
OceanBase: A 707 Million tpmC Distributed Relational Database
System

Zhenkun Yang, Chuanhui Yang, Fusheng Han, Mingqiang Zhuang, Bing Yang, Zhifeng Yang,
Xiaojun Cheng, Yuzhong Zhao, Wenhui Shi, Huafeng Xi, Huang Yu, Bin Liu, Yi Pan, Boxue Yin,

Junquan Chen, Quanqing Xu
OceanBase

OceanBaseLabs@list.alibaba-inc.com

ABSTRACT
We have designed and developed OceanBase, a distributed re-

lational database system from the very basics for a decade. Being
a scale-out multi-tenant system, OceanBase is cross-region fault
tolerant, which is based on the shared-nothing architecture. Besides
sharing many similar goals with alternative distributed DBMS, such
as horizontal scalability, fault-tolerance, etc., our design has been
driven by the demands of typical RDBMS compatibility as well
as both on-premise and off-premise deployments. OceanBase has
fulfilled its design goal. It implements the salient features of cer-
tain mainstream classical RDBMS, and most applications on them
can run on OceanBase, with or without a few minor modifications.
Tens of thousands of OceanBase servers have been deployed in
Alipay.com as well as many other commercial organizations. It has
also successfully passed the TPC-C benchmark test and seized the
first place with more than 707 million tpmC. This paper presents
the goals, design criteria, infrastructure, and key components of
OceanBase including its engines for storage and transaction process-
ing. Further, it details how OceanBase achieves the above leading
TPC-C benchmark in a distributed cluster with more than 1,500
servers from 3 zones. It also describes lessons what we have learnt
in building OceanBase for more than a decade.

PVLDB Reference Format:
Zhenkun Yang, Chuanhui Yang, Fusheng Han, Mingqiang Zhuang, Bing
Yang, Zhifeng Yang, Xiaojun Cheng, Yuzhong Zhao, Wenhui Shi, Huafeng
Xi, Huang Yu, Bin Liu, Yi Pan, Boxue Yin, Junquan Chen, Quanqing Xu.
OceanBase: A 707 Million tpmC Distributed Relational Database System.
PVLDB, 15(12): 3385 - 3397, 2022.
doi:10.14778/3554821.3554830

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/oceanbase/obdeploy.

1 INTRODUCTION
Strong transaction guarantee, relational model, and excellently

expressible Structured Query Language (SQL)make Relational Data-
base Management System (RDBMS) the crucial information infras-
tructure of the majority of business systems. For the last three

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 12 ISSN 2150-8097.
doi:10.14778/3554821.3554830

decades, the development of Internet platforms has facilitated the
flourishing global businesses, e.g., the likes of Alipay.com, Ama-
zon.com, and Taobao.com, serve the general populace instead of a
single organization. Classical centralized RDBMS are not capable
of meeting the requirements of the scalability, cross-region fault
tolerance, and cost-effectiveness of these businesses.

We launched the design and development of OceanBase [6, 7], a
commodity hardware-based distributed relational database system
from the very basics, in May 2010. OceanBase has been first used as
the Favorite of Taobao.com [3] in 2011, a service similar to theWish
List of Amazon.com [11]. Thereafter, it was used by Alipay.com, in
2014, and by Zhejiang E-Commerce Bank in 2015, and many other
commercial banks, insurance companies, and other organizations
for communication and energy applications.

This paper first presents the detailed design goals and criteria,
system architecture, SQL engine and multi-tenancy of OceanBase in
§2. Second, it presents an LSM-tree-based [35] storage engine, and
discusses the asymmetric read and write design, daily incremental
major compaction, and replica type in §3. Third, in §4, it proposes
the transaction processing engine including the timestamp ser-
vice, transaction processing, isolation level, and replicated table
in OceanBase. Fourth, in §5, we performed the TPC-C benchmark
test of OceanBase in 2020. §6 presents lessons learnt in building
OceanBase. §7 provides a brief review of the related work. Finally,
we conclude our work in §8. We briefly list our contributions in the
following items.

