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ABSTRACT
Managing massive trajectory data from various moving objects has
always been a demanding task. A desired trajectory data system
should be versatile in its supported query types and distance func-
tions, of low storage cost, and be consistently efficient on processing
trajectory data of different properties. Unfortunately, none of the
existing systems can meet the above three criteria at the same time.
To this end, we propose VRE, a versatile, robust, and economical
trajectory data system.VRE separates the storage from the process-
ing. In the storage layer, we propose a novel segment-based storage
model that takes advantage of the strengths of both point-based and
trajectory-based storage models. VRE supports these three storage
models and ten storage schemas upon them. With the secondary in-
dex, VRE reduces the storage cost up to 3x. In the processing layer,
we first propose a two-stage processing framework and a push-
down strategy to alleviate full trajectory transmission cost. Then,
we design a unified pruning strategy for five widely used trajectory
distance functions and numerous tailored processing algorithms
for five advanced queries. Extensive experiments are conducted
to verify the design choice and efficiency of VRE, from which we
present some key insights that are crucial to both VRE and future
trajectory system’s design.

PVLDB Reference Format:
Hai Lan, Jiong Xie, Zhifeng Bao, Feifei Li, Wei Tian, Fang Wang, Sheng
Wang, Ailin Zhang. VRE: A Versatile, Robust, and Economical Trajectory
Data System. PVLDB, 15(12): 3398-3410, 2022.
doi:10.14778/3554821.3554831

1 INTRODUCTION
At Alibaba Cloud, we have experienced a growing need from vari-
ous customers to manage large-scale trajectory data generated from
different domains, such as vessels, vehicles and airplanes [21, 31, 39,
40]. All these customers have common concerns on management
cost in dollars and similar query needs. For example, most customers
need to employ (different forms of) similarity join in integrating
multiple trajectory datasets to identify near duplicate trajectories;
they also need to frequently employ (different forms of) similar-
ity search for numerous purposes, such as trajectory clustering to
facilitate traffic monitoring, public transport route design to meet
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travel demands, and charging station site selection to improve facil-
ity coverage. Moreover, these customers need to employ different
distance functions to cater for their own scenarios, and trajectory
data under different domains usually exhibit very different proper-
ties. In addressing various customers’ needs, we find that a desired
trajectory data system should be versatile, robust and economical.
Unfortunately, existing systems [2, 12, 14, 18, 19, 25, 28, 33, 41] do
not meet at least one of the following desiderata:
D1: Versatile to Support Various (Advanced) Query Types and
Distance Functions. Different users have their own frequently
issued queries over trajectories. We summarize eight representative
queries (three basic and five advanced) in Sec. 2.1 that a versatile
system should support. In the existing systems, Summit [12] and
MobilityDB [14] only support the basic queries, TrajMesa [24],
DFT [33] and DITA [28] only support a limited number of advanced
queries (Table 1). Notably, subtrajectory search and top-𝑘 similarity
join (the most expensive query) cannot be supported by any system.

Moreover, distance function is an indispensable ingredient of
advanced queries such as trajectory similarity search and join. A
versatile system should also support all typical trajectory distance
functions to cater for various application needs, i.e., DTW [36],
EDR [17], Fréchet [10], Hausdorff [27], and LCSS [30]. TrajMesa,
DFT, and DITA only support a limited number of them (Table 1). It is
not trivial to extend them to support other distance functions since
powerful distance-specific pruning bounds have to be proposed
first. Detailed justifications are presented in our technical report [8].
D2: Robust to Trajectory Data of Different Properties. Differ-
ent moving objects generate trajectories with different properties.
We profile one trajectory dataset using three metrics: 1) number
of points in a trajectory (NoP); 2) spatial span of a trajectory (SpS);
3) density of a trajectory dataset (DoT ), i.e., the number of trajec-
tories in a unit area. From our evaluation, we find that the query
performance is closely related to these metrics:
1) Trajectory with a large NoP. Almost all existing systems assume
that trajectories have a small NoP (less than 1000) and split long
trajectories into several short ones. For instance, when evaluating
DITA [28], a state-of-the-art system for trajectory analytics, using
the AIS dataset [1], we find its performance unacceptable for two
reasons: 1) the default number of pivot points is not enough to prune
irrelevant trajectories; 2) when calculating the DTW distance, DITA
declares a large two-dimensional array to store the intermediate
results, which can easily cause a page fault.
2) Trajectory with a large SpS. Suppose users issue a spatial range
query to find the trajectories passing through a given area. Point-
based storagemodel (i.e. each point is stored as a single row), such as
GeoMesa [2], can prune irrelevant trajectories efficiently but recon-
structing the resulting trajectories takes a longer time due to group
and sort operations.When storing trajectories with trajectory-based
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model (i.e. each trajectory is stored as a single row), such as Tra-
jMesa [25], the query efficiency may be heavily limited by many
false positive trajectories being returned.
3) Trajectory with a high DoT. A typical dataset is Porto [5], upon
which the candidates of similarity search in TrajMesa [25] are
quite large (sometimes reaching 400,000), while only a few of them
contribute to the final results. Transferring these candidates from
the storage engine to the client or the processing layer takes much
time which is unacceptable in real applications.
D3: Economical to Store Massive Trajectories. In particular, the
system should 1) exhibit high scalability in the storage layer, and
2) strike a balance between query efficiency and storage cost – the
storage cost should be appropriately close to the cost of storing tra-
jectories in files with compression, and meanwhile the system can
answer most (computationally-intensive) advanced queries with a
satisfactory latency. When revisiting the state-of-the-art, we find
DITA [28] and DFT [33] are built upon Spark and need to load all
trajectories into memory, so they cannot work when the trajectory
size exceeds the memory resources. Although TrajMesa [24, 25]
adopts HBase [3], a distributed storage engine, to store massive
trajectories, each index is stored with one data replica, which leads
to data redundancy and tremendous storage cost.
Our Contributions. We propose VRE, a versatile, robust, and
economical disk-based trajectory management system with elab-
orative designs in both storage layer and processing layer (see
Figure 1). VRE can support a wide range of Alibaba’s customer
applications on trajectories of different properties. A full technical
report of this work is available at [8].
Storage Layer (Sec. 4). First, we propose a new storagemodel, segment-
based model, which splits a trajectory into several segments. It
has lower cost in both storage and trajectory reconstruction than
the point-based model, and a better filtering capability than the
trajectory-based model. Second, upon these three storage models,
we design various storage schemas and present an indepth analysis
on their storage cost (Sec. 4.4) and their impact on the processing
time of different query types (Sec. 5.5). Third, similar to existing
work [2, 25], four indexes are introduced to directly support the ba-
sic queries. To reduce data redundancy, VRE adopts the secondary
index, which reduces the storage cost up to 3x in our experiments
while having negligible influence on query latency. Last, a well-
designedmetadata is proposed, which is crucial to query processing.
Processing Layer (Sec. 5). First, to alleviate high data transmission
cost of full trajectories, we propose a two-stage framework, with
which VRE obtains the metadata and prunes irrelevant trajectories
with metadata only, then fetches the full trajectories for verification.
As shown in our experiments, it outperforms the one-stage coun-
terpart at least 2x in both basic and advanced queries. Second, we
propose a unified and effective pruning method for five commonly-
used distance functions and embed it into our two-stage framework
for processing advanced queries. A pushdown strategy to push
some pruning steps into storage layer is proposed to significantly
reduce the metadata transmission cost, especially, in the datasets of
high density. VRE pushes some pruning steps into the storage layer
in advanced queries. Last, under the above designs, we propose
tailored algorithms for each of the advanced queries.
Evaluations and Insights (Sec. 6). We extensively evaluate different

design choices of VRE and compare VRE with other systems. Our
evaluation is done on real datasets of various properties and the
trajectory number is up to almost 100 million. Key findings are
summarized in Sec. 6.1 and we believe they are not only crucial to
VRE but also shed light on future trajectory systems’ design.

2 PRELIMINARIES AND RELATEDWORK
2.1 Trajectory Query Types
We study eight representative trajectory queries and start from
some spatial concepts. A point 𝑝 = {𝑖𝑑, 𝑙𝑛𝑔, 𝑙𝑎𝑡, 𝑡, 𝑎1, 𝑎2, ..., 𝑎𝑚} con-
tains an object id (𝑖𝑑), spatial-temporal information 𝑙𝑛𝑔 for longi-
tude, (𝑙𝑎𝑡 for latitude, and 𝑡 for timestamp) and other attributes 𝑎𝑖 if
any, e.g., the velocity of the object. A trajectory 𝑇 is a sequence of
points sorted by timestamp{𝑝1, 𝑝2, ..., 𝑝𝑛}. |𝑇 | denotes the number
of points in 𝑇 . Given a trajectory 𝑇 , 𝑇 [𝑖, 𝑗] is a subtrajectory [32]
that denotes the portion of 𝑇 from the 𝑖𝑡ℎ point to the 𝑗𝑡ℎ point.

The queries supported by VRE can be divided into two categories
in Table 1: 1) basic queries – ID Temporal Query (IDTQ) [25], Spa-
tial Range Query (SRQ) [25], and Spatio-Temporal Range Query
(STRQ) [23]; 2) advanced queries – Threshold-based Trajectory Sim-
ilarity Search (Tb-Search) [28], Top-𝑘 Trajectory Similarity Search
(k-Search) [33], Threshold-based Trajectory Similarity Join (Tb-
Join) [28], Top-𝑘 Trajectory Similarity Join (k-Join), and Subtrajec-
tory Similarity Search (sub-Search) [32]. Since they are widely used
in the literature, readers can refer to [8] for formal definitions.

2.2 Related Systems
In this paper, we focus on raw trajectories. Another line of stud-
ies adopts map matching [26, 35] to simplify them to sequences
for subsequent query processing [38] on road network. However,
trajectories that are not network constrained, such as vessels and
airplanes, cannot be handled at all, and map matching itself raises
data quality issues [16]. Centralized systems such as TrajStore [18]
suffer from scalability, support basic queries but cannot support
any advanced queries. Thus, we focus on distributed systems.
Distributed Disk-based Systems. Summit [12] is built on ST-
Hadoop [13] to support STRQ and kNN point-based queries. Mobil-
ityDB [14] is built on PostgreSQL [7] and PostGIS [6]. It introduces
two partitioning strategies to distribute trajectories across nodes
to achieve spatial-temporal locality and load balance, but can only
support SRQ and STRQ on trajectories due to such a design. Tra-
jMesa [25] is built on GeoMesa and stores the data in HBase [3].
It stores each trajectory as a single row and designs two indexes
for IDTQ and SRQ. It supports Tb-Search and k-Search on Hausdorff
and Fréchet only. Other systems, e.g., Hadoop-GIS [11], Spatial-
Hadoop [20], and ST-Hadoop [13], are proposed to handle basic
spatial objects, e.g., point, polygon, or linestring.
Distributed In-memory Systems. UlTraMan [19] aims at build-
ing an in-memory trajectory data system while it only supports
SRQ in Table 1. DITA [28], one of the state-of-the-art systems, is
built on Spark to support Tb-Search, k-Search, and Tb-Join. It first
partitions trajectories with the start and end points and builds a
global index. A local Tire-like index is built by the selected pivot
points. With the two-level indexes, DITA efficiently prunes dissimi-
lar trajectories. Xie et al. [33] propose DFT to answer k-Search under
Hausdorff and Fréchet. They build global and local indexes based
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Table 1: Comparing VREWith Other Distributed Systems

Work Basic Query Advanced Query Scalability Dataset Properties

IDTQ SRQ STRQ Tb-Search sub-Search k-Search Tb-Join k-Join Processing Storage NoP SpS DoT

