen more and more
internal customers use it to replace their previous systems that are
made up of a combination of OLTP databases, OLAP databases, and
additional ETL pipelines. ByteHTAP gives our customers real-time
insights with consistent data and less operational overhead.

ACKNOWLEDGMENTS
Wewould like to extend our thanks to the anonymous reviewers for
their valuable comments. We heartily thank all people who made
contributions to the design and development of the ByteHTAP
system: Ron Hu, Jie Zhou, Yupeng Jin, Liwen Shao, Xikai Wang,
Shicai Zeng, Xiahao Zhang, Fangwen Su, XiangruiMeng, Yong Fang,
Weihua Hu, Dizhou Cao, Runkang He, Guanghui Zhang. Finally, we
thank Vipul Gupta for his careful proofreading of this manuscript.

3422



REFERENCES
[1] 2021. Flink Forward Asia 2021. Retrieved February 23, 2022 from https://flink-

forward.org.cn/
[2] 2021. Improvements of Job Scheduler and Query Execution on Flink OLAP. Re-

trieved February 23, 2022 from https://www.bilibili.com/video/BV1j34y1B72o?
p=7

[3] 2021. Powering HTAP at ByteDance with Apache Flink. Retrieved February 23,
2022 from https://www.bilibili.com/video/BV1j34y1B72o?p=3

[4] 2022. ANSI SQL Standard. Retrieved February 23, 2022 from https://webstore.
ansi.org/Standards/ISO/ISOIEC90752016

[5] 2022. Apache Flink. Retrieved February 7, 2022 from https://flink.apache.org
[6] 2022. BaikalDB. Retrieved February 7, 2022 from https://github.com/baidu/

BaikalDB
[7] 2022. Microsoft Azure Synapse Analytics. Retrieved February 23, 2022 from

https://azure.microsoft.com/en-us/services/synapse-analytics/
[8] 2022. MySQL. Retrieved February 23, 2022 from https://www.mysql.com/
[9] 2022. OceanBase. Retrieved February 7, 2022 from https://open.oceanbase.com
[10] 2022. PolarDB-X. Retrieved February 7, 2022 from https://www.alibabacloud.

com/product/polardb-x
[11] 2022. Presto. Retrieved February 23, 2022 from https://prestodb.io
[12] 2022. RocksDB. Retrieved February 18, 2022 from http://rocksdb.org/
[13] 2022. SingleStore. Retrieved February 7, 2022 from https://www.singlestore.com
[14] 2022. Sysbench. Retrieved February 11, 2022 from https://github.com/akopytov/

sysbench
[15] 2022. TPC-C Specification. Retrieved February 23, 2022 from http://www.tpc.

org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf
[16] 2022. TPC-DS. Retrieved February 11, 2022 from http://www.tpc.org/tpcds/
[17] 2022. TPC-H. Retrieved February 11, 2022 from http://www.tpc.org/tpch/
[18] Anastassia Ailamaki, David J DeWitt, and Mark D Hill. 2002. Data page layouts

for relational databases on deep memory hierarchies. The VLDB Journal 11, 3
(2002), 198–215.

[19] Michael Armbrust, Reynold S Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K
Bradley, Xiangrui Meng, Tomer Kaftan, Michael J Franklin, Ali Ghodsi, et al.
2015. Spark sql: Relational data processing in spark. In Proceedings of the 2015
ACM SIGMOD international conference on management of data. 1383–1394.

[20] Hillel Avni, Alisher Aliev, Oren Amor, Aharon Avitzur, Ilan Bronshtein, Eli Ginot,
Shay Goikhman, Eliezer Levy, Idan Levy, Fuyang Lu, et al. 2020. Industrial-
strength OLTP using main memory and many cores. Proceedings of the VLDB
Endowment 13, 12 (2020), 3099–3111.

[21] Ronald Barber, Christian Garcia-Arellano, Ronen Grosman, Guy Lohman, C
Mohan, Rene Muller, Hamid Pirahesh, Vijayshankar Raman, Richard Sidle, Adam
Storm, et al. 2019. Wiser: A highly available HTAP DBMS for iot applications. In
2019 IEEE International Conference on Big Data (Big Data). IEEE, 268–277.

[22] Ronald Barber, Christian Garcia-Arellano, Ronen Grosman, Rene Mueller, Vi-
jayshankar Raman, Richard Sidle, Matt Spilchen, Adam J Storm, Yuanyuan Tian,
Pinar Tözün, et al. 2017. Evolving Databases for New-Gen Big Data Applications.
In CIDR.