• We have built OceanBase, a distributed relational database
from the very basics, since 2010. As a scale-out multi-tenant
system, OceanBase is cross-region fault tolerant, and it sup-
ports the shared-nothing architecture. In case of the failure
of a minority of the nodes, its RPO (Recovery Point Objec-
tive) turns zero, and its RTO (Recovery Time Objective) is
less than 30 seconds.

• Wepresent an LSM-tree-based storage engine, which achieves
the performance close to that of the in-memory database
after multiple optimizations. An asymmetric read and write
data block storage system as well as a daily incremental
major compaction have been designed and implemented.

• We propose a Paxos-based 2PC named OceanBase 2PC to
improve the distributed transaction processing capability
and reduce the transaction latency, which introduces the
Paxos protocol to 2PC, thus making the distributed transac-
tions have an automatic fault tolerance. Compared with the
traditional 2PC, the state of the coordinator does not persist
in OceanBase 2PC, thereby reducing the number of Paxos

3385

https://doi.org/10.14778/3554821.3554830
https://github.com/oceanbase/obdeploy
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3554821.3554830
https://www.acm.org/publications/policies/artifact-review-and-badging-current

synchronizations from three to two and further truncating
the transaction latency to only one Paxos synchronization.

• We have performed the TPC-C benchmark test of OceanBase
to reach 707 million tpmC in 2020, which is the best global
record, hitherto.

OceanBase is an open source project under Mulan Public Li-
cense 2.0 [5] and the source code is available on both gitee [6] and
GitHub [7].

2 DESIGN OVERVIEW
We work on the design of OceanBase that supports the fast

scale-out (scale-in) on the commodity hardware, to achieve high
performance and low total cost of ownership (TCO), cross-region
deployment, and fault tolerance. It is compatible with certain main-
stream classical RDBMS. In this section, we introduce our design
goals and criteria, and discuss the system infrastructure and de-
ployment of OceanBase.

2.1 Goals
Goals of OceanBase include the following.
1) Fast scale-out (scale-in) on commodity hardware to ac-

hieve high performance and low TCO.
Similar to the high-end server and SAN storage, the classical
centralized RDBMS are highly expensive and difficult to
expand. Sharding and resharding can be extremely taxing on
human resource and time [19]. OceanBase should be much
more cost-effective than classical RDBMS and, e.g., be able
to scale-out and scale-in quickly, before and after a business
promotion event, respectively.

2) Cross-region deployment and fault tolerance.
High availability of the classical RDBMS system is solely
based on the high availability of the hardware, e.g., the high-
end server and SAN storage. Database master and backup
mirroring cannot guarantee both the service availability and
data integrity following the failure of the master database.
OceanBase should be cross-region fault tolerant, and hence
it guarantees the data integrity even in case of the failure of
one region.

3) Compatible with some mainstream classical RDBMS.
Hundreds of thousands of legacy applications are running
on various classical RDBMS. The cost, time, and risk of the
migration of these legacy applications from the classical
RDBMS to OceanBase should be minimized. This invokes
the compatibility of OceanBase with these classical RDBMS.
It is discussed in details in §2.2.

2.2 Criteria of Design
In the past several decades, classical RDBMS have been adopted

by multiple independent software development vendors, solution
providers, and used by numerous organizations. Various complex
SQL statements and stored procedures, consisting of a few to tens of
thousands of SQL statements, have been running on these RDBMS
to support various types of businesses. Each new relational database
has to encounter the following challenges:

• The cost, time, and risk of migrating the businesses from the
old database to the new database.

• The cost and time of learning of the new database andmigrat-
ing their solution from the old database to the new database
by independent software vendors and solution providers,
etc.

• The cost and time of learning the new database by the third-
party database service providers or by users themselves.