Summit [12] × ✓ ✓ × × × × × ✓ ✓ - - -
MobilityDB [14] × ✓ ✓ × × × × × ✓ ✓ ✓ ✓ ×
TrajMesa [25] ✓ ✓ ✓ F/H1 × F/H × × × ✓ × × ×

DFT [33] × × × F/H × F/H × × ✓ × × × ×
DITA [28] × ✓ × F/D/L/E2 × F/D/L/E F/D/L/E × ✓ × × × ✓

REPOSE [41] × × × × × F/H/D × × ✓ × - - -
UlTraMan [19] × ✓ × × × × × × ✓ × - - -

VRE ✓ ✓ ✓ F/H/D/L/E F/H/D/L/E F/H/D/L/E F/H/D/L/E F/H/D/L/E ✓ ✓ ✓ ✓ ✓

1 F, H, D, L, and E refer to Fréchet, Hausdorff, DTW, LCSS, and EDR, which are widely-used distance metrics between two trajectories.
2 LCSS’s definition in DITA [28] is not equivalent to that in the original paper [30]. We give the proof in Appendix F of [8].

on segments of trajectories, and use bitmap and dual indexing to
boost the search performance. REPOSE [41] introduces a global
partitioning strategy that places similar trajectories in different
partitions, but it only supports k-Search. It is not trivial to extend
it to support other queries, especially the join queries. That is be-
cause REPOSE places similar trajectories in different partitions, for
a specific partition, many partitions can be joinable with it, which
would lead to tremendous processing cost. Other systems, such as
Simba [34], GeoSpark [37], the Spark module of GeoMesa [2], and
LocationSpark [29], are proposed to handle other spatial objects,
i.e., point, polygon or linestring. Linestring can be used to store
trajectories while these systems (including the systems in the last
category) can support SRQ only.
Remark. We give a comprehensive comparison of existing dis-
tributed systems for trajectories in Table 1 and highlight three key
observations: 1) No existing system can support typical distance
functions and the eight representative query types at the same time.
Particularly, no systems can support sub-Search and k-Join that are
prohibitively expensive but highly demanding in real world data
integration and analysis. 2) As shown in Sec. 1, dataset properties
can significantly influence the efficiency of query processing, while
only the authors of MobilityDB state they consider 𝑁𝑜𝑃 and 𝑆𝑝𝑆
in [14]. 3) All in-memory systems have to load the whole dataset
into the memory, which incurs a large memory consumption, e.g.
DFT [33] incurs out-of-memory when processing k-Search (see
Sec. 6.6). TrajMesa has an inherent data redundancy issue due to
one data replica in each index built.

3 SYSTEM ARCHITECTURE
The overall architecture of VRE is presented in Figure 1, which
mainly consists of two layers: storage layer and processing layer.
Storage Layer is introduced in the following two aspects.

Storage Model. We propose a new storage model, i.e. segment-
based model, to store trajectory data. It splits a full trajectory into
several segments and stores each segment as one row. Compared
with point-based model, it cuts down the storage cost and the
complexity of trajectory reconstruction. Compared with trajectory-
based model, it fetches fewer false positive results when processing
SRQ and STRQ. More details will be discussed in Section 4.1.

Storage Engine. In VRE, we expect the underlying storage en-
gine to meet four desiderata – 1) Scalability: it can store massive
trajectories and scales out easily. 2) Native Secondary Index: with
the secondary index, VRE only needs to store one data replica to

Processing Layers

Schema Definition
Table Schema
Storage Model

Index Type/Mode

Data Operation
Insert update delete

IDTQ SRQ STRQ

Tb-Search
k-Search
sub-Search
Tb-Join
k-Join

Prune with meta

Prune with points

Parallel Processing
Process Pushdown

Supported
Queries

Two-stage
Framework

LCSS
EDR

Fréchet
Huasdorff
DTW

Pruning
Framework

Supported
Metrics

Point/Segment/Trajectory-based Model ID-Temporal Index, Spatial Range Index,
Spatial-temporal range index, OTS index

Storage Layers

Key
Value

Dup. Cols

v1+Seg1 …

v2+Seg2 …

Key
Value

Meta Indexed 
Col1 Traj.

Seg1 Obj_id,… v1 Points

Seg2 Obj_id,… v2 Points

Secondary Index Table Primary Index Table Engine Features

Distributed Storage Engine
Secondary Index
Compression

Cold-Hot Data Separation
Coprocessor

Figure 1: Architecture of VRE
save storage cost. 3) Cold-Hot Data Separation: with this feature,
outdated trajectories can be moved to a slower and cheaper storage
to further reduce the storage cost. 4) Local Processing: with local
processing capability in storage engine, VRE can push down some
processing steps into storage layer to reduce data transfer cost.
Here, we adopt a customized HBase, which meets the desiderata,
but the choice of storage engine is orthogonal to VRE’s design.
Processing Layer consists of three modules: schema definition,
data operations, and query processing. Before loading data into
VRE, users can define the storage schema, including the attributes
of points in the trajectory, the primary indexes to be built, the
storage model, and whether to build the secondary indexes. This
layer supports all the basic and advanced queries as outlined in
Section 2.1. We will elaborate on this layer in Section 5.

4 STORAGE LAYER
Apart from the existing point-based model and trajectory-based
model, we first propose a new storage model for the trajectory,
namely segment-based model. Then, we elaborate a range of phys-
ical storage schemas supported in VRE upon these three storage
models. Next, we present the indexing strategies in VRE. Last, we
discuss the storage cost of each storage schema.

4.1 Segment-based Model for Trajectory
Point-based model stores each point as one row [2, 6] but has two
drawbacks: 1) high trajectory reconstruction cost when fetching a
trajectory; 2) high storage cost due to numerous rows and inability
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are the secondary indexes. key(SR) is the key in 𝑆𝑅 index.

Figure 2: Storage Layer Design

to use compression algorithms. Trajectory-based model [25] stores
each trajectory as one row. It natively overcomes the two drawbacks
earlier, but more false positive trajectories may be returned in this
model. For example, in the bottom of Figure 2(a), given an SRQ 𝑞,
since 𝑞 intersects with the MBR (Minimum Bounding Rectangle)
of trajectory 𝑇 , it needs to fetch 𝑇 to verify the results. In contrast,
if we split the trajectory into several segments, 𝑇 can be filtered
directly due to no intersection. Motivated by the above, we propose
a segment-based model that splits a full trajectory into several
segments1 (Figure 2(a)):

Definition 4.1 (Segment). Given a trajectory𝑇 , it can be split into
𝑛 segments S𝑇 = {𝑆1, 𝑆2, ..., 𝑆𝑛} where 𝑆𝑖 is a segment with |𝑆𝑖 |
points and sorted with the serial number 𝑙 among segments.

The splitter adopted in segment-based model comes with four
splitting strategies: 1) By Duration: we sequentially check two con-
secutive points 𝑝𝑖 and 𝑝𝑖+1 with a given duration 𝑑 . If ⌊𝑝𝑖+1 .𝑡/𝑑⌋ ≠
⌊𝑝𝑖 .𝑡/𝑑⌋, we split the trajectory 𝑇 from 𝑝𝑖+1. 2) By Distance: if the
distance between 𝑝𝑖 and 𝑝𝑖+1 exceeds a given distance, we split 𝑇
from 𝑝𝑖+1. 3) By Sliding Rectangle: for a point 𝑝 in 𝑇 , we generate
an MBR (𝑝.𝑙𝑛𝑔−𝜃, 𝑝.𝑙𝑎𝑡 −𝜃, 𝑝.𝑙𝑛𝑔 +𝜃, 𝑝.𝑙𝑎𝑡 +𝜃 ) where 𝜃 can be set
by users. Then we visit the subsequent points and if there exists a
point 𝑞 not falling in this MBR, we split 𝑇 from 𝑞. We repeat the
above for remaining points. 4) By Point Number: we split 𝑇 if the
number of points in 𝑇 exceeds a given threshold.

4.2 Physical Storage Schemas
All the above three storage models are supported in VRE. Since
trajectory-based model and point-based model are a variant of
segment-based model each, we present the storage schema upon
segment-based model only.

The storage engine is a key-value store. Same as GeoMesa [2],
the key is generated by the supported indexing strategies (Sec. 4.3).
The value part mainly consists of three fields:
1) 𝑀𝑒𝑡𝑎𝑑𝑎𝑡𝑎: it mainly consists of spatio-temporal properties of
each segment, which helps VRE filter irrelevant trajectories without
fetching the full trajectory, and thus reduces the data transmission
cost from the storage layer. The properties in𝑀𝑒𝑡𝑎𝑑𝑎𝑡𝑎 include:
• Moving object 𝑖𝑑 , which generates the trajectory, its start time,

the start and end time of a segment, the first and last point of a
segment, the MBR of a segment, the serial number 𝑙 of a segment
in a full trajectory, and the type of a segment 𝑆 .

type(𝑆) =
{

0/1/2, the start/internal/end segment in trajectory
3, a full trajectory (not split)

1The segment in VRE is different with DFT [33] whose segment is the line between two
consecutive points, i.e., if a trajectory contains 𝑛 points, then it has (𝑛 − 1) segments.

• 𝑠𝑖𝑔: it is a bit array of size𝑚 × 𝑛 to represent the position of a
segment 𝑆 in its MBR. The MBR of 𝑆 is divided into𝑚×𝑛 disjoint
regions; each region corresponds to a bit. If a point 𝑝𝑖 ∈ 𝑆 is
contained in region 𝑟 , we set the corresponding bit of 𝑟 as 1.

2) Point List: The points in a trajectory are first serialized by the
processing layer when loaded, and then compressed with ZSTD [9].
3) Columns for Secondary Index: When deploying the secondary
indexes, the keys of corresponding indexes should be added to the
base table as additional columns. E.g., the last three columns in the
left part of Figure 2(b) are additional columns for the secondary
indexes. In this way, only one replica data needs to be stored.

4.3 Indexing
VRE relies on four indexes to efficiently process basic queries: 1)
𝐼𝐷𝑇 index supports the ID-Temporal queries; 2) 𝑆𝑅 index supports
the Spatial Range queries; 3) 𝑆𝑇 index supports the Spatio-Temporal
Range queries; 4) 𝑂𝑇𝑆 index helps fetch all segments and recon-
struct the full trajectories in segment-based model. Note that we
treat (𝑖𝑑 +𝑇 [0] .𝑡) as trajectory ID 𝑡𝑖𝑑 , and (𝑖𝑑 +𝑇 [𝑖] .𝑡) as segment
ID 𝑠𝑖𝑑 . Since they are not our main technical contribution, we only
present 𝑆𝑅 and𝑂𝑇𝑆 indexes and refer the rest to Appendix C of [8].
𝑆𝑅 Index. In VRE, based on the XZ2 indexing scheme [15], the key

in 𝑆𝑅 index is defined as 𝑠ℎ𝑎𝑟𝑑 + 𝑋𝑍2(𝑀𝐵𝑅) + 𝑠𝑖𝑑 where 𝑠ℎ𝑎𝑟𝑑2
is used for load balancing, 𝑋𝑍2(𝑀𝐵𝑅) is the XZ2 codes of one
segment’s MBR, and 𝑠𝑖𝑑 is the segment id.
𝑂𝑇𝑆 Index. The key is defined as 𝑠ℎ𝑎𝑟𝑑 + 𝑡𝑖𝑑 + 𝑙 where 𝑡𝑖𝑑 is tra-

jectory id, and 𝑙 is the serial number of a segment in a full trajectory.
With the 𝑂𝑇𝑆 index, VRE fetches all segments of a trajectory with
𝑡𝑖𝑑 first, and then sorts these segments by their serial numbers to
generate the full trajectory.
Secondary Index.With the secondary, only one replica data needs
to be stored, otherwise, we need to store one replica data for each
index, e.g., TrajMesa [25] and GeoMesa [2]. VRE can adopt any
aforementioned index as the primary index. In our implementation,
we choose 𝑆𝑅 index as the primary and the others as the secondary
for two reasons: 1) 𝑆𝑅 index directly supports the spatial range
query, which is a cornerstone in processing advanced queries. 2) It
enables some pruning strategies of advanced queries to be pushed
down into storage engine to reduce the query latency (see Sec. 6.4.1).