[23] Ronald Barber, Matt Huras, Guy Lohman, C Mohan, Rene Mueller, Fatma Özcan,
Hamid Pirahesh, Vijayshankar Raman, Richard Sidle, Oleg Sidorkin, et al. 2016.
Wildfire: Concurrent blazing data ingest and analytics. In Proceedings of the 2016
International Conference on Management of Data. 2077–2080.

[24] Dipti Borkar, Ravi Mayuram, Gerald Sangudi, and Michael Carey. 2016. Have
your data and query it too: From key-value caching to big data management. In
Proceedings of the 2016 International Conference on Management of Data. 239–251.

[25] Mokrane Bouzeghoub. 2004. A framework for analysis of data freshness. Pro-
ceedings of the 2004 international workshop on Information quality in information
systems, 59–67.

[26] Dennis Butterstein, Daniel Martin, Knut Stolze, Felix Beier, Jia Zhong, and
Lingyun Wang. 2020. Replication at the speed of change: a fast, scalable repli-
cation solution for near real-time HTAP processing. Proceedings of the VLDB
Endowment 13, 12 (2020), 3245–3257.

[27] Le Cai, Jianjun Chen, Jun Chen, Yu Chen, Kuorong Chiang, Marko A. Dimitrijevic,
Yonghua Ding, Yu Dong, Ahmad Ghazal, Jacques Hebert, Kamini Jagtiani, Suzhen
Lin, Ye Liu, Demai Ni, Chunfeng Pei, Jason Sun, Li Zhang, Mingyi Zhang, and
Cheng Zhu. 2018. FusionInsight LibrA: Huawei’s Enterprise CloudData Analytics
Platform. Proc. VLDB Endow. 11 (2018), 1822–1834.

[28] Jianjun Chen, Yu Chen, Zhibiao Chen, Ahmad Ghazal, Guoliang Li, Sihao Li,
Weijie Ou, Yang Sun, Mingyi Zhang, and Minqi Zhou. 2019. Data management
at huawei: Recent accomplishments and future challenges. In 2019 IEEE 35th
International Conference on Data Engineering (ICDE). IEEE, 13–24.

[29] Jack Chen, Samir Jindel, Robert Walzer, Rajkumar Sen, Nika Jimsheleishvilli, and
Michael Andrews. 2016. The MemSQL Query Optimizer: A modern optimizer for
real-time analytics in a distributed database. Proceedings of the VLDB Endowment
9, 13 (2016), 1401–1412.

[30] Richard Cole, Florian Funke, Leo Giakoumakis, Wey Guy, Alfons Kemper, Stefan
Krompass, Harumi Kuno, Raghunath Nambiar, Thomas Neumann, Meikel Poess,
et al. 2011. The mixed workload CH-benCHmark. In Proceedings of the Fourth

International Workshop on Testing Database Systems. 1–6.
[31] Alexandros G. Dimakis, Soummya Kar, José MF Moura, Michael G. Rabbat, and

Anna Scaglione. 2010. Gossip algorithms for distributed signal processing. Proc.
IEEE 98, 11, 1847–1864.

[32] Franz Färber, Sang Kyun Cha, Jürgen Primsch, Christof Bornhövd, Stefan Sigg,
and Wolfgang Lehner. 2011. SAP HANA database: data management for modern
business applications. Proceedings of the VLDB Endowment 40, 4 (2011), 45–51.

[33] David K Gifford. 1979. Weighted voting for replicated data. Proceedings of the
seventh ACM symposium on Operating systems principles, 150–162.

[34] Dongxu Huang, Qi Liu, Qiu Cui, Zhuhe Fang, Xiaoyu Ma, Fei Xu, Li Shen, Liu
Tang, Yuxing Zhou, Menglong Huang, et al. 2020. TiDB: a Raft-based HTAP
database. Proceedings of the VLDB Endowment 13, 12 (2020), 3072–3084.

[35] Murtadha AI Hubail, Ali Alsuliman, Michael Blow, Michael Carey, Dmitry Ly-
chagin, Ian Maxon, and Till Westmann. 2019. Couchbase analytics: NoETL for
scalable NoSQL data analysis. Proceedings of the VLDB Endowment 12, 12 (2019),
2275–2286.

[36] Patrick Hunt, Mahadev Konar, Flavio P Junqueira, and Benjamin Reed. 2010.
ZooKeeper: Wait-free Coordination for Internet-scale Systems. In 2010 USENIX
Annual Technical Conference (USENIX ATC 10).

[37] Alfons Kemper and Thomas Neumann. 2011. HyPer: A hybrid OLTP&OLAP
main memory database system based on virtual memory snapshots. In 2011 IEEE
27th International Conference on Data Engineering. IEEE, 195–206.