Being a general-purpose relational database system, the design
and implementation of OceanBase comply with the following crite-
rion:
Criterion 2.1. Native compatibility with certain mainstream classi-
cal RDBMS, and taking into account, the needs of the large, medium,
and small organizations.

• Native compatibilitywith certainmainstream classical RDBMS
that implements the salient features of these classical RDBMS
while being compatible with all of them, including the data
types, secondary index, view, trigger, cursor, constrains, func-
tions, and stored procedure. Applications on these RDBMS
should be able to run on OceanBase with or without only a
few minor modifications.

• Suitability for large, medium and small organizations such
that a large online shopping and payment organization may
need tens of thousands of high-profile database servers,
whereas a small organization may need only a few low-
profile database servers. Hence, one OceanBase cluster may
consist of tens of thousands of high-profile servers to meet
the requirements of a large organization, or it may also con-
sist of a few low-profile servers to meet the cost and perfor-
mance requirements of a small organization.

2.3 Infrastructure
OceanBase supports the shared-nothing architecture, and its

overall architecture is shown in Figure 1. Multiple servers in a
distributed cluster of OceanBase concurrently provide database
services with high availability. In Figure 1, the application layer
sends a request to the proxy layer (i.e., OBProxy), and after the
routing of the proxy service, it is sent to a database node (OBServer)
of the actual service data, and the execution result follows the
reverse path to the application layer. Different components in the
whole process achieve high availability in different ways.

Each OceanBase cluster consists of several zones, viz., 1, 3, or
5 zones. These zones can be restricted to one region or spread
over multiple regions. In each zone, OceanBase can be deployed
as shared-nothing. Transactions are replicated among the zones
using Paxos [27]. OceanBase supports the cross-region disaster
tolerance for multiple regions and zero data loss (RPO=0, RTO<=30
seconds) [10].

Database tables, especially the large ones, are partitioned explic-
itly by the user and these partitions are the basic units for the data
distribution and load balance. For the convenience of discussion,
non-partitioned table is considered as a partitioned table with one
partition. For every partition, there is a replica in each zone, and
these replicas form a Paxos group.

In each node, OceanBase is similar to a classical RDBMS. Subse-
quent to an OceanBase node receiving a SQL statement or a group
of SQL statements (e.g., a stored procedure), it compiles the SQL
statement(s) to produce a SQL execution plan. If it is a local plan, it

3386

Figure 1: System Architecture of OceanBase.

is executed by this OceanBase node as in a classical RDBMS. Other-
wise, this plan is executed using the so-called two-phase commit
protocol and the OceanBase node acts as the coordinator. A trans-
action is committed only after its redo logs persist on the majority
of all corresponding Paxos groups.

Among all Paxos groups of an OceanBase cluster, one Paxos
group is in charge of the management of the cluster, e.g., load
balance, adding (removing) nodes, failure detection of nodes, and
fault tolerance of failure nodes.

2.4 SQL Engine
The SQL engine of OceanBase is the data computing hub of the

entire database. When it receives a SQL request after a series of
processes such as syntax analysis, semantic analysis, query rewrit-
ing, and query optimization, the executor is responsible for the
execution. If the SQL statement involves a large amount of data,
the query execution engine of OceanBase implements a series of
techniques such as distributed query execution, data reshuffle, ver-
tical (horizontal) parallel execution, dynamic join filter, dynamic
partition pruning, and global queueing.

The generation of the execution plan (a.k.a hard parse in some
database vendor’s system) is a relatively complicated process over a
long-time interval, specifically in the OLTP scenario. The optimizer
needs to perform query transformation, physical optimization and
finally the engine needs to do code generation, which usually dom-
inates the whole execution time from end-to-end point of view.
Since many systems also have plan cache alike components imple-
mented, OceanBase uses a fast parser that is a super lightweight
framework to do only lexical analysis, and then attempts to match
an existing plan in the plan cache. The consideration behind is that
it does not require a grammar/syntax checking as long as it can
match a statement already in the plan cache. This approach is 10
times faster as compared to a normal parser.