4.4 Discussion on Different Storage Schemas
Here, we use a notation VRE𝑥𝑦𝑧 to denote different storage schemas.
‘𝑥 ’ indicates which storage model we use; it can be 𝑃 , 𝑇 , and 𝑆 , in-
dicating point-based, trajectory-based, or segment-based model. ‘𝑦’
means whether to use secondary index; it can be 𝑆 or 𝑋 , indicating
with and without secondary index. ‘𝑧’ means whether metadata is

2In our implementation, we use one byte with four different values.
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used; it can be𝑀 or 𝑋 , indicating with or without the𝑀𝑒𝑡𝑎𝑑𝑎𝑡𝑎 .
There are two other values:𝑀1 indicates that the metadata includes
segments’ metadata;𝑀2 indicates the metadata is separated from
trajectories. For example, VRE𝑇𝑋𝑀 tells that the storage model is
trajectory-based, without secondary index, and with the metadata.
All storage schemas that use secondary index (VRE∗𝑆∗) are identical
to their counterpart that does not use secondary index.

Different storage schemas are shown in Table 2 where 𝑘𝑒𝑦𝑡 ,
𝑘𝑒𝑦𝑝 , and 𝑘𝑒𝑦𝑠 denote the 𝑘𝑒𝑦 in trajectory-based, point-based,
and segment-based model, respectively. Similarly,𝑚𝑒𝑡𝑎𝑥 (where
𝑥 can be 𝑡 , 𝑝 , or 𝑠) represents the 𝑀𝑒𝑡𝑎𝑑𝑎𝑡𝑎 in the corresponding
model. Last, 𝑚𝑒𝑡𝑎 {𝑠 } denotes a set which includes 𝑀𝑒𝑡𝑎𝑑𝑎𝑡𝑎 of
all segments from the same trajectory. Compared with VRE𝑇𝑋𝑀 ,
VRE𝑇𝑋𝑀1 includes more𝑀𝑒𝑡𝑎𝑑𝑎𝑡𝑎 so that the number of false posi-
tive trajectories returned can be reduced. Compared with VRE𝑆𝑋𝑀 ,
VRE𝑇𝑋𝑀2 stores each full trajectory as one single row, and hence
trajectory reconstruction can be avoided.

Table 2: Choices of Storage Schema.
Name Schema System

VRE𝑃𝑋𝑀 𝑘𝑒𝑦𝑝 +𝑚𝑒𝑡𝑎𝑝 + 𝑝𝑜𝑖𝑛𝑡 GeoMesa[2], VRE
VRE𝑇𝑋𝑀 𝑘𝑒𝑦𝑡 +𝑚𝑒𝑡𝑎𝑡 + 𝑡𝑟𝑎 𝑗 TrajMesa[25], VRE
VRE𝑇𝑋𝑀1 𝑘𝑒𝑦𝑡 +𝑚𝑒𝑡𝑎{𝑠} + 𝑡𝑟𝑎 𝑗 VRE
VRE𝑆𝑋𝑀 𝑘𝑒𝑦𝑠 +𝑚𝑒𝑡𝑎𝑠 + 𝑠𝑒𝑔 VRE
VRE𝑇𝑋𝑀2 𝑘𝑒𝑦𝑡 + 𝑡𝑟𝑎 𝑗 ;𝑘𝑒𝑦𝑠 +𝑚𝑒𝑡𝑎𝑠 VRE
VRE∗𝑆∗ See above VRE

A comparison of the physical storage cost is as below. 1) For the
first five schemas in Table 2, we have the following: VRE𝑇𝑋𝑀 <
VRE𝑇𝑋𝑀1 <VRE𝑆𝑋𝑀 <VRE𝑇𝑋𝑀2 <VRE𝑃𝑋𝑀 .VRE𝑇𝑋𝑀 <VRE𝑇𝑋𝑀1
because there is less metadata in VRE𝑇𝑋𝑀 . The reason behind
VRE𝑇𝑋𝑀1 < VRE𝑆𝑋𝑀 < VRE𝑇𝑋𝑀2 < VRE𝑃𝑋𝑀 is that there are fewer
keys in the previous one. 2) The corresponding storage schemas
with secondary index of the first five have the same order for similar
reasons. 3) With secondary index, the storage cost will be reduced
dramatically due to less data redundancy. These analyses will be
verified in Sec. 6.3.

5 PROCESSING LAYER
In this section, we present how to process five advanced queries.
First, we give an overview of two acceleration techniques for all
advanced queries. Then, we drill down to the trajectory similar-
ity search query and introduce our pruning strategies. Then, we
present our algorithms to process trajectory similarity join and
subtrajectory similarity search. For basic queries IDTQ, SRQ and
STRQ, they can be directly supported by the indexes introduced in
Sec. 4.3. Readers can refer to Appendix D in [8] for details.

5.1 An Overview of Acceleration Techniques
Two-stage Framework. In VRE we propose a two-stage frame-
work to process advanced queries. It prunes unsatisfied candidate
trajectories by only using their metadata at stage 1, and then fetches
the rest full trajectories for verification at stage 2. Since much fewer
full trajectories are fetched after pruning, the data transfer cost,
which is the major bottleneck of query processing, will be tremen-
dously reduced and result verification itself can be expedited.
Pushdown Strategy. 1) In Tb-Search, it may need to fetch numer-
ous candidates that come along with many spatial range queries
issued, leading to large data transfer cost. Thus, VRE tries to push

appropriate pruning strategies into the storage engine. 2) In each
iteration of k-Search, VRE may fetch many checked trajectories
during expansion of the search, particularly in the dataset of high
density. Thus, apart from pushing down the pruning strategies,
VRE also pushes the step of checking whether a trajectory has been
visited before down to the storage layer. 3) Similarly, the above
two can be applied to Tb-Join and k-Join which need to repeatedly
invoke the respective search operator.

5.2 Trajectory Similarity Search
There are two types of trajectory similarity search: Top-𝑘 Search (k-
Search) and Threshold-based Search (Tb-Search). Here, we present
how to process them based on storage schemasVRE𝑆∗𝑀 andVRE𝑇 ∗𝑀2
and then provide core modifications in the algorithms to cater for
the rest storage schemas, i.e., VRE𝑇 ∗𝑀 and VRE𝑇 ∗𝑀1 .
5.2.1 k-Search. k-Search iteratively expands the spatial range, until
the 𝑘 most similar trajectories are found. It consists of two main
steps, as shown in Algorithm 1:
1) Initialization (Lines 1-3). 𝑐𝑑𝑞 is a priority queue that stores
candidate trajectories sorted by the distance between candidate and
the query𝑄 ,𝑚𝑏𝑟𝑞 is a priority queue to record the MBRs that need
to be queried, and 𝑑𝑚𝑎𝑥 is the current maximum distance between
𝑄 and the trajectories in 𝑐𝑑𝑞. Moreover, there are two parameters
set as per the properties of dataset: the max resolution 𝑔, and the
𝑠𝑒𝑔𝑁𝑢𝑚. If the number of collected segments of a trajectory is
larger than 𝑠𝑒𝑔𝑁𝑢𝑚, we fetch the full trajectory.
2) Expansion (Lines 4-18). After popping an MBR 𝑟 from𝑚𝑏𝑟𝑞, if
there are 𝑘 trajectories in 𝑐𝑑𝑞 and the distance3 between 𝑄 and 𝑟
exceeds 𝑑𝑚𝑎𝑥 , the processing terminates. If the resolution of 𝑟 is
smaller than 𝑔, we add its four children nodes to𝑚𝑏𝑟𝑞 and continue
to check the next MBR in 𝑚𝑏𝑟𝑞. Otherwise, we trigger a spatial
range query by 𝑟 and obtain the candidates, denoted by C𝑠 . Note that
we only fetch the trajectories’ metadata rather than the full trajecto-
ries (Line 10). Then, it comes with two substeps: i)Metadata-based
Pruning (Line 12-14). For each segment 𝑆 ∈ C𝑠 , we first add 𝑆 into
C𝑡 and check whether its corresponding trajectory can be pruned
with the current collected metadata by our tailored pruning strate-
gies in Sec. 5.2.3. ii) Candidate Verification (Lines 15-18). We
check whether the number of segments of each 𝑡𝑖𝑑 in C𝑡 is equal
to 𝑠𝑒𝑔𝑁𝑢𝑚 or all segments’ metadata have been fetched. If yes, we
fetch the full trajectory 𝑇 with 𝑡𝑖𝑑 by the 𝑂𝑇𝑆 index and calculate
the exact distance4 between 𝑄 and 𝑇 . If the distance is less than
𝑑𝑚𝑎𝑥 , we add 𝑇 to 𝑐𝑑𝑞, update 𝑑𝑚𝑎𝑥 , and go to next iteration. A
running example is in Appendix E.2 of [8].
Optimizations for Trajectory-based model. Recall Sec. 4.4 the
trajectory-basedmodel corresponds to two storage schemasVRE𝑇 ∗𝑀
and VRE𝑇 ∗𝑀1 . For them, we propose three optimizations to boost
the efficiency of k-Search.
1) Parallel Processing. Different from storage schemas on segment-
based model, we fetch all metadata of one trajectory at the same
time (Line 9) in VRE𝑇 ∗𝑀 and VRE𝑇 ∗𝑀1 . Before the expansion step,
we send the candidates to 𝑛 workers, where 𝑛 can be set by users.
Then, each worker enters into the expansion step. Last, the main
worker collects results from the 𝑛 workers and updates the global

3The distance here is the lower bound of the unvisited trajectories.
4When the distance function is LCSS, we use −𝑓 (𝑄, 𝑡𝑟 ) as the distance.
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Algorithm 1: Top-𝑘 Search (k-Search)
Input: query trajectory𝑄 , trajectory dataset T , trajectory distance

function 𝑓 ( ·, ·) , a positive integer 𝑘
Output: A set of trajectories T𝑘𝑛𝑛

1 Initialize a priority queue 𝑐𝑑𝑞 and𝑚𝑏𝑟𝑞;
2 Initialize a HashMap C𝑡 = (𝑡𝑖𝑑, 𝐿𝑖𝑠𝑡<segment>) ; 𝑑𝑚𝑎𝑥 = 0;
3 while𝑚𝑏𝑟𝑞 is not empty do
4 𝑟 =𝑚𝑏𝑟𝑞.𝑑𝑒𝑞𝑢𝑒𝑢𝑒 () ;
5 if cdq.size = k ∧𝑓𝑟→𝑡 (𝑄, 𝑟 ) ≥ 𝑑𝑚𝑎𝑥 then
6 break;
7 if the resolution of 𝑟 < 𝑔 then
8 Add the four children nodes of 𝑟 to𝑚𝑏𝑟𝑞; continue;
9 C𝑠 = 𝑆𝑅𝑄𝑚𝑒𝑡𝑎 (𝑟, T) ;