[38] Tirthankar Lahiri, Shasank Chavan, Maria Colgan, Dinesh Das, Amit Ganesh,
Mike Gleeson, Sanket Hase, Allison Holloway, Jesse Kamp, Teck-Hua Lee, et al.
2015. Oracle database in-memory: A dual format in-memory database. In 2015
IEEE 31st International Conference on Data Engineering. IEEE, 1253–1258.

[39] Per-Åke Larson, Adrian Birka, Eric N Hanson, Weiyun Huang, Michal
Nowakiewicz, and Vassilis Papadimos. 2015. Real-time analytical processing
with SQL server. Proceedings of the VLDB Endowment 8, 12 (2015), 1740–1751.

[40] Chris Lattner and Vikram Adve. 2004. LLVM: A compilation framework for
lifelong program analysis & transformation. In International Symposium on Code
Generation and Optimization, 2004. CGO 2004. IEEE, 75–86.

[41] Juchang Lee, SeungHyun Moon, Kyu Hwan Kim, Deok Hoe Kim, Sang Kyun Cha,
and Wook-Shin Han. 2017. Parallel replication across formats in SAP HANA for
scaling out mixed OLTP/OLAP workloads. Proceedings of the VLDB Endowment
10, 12 (2017), 1598–1609.

[42] Todd Lipcon, David Alves, Dan Burkert, Jean-Daniel Cryans, Adar Dembo, Mike
Percy, Silvius Rus, Dave Wang, Matteo Bertozzi, Colin Patrick McCabe, et al.
2015. Kudu: Storage for fast analytics on fast data. Cloudera, inc 28 (2015).

[43] Chen Luo, Pinar Tözün, Yuanyuan Tian, Ronald Barber, Vijayshankar Raman,
and Richard Sidle. 2019. Umzi: Unified Multi-Zone Indexing for Large-Scale
HTAP. In EDBT. 1–12.

[44] Zhenghua Lyu, Huan Hubert Zhang, Gang Xiong, Gang Guo, Haozhou Wang,
Jinbao Chen, Asim Praveen, Yu Yang, Xiaoming Gao, AlexandraWang, et al. 2021.
Greenplum: A Hybrid Database for Transactional and Analytical Workloads. In
Proceedings of the 2021 ACM SIGMOD International Conference on Management
of Data. 2530–2542.

[45] Darko Makreshanski, Jana Giceva, Claude Barthels, and Gustavo Alonso. 2017.
BatchDB: Efficient isolated execution of hybrid OLTP+ OLAP workloads for
interactive applications. In Proceedings of the 2017 ACM International Conference
on Management of Data. 37–50.

[46] Norman May, Alexander Böhm, and Wolfgang Lehner. 2017. SAP HANA–The
Evolution of an In-Memory DBMS from Pure OLAP Processing Towards Mixed
Workloads. Datenbanksysteme für Business, Technologie und Web (BTW 2017)
(2017).

[47] John Meehan, Nesime Tatbul, Stan Zdonik, Cansu Aslantas, Ugur Cetintemel,
Jiang Du, Tim Kraska, Samuel Madden, David Maier, Andrew Pavlo, et al. 2015.
S-Store: Streaming Meets Transaction Processing. Proceedings of the VLDB
Endowment 8, 13 (2015).

[48] Barzan Mozafari, Jags Ramnarayan, Sudhir Menon, Yogesh Mahajan, Soubhik
Chakraborty, Hemant Bhanawat, and Kishor Bachhav. 2017. SnappyData: A
Unified Cluster for Streaming, Transactions and Interactice Analytics.. In CIDR.

[49] Niloy Mukherjee, Shasank Chavan, Maria Colgan, Dinesh Das, Mike Gleeson,
Sanket Hase, Allison Holloway, Hui Jin, Jesse Kamp, Kartik Kulkarni, et al. 2015.
Distributed architecture of oracle database in-memory. Proceedings of the VLDB
Endowment 8, 12 (2015), 1630–1641.

[50] Fatma Özcan, Yuanyuan Tian, and Pinar Tözün. 2017. Hybrid transactional/-
analytical processing: A survey. In Proceedings of the 2017 ACM International
Conference on Management of Data. 1771–1775.

[51] Andrew Pavlo, Gustavo Angulo, Joy Arulraj, Haibin Lin, Jiexi Lin, Lin Ma,
Prashanth Menon, Todd C Mowry, Matthew Perron, Ian Quah, et al. 2017. Self-
Driving Database Management Systems. In CIDR, Vol. 4. 1.

[52] Vijayshankar Raman, Gopi Attaluri, Ronald Barber, Naresh Chainani, David
Kalmuk, Vincent KulandaiSamy, Jens Leenstra, Sam Lightstone, Shaorong Liu,
Guy M Lohman, et al. 2013. DB2 with BLU acceleration: So much more than just
a column store. Proceedings of the VLDB Endowment 6, 11 (2013), 1080–1091.