10 foreach 𝑆 ∈ C𝑠 do
11 C𝑡 (𝑆.𝑡𝑖𝑑) .𝑎𝑑𝑑 (𝑆) ;
12 if cdq.size = k then
13 LB_SES Pruning (II); LB_Pivots Pruning (III);
14 LB_PartialSim Pruning (IV); LB_SIG Pruning (IV);
15 if C𝑡 (𝑆.𝑡𝑖𝑑) .𝑠𝑖𝑧𝑒 = 𝑠𝑒𝑔# or 𝑖𝑠𝐹𝑢𝑙𝑙 (C𝑡 (𝑆.𝑡𝑖𝑑)) then
16 𝑇 = 𝑡𝑟𝑎 𝑗𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑜𝑟 (𝑂𝑇𝑆 (𝑡𝑖𝑑, T)) ;
17 if 𝑓 (𝑄,𝑇 ) ≤ 𝑑𝑚𝑎𝑥 then
18 𝑐𝑑𝑞 ← 𝑇 ; 𝑑𝑚𝑎𝑥 = 𝑓 (𝑄,𝑐𝑑𝑞.𝑙𝑎𝑠𝑡 ()) ;

19 return 𝑐𝑑𝑞 as T𝑘𝑛𝑛 ;

top-𝑘 candidates.
2) Sorting Before Pruning. If trajectories in the final top-𝑘 set are
found earlier, the pruning bound 𝑑𝑚𝑎𝑥 will converge more quickly.
Based on this idea, we sort the candidates in each worker by the
distance of start and end points of 𝑄 w.r.t. one candidate.
3) Local Bound Synchronization. One worker may have a tighter
local pruning bound 𝑑𝑚𝑎𝑥 than other workers. The tighter local
bound can be broadcast to other workers to reduce the overall pro-
cessing cost. Here, we design a lock-free algorithm to synchronize
the local bounds from all workers during query processing.
5.2.2 Tb-Search. Tb-Search is essentially a one-iteration version
of k-Search, where 𝑑𝑚𝑎𝑥 is the threshold 𝜏 in Tb-Search. We use the
spatial range 𝑅0 = (𝑙𝑛𝑔𝑚𝑖𝑛 − 𝜏, 𝑙𝑎𝑡𝑚𝑖𝑛 − 𝜏, 𝑙𝑛𝑔𝑚𝑎𝑥 + 𝜏, 𝑙𝑎𝑡𝑚𝑎𝑥 + 𝜏)5,
where (𝑙𝑛𝑔𝑚𝑖𝑛, 𝑙𝑎𝑡𝑚𝑖𝑛, 𝑙𝑛𝑔𝑚𝑎𝑥 , 𝑙𝑎𝑡𝑚𝑎𝑥 ) is the MBR of 𝑄 , to get all
candidate segments. Then, we group the candidates by trajectory
id and send the results to 𝑛 workers. Each worker does metadata-
based pruning and candidate verification locally. Last, the main
worker collects and returns the results of 𝑛 workers. In VRE𝑇 ∗𝑀
and VRE𝑇 ∗𝑀1 storage schemas, the group operation is removed.
The pseudocode for Tb-Search is in Appendix E.1 of [8].
5.2.3 Pruning Strategies. Here, we use Tb-Search as an example to
illustrate our pruning strategies. As aforementioned Tb-Search is
actually a one-iteration version of k-Search, so such strategies apply
to k-Search aswell. Given a query𝑄 = {𝑞1, 𝑞2, ..., 𝑞𝑛}with a distance
threshold 𝜏 , after getting the candidates only with metadata, we
group these segments by their 𝑡𝑖𝑑 . Each group is formed as 𝐺 =

{𝑆1, 𝑆2, ..., 𝑆 |𝐺 |}, where 𝑆𝑖 = {𝑝1, 𝑝2, ..., 𝑝 |𝑆𝑖 |} denotes a segment.
Based on the well-designed metadata in Sec. 4.2, we propose five
5When the distance function is LCSS [30] or EDR [17], we use the matching threshold
in their definition instead of 𝜏 to generate 𝑅0 .

pruning strategies, and the lower bounds specific to each distance
metric are in Table 3.
Completeness. For each candidate group 𝐺 , we check whether a
complete trajectory can be recovered from all the segments in 𝐺 .
Note that we do not check the completeness in EDR and LCSS since
they allow partial points out of 𝑅0 according to their definition.
1) LB_SES. It represents the lower bound by considering the start
and end segments. If the lower bound is larger than 𝜏 , we can prune
the group 𝐺 .
2) LB_PartialSim. This pruning strategy gives lower bound based
on the collected segments’ metadata, i.e., partial segments.
• Hausdorff and Fréchet. For each segment 𝑆𝑖 ∈ 𝐺 , we calculate
the Euclidean distance between the start point of 𝑆𝑖 and any point
in 𝑄 , and we do the same operation on the end point of 𝑆𝑖 . Then,
the maximum value will be selected as the distance for segment 𝑆𝑖 .
Finally, we select the maximum value among all the segments in 𝐺
as the lower bound of candidate 𝐺 .
•DTW, EDR, and LCSS. (i) For each segment 𝑆𝑖 ∈ 𝐺 , we first calculate
the distance between the𝑚𝑏𝑟 of 𝑆𝑖 and any point 𝑞 𝑗 ∈ 𝑄 . (ii) For
DTW,we use theminimum value times the number of points in 𝑆𝑖 as
the distance for one segment 𝑆𝑖 . For EDR and LCSS, if the minimum
value is larger than the matching threshold in their definition, we
use the number of points in 𝑆𝑖 as the distance for one segment 𝑆𝑖 .
(iii) Finally, we sum the distances for all the segments in𝐺 as the
lower bound of candidate𝐺 . If the calculated lower bound is larger
than the given threshold 𝜏 , we remove 𝐺 .
3) LB_Pivots. Inspired by the idea of pivot points in DITA [28],
we design this strategy. Given a trajectory 𝑇 , we generate the set
of pivot points 𝑃 by adding the start and end points of 𝑇 , and any
point 𝑡 ∈ 𝑇 which is on the border of the MBR of 𝑇 into 𝑃 .

Following the above selection strategy, we first generate the
pivot points set 𝑃 = {𝑞1, 𝑞2, ..., 𝑞𝑚} for query 𝑄 . For each pivot
point 𝑞 𝑗 ∈ 𝑃 , we calculate the minimum distance between 𝑞 𝑗 and
the𝑚𝑏𝑟 of any segment 𝑆𝑖 ∈ 𝐺 . Then, similar to the LB_PartialSim
strategy, we select the maximum value among all pivot points as
the lower bound for Hausdorff and Fréchet, while we sum the value
of all pivot points as the lower bound of LB_Pivots strategy for
DTW, EDR, and LCSS.
4)LB_SIG.As shown in Sec. 4.2, the signature of a query𝑄 is formed
as 𝑠𝑖𝑔𝑄 = (𝑏1, 𝑏2, ..., 𝑏𝑚×𝑛), where 𝑏𝑖 denotes whether there is at
least one point in the corresponding region 𝑟𝑖 . For a candidate 𝐺 ,
we collect the disjoint regions with 𝑏𝑖 = 1 into a set 𝑠𝑖𝑔𝐺 . For each
region 𝑟𝑖 ∈ 𝑠𝑖𝑔𝑄 , we calculate the minimum distance between 𝑟𝑖
and any region 𝑟 𝑗 ∈ 𝑠𝑖𝑔𝐺 . Then, we get the maximum value among
all minimum distances of regions 𝑟𝑖 ∈ 𝑠𝑖𝑔𝑄 as the lower bound for
Hausdorff and Fréchet. As for DTW, we sum the value, which is the
product of the minimum distance of 𝑟𝑖 ∈ 𝑠𝑖𝑔𝑄 and the number of
points contained in 𝑟𝑖 , as the lower bound. For EDR and LCSS, we
sum the number of point from the 𝑟𝑖 where the minimum distance
is larger than matching threshold as the lower bound.

5.3 Trajectory Similarity Join
Tb-Join. Its process is divided into two steps: 1) Partitioning, which
aims to put the trajectories that are likely similar into the same
partition. 2) Searching, which runs Tb-Search for each partition.
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Table 3: Pruning Strategies for Five Widely-adopted Trajectory Distance Measures
Metric Completeness LB_SES LB_PartialSim LB_Pivots LB_SIG

Hausdorff ! 0 max
𝑆𝑖 ∈𝐺

max
𝑞 𝑗 ∈𝑄
{𝑓𝑝→𝑝 (𝑞 𝑗 , 𝑡1), 𝑓𝑝→𝑝 (𝑞 𝑗 , 𝑡 |𝑆𝑖 |)} max

𝑞 𝑗 ∈𝑃
min
𝑆𝑖 ∈𝐺
{𝑓𝑝→𝑟 (𝑞 𝑗 ,𝑚𝑏𝑟𝑆𝑖 )} max

𝑟𝑖 ∈𝑠𝑖𝑔𝑄
min

𝑟 𝑗 ∈𝑠𝑖𝑔𝐺
{𝑓𝑟→𝑟 (𝑟𝑖 , 𝑟 𝑗 )}3

Fréchet ! max{𝑓𝑝→𝑝 (𝑞1, 𝑡1)1, 𝑓𝑝→𝑝 (𝑞 |𝑄 |, 𝑡 |𝑆 |𝐺 | |)} max
𝑆𝑖 ∈𝐺

max
𝑞 𝑗 ∈𝑄
{𝑓𝑝→𝑝 (𝑞 𝑗 , 𝑡1), 𝑓𝑝→𝑝 (𝑞 𝑗 , 𝑡 |𝑆𝑖 |)} max

𝑞 𝑗 ∈𝑃
min
𝑆𝑖 ∈𝐺
{𝑓𝑝→𝑟 (𝑞 𝑗 ,𝑚𝑏𝑟𝑆𝑖 )} max

𝑟𝑖 ∈𝑠𝑖𝑔𝑄
min

𝑟 𝑗 ∈𝑠𝑖𝑔𝐺
{𝑓𝑟→𝑟 (𝑟𝑖 , 𝑟 𝑗 )}

DTW ! max{𝑓𝑝→𝑝 (𝑞1, 𝑡1), 𝑓𝑝→𝑝 (𝑞 |𝑄 |, 𝑡 |𝑆 |𝐺 | |)}
∑

𝑆𝑖 ∈𝐺
|𝑆𝑖 | × min

𝑞 𝑗 ∈𝑄
{𝑓𝑝→𝑟 (𝑞 𝑗 ,𝑚𝑏𝑟𝑆𝑖 )}2

∑
𝑞 𝑗 ∈𝑃

min
𝑆𝑖 ∈𝐺
{𝑓𝑝→𝑟 (𝑞 𝑗 ,𝑚𝑏𝑟𝑆𝑖 )}

∑
𝑟𝑖 ∈𝑠𝑖𝑔𝑄

|𝑟𝑖 | × min
𝑟 𝑗 ∈𝑠𝑖𝑔𝐺

{𝑓𝑟→𝑟 (𝑟𝑖 , 𝑟 𝑗 )}

EDR % max{𝑓𝑝→𝑝 (𝑞1, 𝑡1), 𝑓𝑝→𝑝 (𝑞 |𝑄 |, 𝑡 |𝑆 |𝐺 | |)}
∑

𝑆𝑖 ∈𝐺
|𝑆𝑖 | × min

𝑞 𝑗 ∈𝑄
{𝑓𝑝→𝑟 (𝑞 𝑗 ,𝑚𝑏𝑟𝑆𝑖 )}

∑
𝑞 𝑗 ∈𝑃

min
𝑆𝑖 ∈𝐺
{𝑓𝑝→𝑟 (𝑞 𝑗 ,𝑚𝑏𝑟𝑆𝑖 )}

∑
𝑟𝑖 ∈𝑠𝑖𝑔𝑄

|𝑟𝑖 | × min
𝑟 𝑗 ∈𝑠𝑖𝑔𝐺

{𝑓𝑟→𝑟 (𝑟𝑖 , 𝑟 𝑗 )}

LCSS % max{𝑓𝑝→𝑝 (𝑞1, 𝑡1), 𝑓𝑝→𝑝 (𝑞 |𝑄 |, 𝑡 |𝑆 |𝐺 | |)} - - -
1 𝑓𝑝→𝑝 (𝑝, 𝑞) denotes the Euclidean distance between a point 𝑝 and a point 𝑞. In EDR and LCSS, it denotes the discrete distance defined by themselves.
2 𝑓𝑝→𝑟 (𝑝, 𝑟 ) = min𝑝′∈𝑟 𝑓𝑝→𝑝 (𝑝, 𝑝 ′) denotes the distance between a point 𝑝 and a region 𝑟 .
3 𝑓𝑟→𝑟 (𝑟1, 𝑟2) = min𝑝𝑖 ∈𝑟1,𝑝 𝑗 ∈𝑟2 𝑓𝑝→𝑝 (𝑝𝑖 , 𝑝 𝑗 ) denotes the region distance between 𝑟1 and 𝑟2.

1) Partitioning. First, we use the Sort-Tile-Recursive (STR) par-
titioning method [22] to partition all trajectories in T1 with their
start points into 𝑁𝑠 disjoint partition. Then, in each partition, we
further use STR to partition the trajectories in each partition with
the end points of these trajectories into 𝑁𝑒 partitions. Finally, there
are 𝑁𝑠 × 𝑁𝑒 partitions. In this way, similar trajectories are more
likely to be in the same partition and each partition has roughly
the same number of trajectories, even for highly skewed data.
2) Searching. For each partition, we trigger a Tb-Search(𝑝𝑎𝑟𝑖 ,T2, 𝑓 , 𝜏),
but with four differences: 1) 𝑅0: we first merge the MBRs of all tra-
jectories in one partition and extend it with the given threshold 𝜏 to
get 𝑅0. 2) 𝑅1: which is an MBR that covers all start points of all tra-
jectories in one partition and is extended with the given threshold 𝜏 .
3) 𝑅2: which is an MBR that covers all end points of all trajectories
in one partition and is extended with the given threshold 𝜏 . and
4) after getting the candidate trajectories according to 𝑅0, 𝑅1, 𝑅2,
VRE traverses all trajectories in one partition to search similar tra-
jectories in T2. In each partition, we build a buffer to store the full
trajectories fetched from T2, to avoid repeatedly fetching the same
trajectories from T2. Note that when answering Tb-Join, we send
𝑁𝑠 × 𝑁𝑒 partitions to 𝑛 workers.
k-Join. Similar to Tb-Join, after VRE partitions all trajectories in
T1, it triggers a k-Search(𝑝𝑎𝑟𝑖 ,T2, 𝑓 , 𝑘) for each partition. In each
partition, VRE traverses all trajectories and also builds a buffer.
5.4 Subtrajectory Similarity Search
VRE also supports searching for the most similar subtrajectory [32],
whose processing can be divided into three steps (Algo. 2):
1) Fetching candidates (Lines 1-2). We fetch the trajectories whose
MBRs intersect with 𝑄 ’s MBR (𝑀𝐵𝑅𝑄 ) as the candidates.
2) Status matrix generation (Lines 3-16). For each candidate 𝑇 =

(𝑡0, 𝑡1, ..., 𝑡𝑚−1), we calculate a matrix 𝑑𝑡 to store the minimum dis-
tance between candidate subtrajectories and 𝑄 = (𝑞0, 𝑞1, ..., 𝑞𝑛−1),
as defined by Eq. (1). Meanwhile, we use a matrix 𝑝𝑜𝑠 to record the
position of the start point for candidate subtrajectories, as defined
by Eq. (2). Note that in Eq. (1), the distance function 𝑓 (·, ·) can be
one of the Fréchet, DTW, EDR.
3) Subtrajectory generation (Line 17). According to the values in 𝑑𝑡
and 𝑝𝑜𝑠 , we get the positions of start and end points for each candi-
date subtrajectory in their full trajectory. Note that we can calculate
the most similar subtrajectory in each candidate in parallel.

dt(𝑇,𝑄) =


𝑓 (𝑡𝑖 , 𝑞0) if 𝑛 = 1∑𝑛−1
𝑗=0 𝑓

(
𝑡0, 𝑞 𝑗

)
if𝑚 = 1

𝑓 (𝑡𝑚, 𝑞𝑛) + 𝑝𝑟𝑒𝑣 otherwise

𝑝𝑟𝑒𝑣 = min(dt(𝑇𝑚−1,𝑄𝑛−1), dt(𝑇𝑚−1,𝑄), dt(𝑇,𝑄𝑛−1))

(1)

Algorithm 2: Subtrajectory Similarity Search (sub-Search)
Input: query trajectory𝑄 , trajectory dataset T , trajectory distance

function 𝑓 ( ·, ·)
Output: A set of subtrajectories T𝑠𝑢𝑏𝑠𝑖𝑚

1 Candidates C𝑠 = 𝑆𝑅𝑚𝑒𝑡𝑎 (𝑀𝐵𝑅𝑄 , T) ;
2 Get the trajectory id set C𝑡𝑖𝑑 from C𝑠 ;
3 foreach 𝑡𝑖𝑑 ∈ C𝑡𝑖𝑑 do
4 𝑇 = 𝑡𝑟𝑎 𝑗𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑜𝑟 (𝑂𝑇𝑆 (𝑡𝑖𝑑, T)) ;
5 Compute the matrix 𝑑𝑖𝑠𝑡 [ |𝑇 |, |𝑄 | ] as defined by Eq. (1);
6 Compute the matrix 𝑝𝑜𝑠 [ |𝑇 |, |𝑄 | ] as defined by Eq. (2);
7 Initialize (𝑑, 𝑠, 𝑒) as (+∞, 0, 0) respectively;
8 for i← 1 until |T| do
9 𝑑𝑚𝑖𝑛 = 𝑑𝑖𝑠𝑡 [𝑖 − 1] .𝑙𝑎𝑠𝑡 ; 𝑡𝑠 = 𝑝𝑜𝑠 [𝑖 − 1] .𝑙𝑎𝑠𝑡 ; 𝑡𝑒 = 𝑖 − 1;

10 if 𝑑𝑚𝑖𝑛 ≤ 𝑑 then
11 𝑓 𝑙𝑎𝑔 = 𝑡𝑟𝑢𝑒 ;
12 for j← 0 until |Q| do
13 if dist[i][j] < 𝑑𝑚𝑖𝑛 ∧ pos[i][j] ≤ 𝑡𝑒 then
14 𝑓 𝑙𝑎𝑔 = 𝑓 𝑎𝑙𝑠𝑒 ;

15 if flag then
16 (𝑑, 𝑠, 𝑒) ← (𝑑𝑚𝑖𝑛, 𝑡𝑠 , 𝑡𝑒 ) ;

17 T𝑠𝑢𝑏𝑠𝑖𝑚 ← 𝑇 [𝑠, 𝑒 ];

pos(𝑇,𝑄) =


𝑖 if 𝑛 = 1
0 if𝑚 = 1
pos

(
𝑇𝑚−1,𝑄𝑛−1 ) else if 𝑝𝑟𝑒𝑣 = dt

(
𝑇𝑚−1,𝑄𝑛−1 )

pos
(
𝑇𝑚−1,𝑄

)
else if 𝑝𝑟𝑒𝑣 = dt

(
𝑇𝑚−1,𝑄

)
pos

(
𝑇,𝑄𝑛−1 ) else if 𝑝𝑟𝑒𝑣 = dt

(
𝑇,𝑄𝑛−1 ) (2)

Other Distances. 1) ForHausdorff, we design a divide-and-conquer
algorithm to find the most similar subtrajectory, whose complexity
is 𝑂 ( |𝑇 | |𝑄 | log𝑚𝑖𝑛{|𝑇 |, |𝑄 |}). 2) For 𝐿𝐶𝑆𝑆 , we adopt the 𝐸𝑥𝑎𝑐𝑡-𝑆
[32]. The pseudocode is in Appendix E.3 of [8].

5.5 Impact of Storage Schemas on Efficiency
Last, we discuss how five choices of storage schema (proposed
in Section 4.4) impacts the query processing efficiency. Empirical
impacts will be explored in experiments (see Sec. 6.5).
Basic Queries. First, if we only need the trajectory 𝑖𝑑 or partial
points as the returned results, the efficiency of these schemas from
high to low is VRE𝑃∗∗ > VRE𝑆∗𝑀 > VRE𝑇 ∗∗. Second, if we need the
entire trajectories that meet the conditions of the queries, the order
of efficiency is VRE𝑆∗𝑀 > VRE𝑇 ∗∗ > VRE𝑃∗∗.
Advanced Queries. The overall order of efficiency is VRE𝑇 ∗∗ >
VRE𝑆∗𝑀 ≫ VRE𝑃∗∗. Point-based model cannot achieve any com-
petitive performance in advanced queries due to its excessive cost
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in reconstructing full trajectories. Compared to VRE𝑆∗𝑀 , VRE𝑇 ∗∗
avoids trajectory reconstruction process and easily runs in parallel.

6 EXPERIMENTS
We conduct a comprehensive evaluation of VRE as well as existing
systems, aiming to seek answers to the following questions:
Q1: (i) How much storage is taken under different storage schemas
and (ii) whether the storage cost of the metadata is negligible?
Q2:Howwell our proposed optimization rules behave over datasets
of different properties?
Q3: Given the optimization rules, which storage schema is the
optimal choice for a specific query type over a type of dataset?
Q4: Compared with state-of-the-art (SOTA) systems, how efficient
is VRE over datasets of different properties?

We start from presenting the insights gained through our evalu-
ation and lessons learned from our system design (Sec. 6.1). Then,
we give the experimental setup in Sec. 6.2 and evaluation details
for Q1-Q4 from Sec. 6.3 to Sec. 6.6 where the first three questions
dig into the design guidance of VRE.

6.1 Key Findings
6.1.1 Insights.
I1: Our experiments affirm the storage cost analysis of different
schemas in Sec. 4.4, regardless of whether the secondary index is
employed (Q1(i)). The metadata takes only 4% of the total storage
cost but makes query processing 2x faster when it is combined with
our two-stage framework, and we believe this is acceptable (Q1(ii)).
I2: 1) Secondary index influences the queries that have large candi-
date size due to the non-negligible random access. In our two-stage
framework, we can optimize it with quite small extra storage (See
Sec. 6.4.1). 2) Combined with the metadata, the two-stage frame-
work is 2x faster than the one-stage, because it fetches fewer full
trajectories and results in a reduced data transfer cost. 3) Our push-
down strategy works on the datasets of high density, e.g., Porto
(2x faster for Tb-Search). For a dataset of low density, e.g., AIS, it
only slightly worsens the efficiency. When applying the pushdown
strategy, there is a trade-off between the increasing overhead on
storage layer and the reduced network cost (See Sec. 6.4.3). (Q2)
I3: No single storage schema can outperform others in all cases
(Q3). The query type, the type of query result, i.e., full trajectories,
trajectory ids only, or subtrajectoies, and the dataset property can
influence the choice of storage schema, each of which will be elabo-
rated in our design guidance (in Sec. 6.1.2). Moreover, VRE performs
consistently well on datasets with different properties while SOTA
is not. Taking k-Search for example, DITA outperforms DFT on
Porto while it is beat by DFT on AIS (see Table 14). The main rea-
son is that query types and dataset properties are not incorporated
in their system design, while a versatile system should do.
I4: As a result of our tailored pruning strategies, processing al-
gorithms and the proposed optimizations, VRE shows better or
competitive performance as compared to SOTA in processing all
advanced queries (that are also supported by SOTA), not to men-
tion VRE uses much fewer cores (32 vs. 256) to achieve the above
(Q4) and VRE supports two more advanced queries (k-Join and sub-
Search) that cannot be supported by any existing system. Taking