3423

https://flink-forward.org.cn/
https://flink-forward.org.cn/
https://www.bilibili.com/video/BV1j34y1B72o?p=7
https://www.bilibili.com/video/BV1j34y1B72o?p=7
https://www.bilibili.com/video/BV1j34y1B72o?p=3
https://webstore.ansi.org/Standards/ISO/ISOIEC90752016
https://webstore.ansi.org/Standards/ISO/ISOIEC90752016
https://flink.apache.org
https://github.com/baidu/BaikalDB
https://github.com/baidu/BaikalDB
https://azure.microsoft.com/en-us/services/synapse-analytics/
https://www.mysql.com/
https://open.oceanbase.com
https://www.alibabacloud.com/product/polardb-x
https://www.alibabacloud.com/product/polardb-x
https://prestodb.io
http://rocksdb.org/
https://www.singlestore.com
https://github.com/akopytov/sysbench
https://github.com/akopytov/sysbench
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf
http://www.tpc.org/tpcds/
http://www.tpc.org/tpch/


[53] Jags Ramnarayan, Barzan Mozafari, Sumedh Wale, Sudhir Menon, Neeraj Kumar,
Hemant Bhanawat, Soubhik Chakraborty, Yogesh Mahajan, Rishitesh Mishra,
and Kishor Bachhav. 2016. Snappydata: A hybrid transactional analytical store
built on spark. In Proceedings of the 2016 International Conference on Management
of Data. 2153–2156.

[54] Aunn Raza, Periklis Chrysogelos, Angelos Christos Anadiotis, and Anastasia
Ailamaki. 2020. Adaptive HTAP through elastic resource scheduling. In Proceed-
ings of the 2020 ACM SIGMOD International Conference on Management of Data.
2043–2054.

[55] Aunn Raza, Periklis Chrysogelos, Angelos Christos Anadiotis, and Anastasia
Ailamaki. 2020. Adaptive HTAP through elastic resource scheduling. Proceedings
of the 2020 ACM SIGMOD International Conference on Management of Data, 2043–
2054.

[56] Bart Samwel, John Cieslewicz, Ben Handy, Jason Govig, Petros Venetis, Chanjun
Yang, Keith Peters, Jeff Shute, Daniel Tenedorio, Himani Apte, et al. 2018. F1
query: Declarative querying at scale. Proceedings of the VLDB Endowment 11, 12
(2018), 1835–1848.

[57] Hemant Saxena, Lukasz Golab, Stratos Idreos, and Ihab F Ilyas. 2021. Real-Time
LSM-Trees for HTAP Workloads. arXiv preprint arXiv:2101.06801 (2021).

[58] Sijie Shen, Rong Chen, Haibo Chen, and Binyu Zang. 2021. Retrofitting High
Availability Mechanism to Tame Hybrid Transaction/Analytical Processing. In

15th {USENIX} Symposium on Operating Systems Design and Implementation
({OSDI} 21). 219–238.

[59] Reza Sherkat, Colin Florendo, Mihnea Andrei, Rolando Blanco, Adrian Dra-
gusanu, Amit Pathak, Pushkar Khadilkar, Neeraj Kulkarni, Christian Lemke,
Sebastian Seifert, et al. 2019. Native store extension for SAP HANA. Proceedings
of the VLDB Endowment 12, 12 (2019), 2047–2058.

[60] Vishal Sikka, Franz Färber, Wolfgang Lehner, Sang Kyun Cha, Thomas Peh,
and Christof Bornhövd. 2012. Efficient transaction processing in SAP HANA
database: the end of a column store myth. In Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data. 731–742.

[61] Alexandre Verbitski, Anurag Gupta, Debanjan Saha, Murali Brahmadesam,
Kamal Gupta, Raman Mittal, Sailesh Krishnamurthy, Sandor Maurice, Tengiz
Kharatishvili, and Xiaofeng Bao. 2017. Amazon aurora: Design considerations
for high throughput cloud-native relational databases. In Proceedings of the 2017
ACM International Conference on Management of Data. 1041–1052.

[62] Jiacheng Yang, Ian Rae, Jun Xu, Jeff Shute, Zhan Yuan, Kelvin Lau, Qiang Zeng,
Xi Zhao, Jun Ma, Ziyang Chen, et al. 2020. F1 Lightning: HTAP as a Service.
Proceedings of the VLDB Endowment 13, 12 (2020), 3313–3325.

[63] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and
Ion Stoica. 2010. Spark: Cluster computing with working sets. In 2nd USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud 10).

3424