Tb-Search as an example, out of a total of 75 settings, VRE outper-
forms SOTA on 70 settings6 (see Table 13).
6.1.2 Our System Design Guidance.
G1: Trajectories With Small NoP and Small SpS. Most existing
datasets are from urban applications and belong to this category. 1)
When the query type is one of the advanced queries, we recommend
VRE𝑇𝑆𝑀 and choose 𝑆𝑅 index as the primary index. If the dataset
is of high density, e.g., Porto, the pushdown strategy should be
applied. 2) For basic query types, if the result type is trajectory id or
a set of points, we recommend VRE𝑇𝑆𝑀 due to its low storage cost.
If users care more on the latency, VRE𝑃𝑋𝑀 can be used. If the full
trajectory is returned, we recommend VRE𝑇𝑆𝑀 . The choice of the
primary index depends on the query type. Overall, we recommend
𝑆𝑅 index as the primary index. This is because IDTQ usually has
a small candidate size and STRQ can be answered by SRQ with
another filter on the time range.
G2: Trajectories With Large NoP and Large SpS. Vessel trajec-
tories fall in this category, e.g., AIS [1]. 1) For advanced queries, we
recommend VRE𝑇𝑆𝑀 and VRE𝑇𝑆𝑀1 as they can do parallel process-
ing and do not need trajectory reconstruction. Furthermore, which
storage schema to use depends on the pruning effectiveness of the
metadata. Similar to G1, 𝑆𝑅 index should also be the primary index
and the pushdown strategy should be applied to the dataset of high
density. 2) For basic queries, we recommend VRE𝑆𝑆𝑀 and 𝑆𝑅 index
as the primary index, which strikes a good balance between query
performance and storage cost.
G3: Other Cases. In reality, there are very few datasets with small
NoP and large SpS or with large NoP and small SpS. We recommend
G1 for the former case and G2 for the latter case.

Table 4: Statistics of Datasets
AIS Porto Beijing OSM

# Trajectories 42,446 1,645,908 11,114,613 96,648,669
Size (GB) 5.34 1.94 10.4 201

Avg # Points (NoP) 2,678.9 50.0 22.2 49.8
Avg Spatial Span (SpS) (2.0508,1.4909) (0.0322,0.0221) (0.1,0.374) (0.016,0.03)
Density of Trajs (DoT) 2,310 410,326 827,359 1,491

6.2 Experimental Setup
Datasets. Our experiments are conducted on four representative
real-world trajectory datasets, AIS [1], Porto [5], Beijing [28], and
OSM [4]. The data statistics are shown in Table 4. Density is the
average number of trajectories in a unit area. We randomly issue
20 spatial range queries with 0.3 on AIS and 0.0037 on Porto and
Beijing respectively, and calculate the average number of returned
trajectories as the density. As shown in Sec. 1, the properties of
trajectory dataset have a significant impact on query efficiency. We
classify the first three datasets into two types: 1) datasets with large
SpS, large NoP, and low DoT, e.g., AIS; 2) datasets with small SpS,
small NoP, and high DoT, e.g., Porto and Beijing. These are two
extreme cases. Other datasets from reality will be similar to one
of them or in between, e.g., OSM. Notably, almost all datasets in
existing studies [25, 28, 33] are from urban applications and share
similar properties to Porto and Beijing.

6One setting refers to a choice of distance metric and a dataset, and note that VRE sup-
ports all advanced query types and widely-used distance metrics.
70.3 and 0.003 are roughly 33.3 kilometers and 333 meters respectively. The trajectories
in OSM are frommany countries, andwe calculate its density by dividing the cardinality
by 360*180.
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Table 5: Parameters (Default value is highlighted)
Parameter Value

Time Window 12h, 1d, 1w, 2w, 1m
Spatial Window 0.001, 0.002, 0.003, 0.004, 0.005
Threshold 𝜏 0.001, 0.002, 0.003, 0.004, 0.005

𝑘 1, 2, 5, 10, 20
Data Size (%) 25, 50, 100, 200, 400
# of Cores 1, 2, 4, 8, 16, 32

Parameter Setting. Table 5 shows the key parameters used. When
we vary a parameter, other parameters are set to default value. We
set spatial window size and threshold 𝜏 of AIS and OSM to be 100x
and 10x larger than those in the rest datasets, respectively. For Tb-
Search, k-Search, and sub-Search, query trajectories are randomly
sampled from the dataset.
Machines. VRE runs on a single machine with 32-core CPU and
32GB Memory, and a customized HBase cluster with two nodes.
Each node is connected to a Gigabit Ethernet switch and runs
CentOS 7 with Hadoop 2.10.0.

Table 6: Storage Cost (MB) and Insertion Time (s)
Disk 𝑇𝑆𝑀 𝑆𝑆𝑀 𝑆𝑋𝑀 𝑆𝑆𝑋 𝑇𝑆𝑀1 𝑇𝑆𝑀2 𝑇𝑋𝑀 𝑃𝑋𝑋

Cost 795 1167 1508.9 5535 1440.9 1291.6 1566.1 3455 7362
Ratio 1.0 1.5 1.9 6.7 1.8 1.62 2.0 4.34 9.6
Insert - 83.8 99.1 214 94.7 81.8 112.4 183.8 624.5

6.3 Storage Cost of Different Schemas
We compare the storage cost of five storage schemas introduced
in Sec. 4.4. Note that VRE𝑇𝑋𝑀 and VRE𝑃𝑋𝑋 have similar storage
costs to TrajMesa and GeoMesa respectively. Since there is no need
to split short trajectories, we conduct experiments on AIS which
contains long trajectories. Disk means storing trajectories in a file
with a zip compression. Ratio means the ratio of the storage cost of
one schema w.r.t that of Disk. Insert means the data insertion time.

From Table 6, we have the following observations. 1) By compar-
ing VRE𝑇𝑆𝑀 and VRE𝑇𝑋𝑀 (TrajMesa), the storage cost is reduced
by 3x when using the secondary index, because there is only one
replica data in VRE𝑇𝑆𝑀 . A similar result can be found in VRE𝑆𝑆𝑀
and VRE𝑆𝑋𝑀 . 2) By comparing VRE𝑆𝑆𝑀 and VRE𝑆𝑆𝑋 , the stor-
age cost of the metadata is 4% of the total storage cost. We will
later show that with the metadata on our two-stage framework,
the basic queries and advanced queries can be processed 2x faster.
We believe this is acceptable in real applications. 3) With the sec-
ondary index, the ratio of the segment-based model (VRE𝑆𝑆𝑀 ) and
trajectory-based model (VRE𝑇𝑆𝑀 ) are less than 2 while VRE𝑃𝑋𝑋

(GeoMesa) is 9.6 and VRE𝐻𝑋𝑀 (TrajMesa) is 4.34. 4) Insertion time
is proportional to the storage cost.

Table 7: Impact of Secondary Index
IDTQ (Porto) STRQ (Porto) IDTQ (AIS) STRQ (AIS)

PK (ms) 33.16 91.32 11.75 6.91
SK (ms) 33.56 218 9.75 7.32

6.4 Effectiveness of Proposed Optimizations
In this section, we analyze the impact of our proposed optimiza-
tions: the secondary index mechanism (Sec. 6.4.1), the two-stage
framework (Sec. 6.4.2), and the pushdown strategy (Sec. 6.4.3).
Settings.We propose 𝑆𝑅 index, 𝑆𝑇 index, and 𝐼𝐷𝑇 index to answer
SRQ, STRQ, and IDTQ directly (Sec. 4.3). SRQ is always employed
in processing advanced queries (Sec. 5.2). To obtain optimal per-
formance in processing advanced queries, we adopt 𝑆𝑅 index as

the primary index. The algorithms for Tb-Join and k-Join are built
on the algorithms for Tb-Search and k-Search respectively, so the
impact of the proposed optimizations on the join query is similar to
that of Tb-Search and k-Search, and hence we omit their results. We
also exclude sub-Search due to its different processing algorithm.
6.4.1 Impact of Secondary Index. Although the secondary index
mechanism reduces the storage cost significantly, it is worth dis-
cussing whether the efficiency degradation caused by extra disk
access is acceptable. With 𝑆𝑅 index as the primary index, we evalu-
ate the impact of the secondary index on IDTQ and STRQ.

From the results in Table 7, we find that the extra random access
caused by the secondary index is only non-negligible in processing
STRQ over Porto. We dig into our queries on Porto and observe that
the candidate size in IDTQ is quite small (only about 100), while
in STRQ it is more than 1000. The time used in the random access
then becomes the major overhead.

If users care about query latency when facing a larger candidate
size, we can add the metadata as one attached column in the sec-
ondary index, and hence we can obtain similar query latency to the
primary index. The storage cost is still much smaller than one data
replica in one index.

Table 8: Efficiency of Two-Stage Framework
SRQ (Porto) Tb-Search (Porto) SRQ (AIS) Tb-Search (AIS)

one-stage (s) 14.94 out-of-memory 2.24 2.64
two-stage (s) 6.37 1.86 0.47 0.22

6.4.2 Efficiency of Two-Stage Framework. In this section, we verify
the efficiency of the two-stage framework and the effectiveness of
the metadata. Under the two-stage framework, VRE prunes unsat-
isfied trajectories with metadata first to avoid fetching numerous
full trajectories while it incurs another round of access.

Table 8 shows the performance of SRQ and Tb-Search on two
different frameworks. In all cases, the latency of two-stage frame-
work is lower. Due to high density of Porto, the candidate size is
quite large. For example, the candidate size of one SRQ is about
441,205 while only 192,854 remains after pruning. If fetching the
full trajectories from storage layer, it incurs a large network cost
and memory consumption, which may easily cause out-of-memory
(OOM) errors, e.g., Tb-Search on Porto. TrajMesa adopts the one-
stage framework, which obviously is not efficient for trajectory
processing from the above analysis. These results also confirm the
effectiveness of metadata in pruning irrelevant trajectories.

6.4.3 Impact of Pushdown. We verify how our pushdown tech-
nique affects the overall efficiency in Tb-Search and k-Search where
VRE can push some pruning strategies down to the storage layer.
From Table 9, we first observe that pushing down our pruning
strategies helps improve the performance of Tb-Search on Porto up
to 2x while on AIS it slightly worsens the performance. To analyze
the reasons, we select one query trajectory from Porto and AIS
respectively and break down their performance into four parts:
the time used to fetch candidates’ metadata (tc), the time used for
pruning (tp), the time used for fetching the full trajectories (tf),
and the time used for calculating the distance (td). The results
are shown in Table 10. Table 10 also includes the candidate size
(cs), results size (rs) and total time (total). If the time is less than
10ms, we set it as 0. We can see that in all cases, tc is the main
overhead, about 83.3%-93.2%. On Porto, tc without pushdown is 2x
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slower because a large number of candidates without pushdown
incur more network cost. We also should notice that cs without
pushdown is 2333.2x slower than its pushdown counterpart. That
means we cannot ignore the time used in evoking coprocessor and
doing simple pruning in the storage layer. If the candidate size is
small, the reduced data transfer cost on network can be offset by
the extra cost in evoking coprocessor and pruning. This explains
why Tb-Search has a lower latency without pushdown on AIS.
Remark.When the system pushes down the pruning strategies to
the storage layer, it must be aware of the trade-off between the
reduced cost on transferring and the increased processing cost in
storage layer. For both Tb-Search and k-Search, we can do pushdown
for trajectory datasets of high density. A better way is to decide
whether or not to perform pushdown for every query on the fly
by checking the density of surrounding trajectories. In contrast,
TrajMesa [25], a state-of-the-art disk-based system, simply never
pushes down any pruning strategies into the storage layer. From
the analysis above, for high density trajectories, the performance
of TrajMesa is rather limited.

Table 9: Efficiency of Pushdown Optimization
Porto Porto (w/o push) AIS AIS (w/o push)

Tb-Search (s) 0.81 1.86 0.45 0.41
k-Search (s) 3.36 3.58 3.48 2.41

Table 10: Time Breakdown of Tb-Search (Pushdown)
dataset total (s) rs cs tc (s) tp (s) tf (s) td (s)
Porto 0.89 23 474 0.83 0.0 0.0 0.0

Porto (w/o pushdown) 2.17 23 1,105,945 1.82 0.0 0.0 0.0
AIS 0.1 3 3 0.09 0.0 0.0 0.0

AIS (w/o pushdown) 0.06 3 491 0.05 0.0 0.0 0.0

6.5 Query Efficiency w.r.t. Storage Schemas
In this section, we explore the impact of different storage schemas
(Sec. 4.4) on the query processing time.
Settings. Similar to Sec. 6.3, we conduct experiments on AIS. Due
to space limit, we only report the results on Tb-Search and k-Search.
Results on all basic queries are in our technical report [8]. With the
same reasons as in Sec. 6.4, we exclude the join queries and sub-
Search. We also omit the point-based model which cannot achieve
any competitive performance in all advanced queries due to its
excessive cost of reconstructing the full trajectories.

Table 11: Time Breakdown of Tb-Search (Storage Schemas)
schema total (ms) tc (ms) tp (ms) tf (ms) td (ms)
VRE𝑇𝑆𝑀 202 86 7 5 98
VRE𝑇𝑆𝑀1 233 122 7 3 95
VRE𝑆𝑆𝑀 397 134 152 10 96
VRE𝑇𝑆𝑀2 390 130 166 5 95

6.5.1 Tb-Search. Similar to Sec. 6.4.3, we break down Tb-Search into
four parts. Table 11 shows a time breakdown of the best-performing
query onVRE𝑇𝑆𝑀 .We have the following observations. 1) InVRE𝑇𝑆𝑀
and VRE𝑇𝑆𝑀1 , Metadata fetching and distance calculation are the
main overhead about 91%-93% of the total time. In VRE𝑆𝑆𝑀 and
VRE𝑇𝑆𝑀2 , Pruning is a bottleneck because some pruning strategies
in these two schemas cannot run in parallel, resulting in longer
time. 2) Compared to VRE𝑇𝑆𝑀1 , VRE𝑇𝑆𝑀 takes less time in fetch-
ing metadata. Recall the schema in Table 2, although the same

number of entries are returned, the size of metadata in VRE𝑇𝑆𝑀1
is much larger. 3) More metadata leads to better pruning power,
which can reduce the number of full trajectory fetching. In our
sampled queries, although the number of fetched trajectories in
VRE𝑇𝑆𝑀1 , VRE𝑆𝑆𝑀 , and VRE𝑇𝑆𝑀2 is smaller than that in VRE𝑇𝑆𝑀 ,
the time difference is marginal due to low trajectory density in the
AIS dataset.

6.5.2 k-Search. k-Search works in an iterative manner and stops
when the remaining trajectories can be pruned with the estimated
bound (Algo. 1). A smaller number of iterations and shorter time in
each iteration lead to a better performance. Again, we break down
the time in the 𝑖𝑡ℎ iteration, tt𝑖 , into four parts, tc𝑖 , tp𝑖 , tf𝑖 , and td𝑖 .
Similar trajectories are spatially close and hence the first iteration
takes longer time compared to subsequent iterations. Thus, we only
report the average time of the 𝑖𝑡ℎ-iteration, where 𝑖 > 1.

Table 12 shows a time breakdown of the best-performing query
on VRE𝑇𝑆𝑀1 . We find: 1) All storage schemas spendmost of the time
on the first iteration. Fetching the full trajectories and the actual
distance calculation are two major overheads in the first iteration,
because the average point count of each trajectory is extremely
large in AIS. 2) The metadata in VRE𝑇𝑆𝑀1 (also in VRE𝑇𝑆𝑀2 and
VRE𝑆𝑆𝑀 ) has more information about the original trajectory and
makes our pruning strategies more effective than the metadata in
VRE𝑇𝑆𝑀 , thus leading to a lower tf and td. 3) More metadata in
VRE𝑇𝑆𝑀1 also leads to higher tc and tp than VRE𝑇𝑆𝑀 .

Table 12: Time Breakdown of k-Search (Storage Schemas)
schema iter total (ms) tt1 tc1 tp1 tf1 td1 avg post-pro
VRE𝑇𝑆𝑀 2 7726.0 7482 107 91 901 6472 157 0
VRE𝑇𝑆𝑀1 2 4362 3990 127 269 483 2673 294 0
VRE𝑆𝑆𝑀 2 4537 3637 297 523 241 2463 759 88
VRE𝑇𝑆𝑀2 2 4459 3574 305 197 227 2504 753 76

6.6 Comparison with Existing Systems
Here, we focus on the efficiency and scalability for advanced queries,
and the results for basic queries are at [8].
Competitors. We compare with two SOTA systems, DITA [28]
and DFT [33], under their supported queries (see Table 1). Both
are Spark-based in-memory systems while our VRE is disk-based.
DITA supports Tb-Search, k-Search, and Tb-Join on Fréchet, DTW,
EDR and a variant of LCSS. DFT supports k-Search on Fréchet and
Hausdorff. We extend it to support DTW and Tb-Search on these
three metrics. It is worth highlighting that the pruning designs
in DITA and DFT prevent them from being extended to support
any other metrics or queries. There are different reasons we do
not compare other systems in Table 1: as discussed in Sec. 2.2,
MobilityDB [14], UltraMan [19], and Summit [12] only support
basic queries. REPOSE [41] only supports k-Search and the code is
not released. As for TrajMesa [25], the code is not released and we
have shown the advantages of our system in different optimizations
compared to TrajMesa in Sec. 6.4. We choose VRE𝑇𝑆𝑀1 for AIS
without pushdown and VRE𝑇𝑆𝑀 with pushdown strategy for Porto,
OSM, and Beijing based on our findings in Sec. 6.1. The results on
Beijing are in our technical report [8].
Settings. VRE currently is designed to run on a single node and
we use 32 cores by default. DITA and DFT run on a cluster with
32 nodes, each with an 8-core CPU and 32GB Memory (i.e., 256
cores by default). Note that although such a comparison is unfair
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Figure 3: Scalability for Data Size

to VRE, VRE is as competitive as DITA and DFT, which affirms the
efficiency and economicality of VRE.
6.6.1 Tb-Search. We evaluate Tb-Search on AIS, Porto, and Beijing.
Varying the Threshold. From Table 13, we make the following
observations. 1) Overall, except for EDR on Porto, VRE achieves
much better or competitive performance with fewer resources. 2)
With the increase of threshold, all methods take more time on their
supported similarity metrics, since a larger threshold leads to more
results. 3) In all datasets, VRE beats DFT by at least 3x. VRE directly
issues SRQ to fetch the candidates and prune irrelevant trajectories
with tailored pruning strategies in parallel while DFT first requires
the index to get the bitmap of filtered trajectories, collects the
bitmap at the master node, then searches the data with the collected
bitmap to verify the similarity. Thus, it creates a barrier between
indexing and verification. 4) In all datasets, DITA outperforms DFT,
which is the same as the result reported in [28]. 5) All existing
trajectory analytics systems, such as DFT and DITA, have poor
performance to handle trajectories with the large point count and
wide spatial range. On AIS, VRE significantly outperforms DFT and
DITA by at least 5x and 2x respectively. 6) On Porto, DITA slightly
outperforms VRE. This is because all trajectories in DITA have been
loaded into the main memory while VRE needs to fetch them from
the storage layer on the fly, which is the main overhead as shown
in the analysis in Sec. 6.4.3. 7) On OSM, VRE beats DITA by at least
100x. We analyze the resources usage of DITA and find that DITA
consumes a lot of memory, which becomes a bottleneck.
Scale-up. Figure 3(a) illustrates the processing time on different
scales of AIS and Porto. With the increase of data size, all methods
incur more time. On AIS, VRE outperforms both DFT and DITA,
while VRE is slightly slower than DITA on Porto.
Scale-out. Figure 4(a) illustrates the processing time w.r.t. different
core sizes on AIS and Porto. We only vary the number of cores
for VRE. 1) As the number of cores increases, VRE achieves more
performance gains since more workers run in parallel. 2) On AIS,
VRE with only 1 core beats DITA-256c and DFT-256c. VRE with
4 cores obtains a lower latency than DFT-256c on Porto and is as
competitive as DITA-256c on Porto. To summarize, VRE adopts
fewer resources in processing layer to achieve similar (even better)
performance, as compared to the existing Spark-based systems. It
verifies that VRE is more economical.
6.6.2 k-Search. We evaluate k-Search on AIS, Porto, and Beijing.
Varying the 𝑘 . From Table 14, we make the following observations.
1) Except for k-Search on AIS under EDR, VRE outperforms DFT
and DITA by up to an order of magnitude on all datasets, queries,
and distance metrics. DFT and DITA first estimate an upper bound
of threshold to fetch at least 𝑘 trajectories, and then transform
k-Search to Tb-Search. The estimated threshold may not be tight
enough, incurring more trajectories to be accessed. In contrast,
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Figure 4: Scalability for Cores
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Figure 5: Scalability of sub-Search

VRE adopts an expanding manner and stops the exploration when
the remaining trajectories could be pruned with the updated bound,
which is quite efficient. 2) In all datasets, with the increase of 𝑘 , all
methods take more time since a larger 𝑘 leads to more trajectories
being checked. DFT and DITA cannot handle k-Search on OSM due
to their large memory consumption. 3) On AIS, DFT beats DITA, as
the large span and point count per trajectory on AIS limit the prun-
ing effectiveness of Trie-like index in DITA. Moreover, compared
with DFT, DITA needs more time to estimate the threshold by its
Trie-like index while DFT adopts a sampling strategy to obtain the
threshold.
Scale-up. Figure 3(b) illustrates the processing time on different
scales of AIS and Porto. With the increase of dataset size, all meth-
ods spend more time and the gap between VRE and DITA, DFT
tends to be larger since large data size introduces more computa-
tion and transmission costs. VRE achieves a better scalability with
the tailored storage schema, pruning strategies, and optimizations.
Note that DITA in 400% has lower latency than it in 200%. This is
because with more trajectories, some trajectories can find the top-𝑘
trajectories with a smaller bound.
Scale-out. Figure 4(b) illustrates the processing time on different
core sizes. 1) With the increase of cores, VRE performs better since
more workers run in parallel. 2) On AIS,VRE obtains a lower latency
than DITA-256c and competitive performance with DFT-256 only
with 1 core. On Porto, VRE beats DITA-256c and DFT-256c with 4
cores and 8 cores respectively. Similarly,VRE adopts fewer resources
in processing layer to achieve competitive performance with the
existing Spark-based systems. This further verifies that VRE is more
economical.
6.6.3 Tb-subSearch. Following the experimental setting in the
most recent work [32], we evaluate our proposed algorithms for
sub-Search on Porto. We adopt Exact-S [32] as the baseline method.
Other methods in [32], e.g., RLS-Skip, are approximate algorithms,
which cannot always find the most similar one. Figure 5 illustrates
the performance of sub-Search with varying data size and core size.
Scale-up. From Figure 5(a), we observe that with the increase

of data size, the gap between Exact-S and VRE tends to be bigger.
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Table 13: Runtime (s) of Tb-Search

0.1 0.2 0.3 0.4 0.5 0.001 0.002 0.003 0.004 0.005 0.001 0.002 0.003 0.004 0.005 0.1 0.2 0.3 0.4 0.5 0.001 0.002 0.003 0.004 0.005 0.001 0.002 0.003 0.004 0.005
DFT 1373 1403 1377 1433 1537 2477 2390 2373 2659 3314 DFT 1.37 1.40 1.38 1.43 1.54 2.48 2.39 2.37 2.66 3.31 - - - - -
DSTbest 189 246.7 383.3 554.4 638.2 728.8 761.2 803.6 865.5 956.9 245.7 261.3 308.7 347.3 387.8 GRE 0.19 0.25 0.38 0.55 0.64 0.73 0.76 0.80 0.87 0.96 0.25 0.26 0.31 0.35 0.39
DFT 1319 1371 1403 1365 2377 2426 2338 2277 2452 2960 DFT 1.32 1.37 1.40 1.36 2.38 2.43 2.34 2.28 2.45 2.96 - - - - -
DITA 595 822 984 1106 1260 632 622 678 718 810 1840 1781 1849 1824 1903 DITA 0.60 0.82 0.98 1.11 1.26 0.63 0.62 0.68 0.72 0.81 1.84 1.78 1.85 1.82 1.90
DSTbest 240.7 261.8 405 560.3 674.9 723.1 754.4 758.1 796.2 814.5 245.5 272.9 297 314.8 362.1 GRE 0.24 0.26 0.41 0.56 0.67 0.72 0.75 0.76 0.80 0.81 0.25 0.27 0.30 0.31 0.36
DFT 1290 1391 1376 1332 2089 2336 2286 2233 2375 2897 DFT 1.29 1.39 1.38 1.33 2.09 2.34 2.29 2.23 2.37 2.90 - - - - -
DITA 353 357 380 370 428 567.5 571.4 582.8 588.3 626.6 1777 1742 1804 1759 1785 DITA 0.35 0.36 0.38 0.37 0.43 0.57 0.57 0.58 0.59 0.63 1.78 1.74 1.80 1.76 1.78
DSTbest 204.7 169.2 171.2 175.1 178.3 723.5 752.2 765.7 791.4 800.3 233.1 232.1 250.3 260 280.9 GRE 0.20 0.17 0.17 0.18 0.18 0.72 0.75 0.77 0.79 0.80 0.23 0.23 0.25 0.26 0.28

10 20 40 80 200 1 2 3 4 5 1 2 3 4 5 10 20 40 80 200 1 2 3 4 5 1 2 3 4 5
DITA 1760 1707 1768 1796 1957 657 712 1201 1284 1201 1955 1993 2522 2453 2395 DITA 1.76 1.71 1.77 1.80 1.96 0.66 0.71 1.20 1.28 1.20 1.96 1.99 2.52 2.45 2.39
DSTbest 313.1 179.7 177.4 171.1 176.9 3387 3261 3296 3337 3342 809.7 663.7 669.8 690.5 751 GRE 0.31 0.18 0.18 0.17 0.18 3.39 3.26 3.30 3.34 3.34 0.81 0.66 0.67 0.69 0.75

0.80 0.85 0.90 0.95 1.0 0.80 0.85 0.90 0.95 1.0 0.80 0.85 0.90 0.95 1.0 0.80 0.85 0.90 0.95 1.0 0.80 0.85 0.90 0.95 1.0 0.80 0.85 0.90 0.95 1.0
DSTbest 225.7 185.4 182.9 168.5 69.6 4861 4496 4426 4413 3341 1730 1675 1677 1673 1679 GRE 0.23 0.19 0.18 0.17 0.07 4.86 4.50 4.43 4.41 3.34 1.73 1.67 1.68 1.67 1.68

-: DFT crashed since it consumes too much memory on big datasets.

0.1 0.2 0.3 0.4 0.5 0.001 0.002 0.003 0.004 0.005 0.01 0.02 0.03 0.04 0.05
DFT 1.37 1.40 1.38 1.43 1.54 2.48 2.39 2.37 2.66 3.31 - - - - -
VRE 0.19 0.25 0.38 0.55 0.64 0.73 0.76 0.80 0.87 0.96 0.11 0.12 0.15 0.18 0.21
DFT 1.32 1.37 1.40 1.36 2.38 2.43 2.34 2.28 2.45 2.96 - - - - -
DITA 0.60 0.82 0.98 1.11 1.26 0.63 0.62 0.68 0.72 0.81 44.69 45.85 46.64 46.60 46.91
VRE 0.24 0.26 0.41 0.56 0.67 0.72 0.75 0.76 0.80 0.81 0.09 0.11 0.15 0.17 0.19
DFT 1.29 1.39 1.38 1.33 2.09 2.34 2.29 2.23 2.37 2.90 - - - - -
DITA 0.35 0.36 0.38 0.37 0.43 0.57 0.57 0.58 0.59 0.63 49.40 42.71 43.74 43.78 43.10
VRE 0.20 0.17 0.17 0.18 0.18 0.72 0.75 0.77 0.79 0.80 0.10 0.09 0.09 0.09 0.01

10 20 40 80 200 1 2 3 4 5 1 2 3 4 5
DITA 1.76 1.71 1.77 1.80 1.96 0.66 0.71 1.20 1.28 1.20 131.72 390.00 - - -
VRE 0.31 0.18 0.18 0.17 0.18 3.39 3.26 3.30 3.34 3.34 0.09 0.08 0.08 0.08 0.08

0.80 0.85 0.90 0.95 1.0 0.80 0.85 0.90 0.95 1.0 0.80 0.85 0.90 0.95 1.0
VRE 0.23 0.19 0.18 0.17 0.07 4.86 4.50 4.43 4.41 3.34 0.11 0.09 0.09 0.09 0.09

-: DFT or DITA crashed since it consumes too much memory on big datasets.
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Table 14: Runtime (s) of k-Search

1 2 5 10 20 1 2 5 10 20 1 2 5 10 20
DFT 6679 2860 3420 3806 3826 16319 15155 15547 16649 15803 - - - - -
DSTbest 894.17 1420.6 2085.9 2761.5 3421.6 1751.7 1548.8 1617.4 1673.7 1774.6 569 538.5 541.67 563.13 589.42
DFT 2018 2364 2806 2890 2940 11044 12869 11596 12055 12085 - - - - -
DITA 2343 3021 4120 6836 11256 2692 3167 2825 2986 3275 6107 6319 6138 6408 6733
DSTbest 517.1 734.7 1296.2 2011.7 3307.3 1395.9 1291.8 1309.3 1320.6 1342.6 522.58 499.25 477.83 465.33 543.38
DFT 3841 4200 5016 5050 5719 7677 7570 7676 7624 7709 - - - - -
DITA 3610 32450 32837 33010 38673 4983 4933 4725 5176 5702 6411 6391 6423 6531 6891
DSTbest 1154.1 1274.9 1809.5 2863.4 4017.7 2072.7 2069.5 2170.9 2277.2 2517.6 594.25 550.17 582.38 598.83 643
DITA 3165 4880 4982 5472 6289 14749 15987 15557 16430 16459 8970 10548 9151 10298 9889
DSTbest 4356.7 5496.1 6035 8272.6 9278.8 1864.7 3817.3 4146.6 4471.7 4770.9 1111 1603.6 1700 1891.2 2023.2

LCSS DSTbest 1086.4 1462.1 1493.4 1566.1 1582 7417.8 7295.8 7341.3 7347.2 7352.2 2386.6 2279.2 2249.8 2722.1 2868.6

1 2 5 10 20 1 2 5 10 20 1 2 5 10 20
DFT 6.68 2.86 3.42 3.81 3.83 16.32 15.16 15.55 16.65 15.80 - - - - -
VRE 0.89 1.42 2.09 2.76 3.42 1.75 1.55 1.62 1.67 1.77 0.10 0.13 0.15 0.27 0.55
DFT 2.02 2.36 2.81 2.89 2.94 11.04 12.87 11.60 12.06 12.08 - - - - -
DITA 2.34 3.02 4.12 6.84 11.26 2.69 3.17 2.82 2.99 3.27 - - - - -
VRE 0.52 0.73 1.30 2.01 3.31 1.40 1.29 1.31 1.32 1.34 0.09 0.14 0.16 0.29 0.60
DFT 3.84 4.20 5.02 5.05 5.72 7.68 7.57 7.68 7.62 7.71 - - - - -
DITA 3.61 32.45 32.84 33.01 38.67 4.98 4.93 4.72 5.18 5.70 - - - - -
VRE 1.15 1.27 1.81 2.86 4.02 2.07 2.07 2.17 2.28 2.52 0.10 0.13 0.16 0.22 0.50
DITA 3.17 4.88 4.98 5.47 6.29 14.75 15.99 15.56 16.43 16.46 - - - - -
VRE 4.36 5.50 6.04 8.27 9.28 1.86 3.82 4.15 4.47 4.77 0.16 0.18 0.19 0.22 0.25

LCSS VRE 1.09 1.46 1.49 1.57 1.58 7.42 7.30 7.34 7.35 7.35 0.28 0.27 0.27 0.27 0.29

-: DFT or DITA crashed since it consumes too much memory on big datasets.
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Figure 6: Efficiency of the Tb-Join

For example, when we increase the data size from 50% to 100%,
Exact-S’ time increases from 52.53 seconds to 109.8 seconds, while
VRE increases from 21.2 seconds to 41 seconds. VRE achieves a
better scalability with the tailored algorithms.
Scale-out. From Figure 5(b), we have the following observations.
1) When the core size equals 1, Exact-S is about 4x slower than
VRE, which is similar to RLS-Skip and RLS [32]. However, these
learning-based methods cannot always find the most similar one
for the issued queries and need lots of time to train the model. 2)
With the increase of core size, all methods gain the performance
improvement. The gap between Exact-S and VRE tends to be smaller.
6.6.4 Join Query. Figure 6 illustrates the results of Tb-Join. We
have the following observations. 1) The time used in VRE and DITA
is increased with a larger threshold as more pairs are generated.
2) VRE outperforms DITA on AIS and is as competitive as DITA
on Porto under Fréchet. 3) DITA outperforms VRE by about 8x on
Porto under DTW. Note that we use 32 cores for VRE and 256 cores
for DITA. Considering the parallel processing we have designed,

we believe that VRE is as competitive as DITA. 4) The average time
of each trajectory to find their joinable trajectories is about 14 ms,
which is 13x faster than Tb-Search on AIS. It shows the effectiveness
of our proposed algorithm. A similar result is also in Porto.

Due to the high complexity of k-Join, we conduct an experi-
ment on 25% Porto with 𝑘 = 2 and the distance function is Fréchet.
VRE spends 4, 300s on this query. The average time of each trajec-
tory is about 11ms. Due to space limit, more results are in Appen-
dix G of [8].

7 CONCLUSIONS AND FUTUREWORK
In this paper, we propose a new trajectory management system,
VRE. The core part of VRE has deployed in Ganos, the spatio-
temporal data engine in Alibaba. To our best knowledge, VRE is
the first system that supports all basic and advanced query types
and distance functions while incurring much lower storage cost
for trajectories. We also present our insights through the study
and guidelines for optimal storage schema selection in VRE. These
insights and guidelines give the lessons for future trajectory sys-
tems’ design. The main direction of our future work is threefold: (1)
enable VRE with the ability to handle the queries across multiple
nodes, which is crucial for analytical queries, e.g., join; (2) intro-
duce a cost-aware optimizer to choose the best execution strategy
for every incoming query instead of one strategy for one specific
dataset; (3) build a benchmark for trajectory data system.
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