Figure 2 describes the execution process of a SQL statement
and lists the relationships between various modules. Subsequent
to receiving the SQL request string sent by the user, the Parser
will divide the string into individual words, and parse the entire
request according to the pre-set grammatical rules. The Resolver
will translate the tokens in the SQL request into corresponding

!"#$%&

'&()$(

*+,-%-.$(

/01$2
3$4$(&,0(

/0),2
5),-%&,0('6&42/&"#$

!! !"!#

!78
59$":,0(

!"#$%&'()*+,

!"#$
%&'&()(*&

;)$(20(2<=
>++6-"&,-04

?$)06@$(

7:$(A2
B(&4)C0(%$(

!"#$%&'#%%

()*)

+,-#*%. ()*)

/-012"3&!3"4

'#A)-"&62'6&4

D&),2'&()$(

>112,02"&"#$

E-,
F-))

!,0(&G$
!!!

Figure 2: SQL Engine.

objects such as libraries, tables, columns, and indexes, according
to the database schema, and generate a statement tree. After the
Resolver, the Transformer analyzes the semantics of the user SQL,
and rewrites the user SQL into other equivalent forms according to
the internal rules or cost models, and provides it to the subsequent
Optimizer for further optimization. The Optimizer is responsible for
generating the best execution plan, though the output result cannot
be executed immediately. Further, it needs to be converted into
executable code by the Code Generator. When the SQL execution
plan is generated, the Executor will start the execution process of the
SQL. For different types of execution plans, the logic of Executor is
very different. (1) For local execution plans, the Executor will merely
call from the operator at the top of the execution plan, and the
entire execution process will be completed by the operator’s own
logic, and the execution results will be returned. (2) For distributed
plans, the Executor needs to divide the execution tree into multiple
schedulable threads according to the preselected divisions, and send
them to relevant nodes for execution through RPC.

2.5 Multi-tenancy
For OceanBase, multi-tenancy is an important feature, which

forms the basis of database object management and resource man-
agement. It also has a significant impact on the system operation
and maintenance. OceanBase includes two categories of tenants,
viz., system and ordinary tenants.

2.5.1 System Tenant. The system tenant is built-in to the system
and has three main functions, viz., (1) being the container of the
system table, where all system tables are stored in the space of the
system tenant, and (2) being the container for users with cluster
management functions: cluster level management functions, such
as addition or deletion of the tenants, and modifying system con-
figuration items, are only allowed to be performed by users under
system tenants. (3) It provides resources required to perform the
system maintenance and management actions.

2.5.2 Ordinary Tenant. An ordinary tenant can be regarded as
an instance of OceanBase, which is created by the system tenant
according to the needs, e.g., the needs of a business.While creating a
tenant, besides specifying the tenant’s name, the primary issue is to
specify the resources it occupies. An ordinary tenant is equivalent
to a MySQL instance; hence it naturally has all the features that

3387

a database instance should have. Specifically, (1) it can create its
own users, (2) all objects such as the database and table can be
created, and (3) it has its own independent information, e.g., schema.
Further, (4) it has its own independent system variables, and (5)
other features of a database instance.

2.5.3 Resource Isolation. To ensure that there is the least com-
petition for resources among tenants and ensure stable business
operation, OceanBase isolates resources among tenants as much
as possible. In OceanBase, a Resource Unit is regarded as a basic
unit for allocating resources to tenants. A Resource Unit can be
analogous to a Docker container, and it includes CPU, Memory,
IOPS, Disk Size, and Session Number. Multiple Resource Units can be
created on an OBServer. Each Resource Unit created on an OBServer
will occupy a portion of the OBServer’s CPU, memory and other
resources. The resource allocation of OBServer will be recorded
in an internal table for DBA to view. A tenant can place multiple
Resource Units on multiple OBServers, but a specific tenant can only
have one Resource Unit on an OBServer. Multiple Resource Units of
a tenant are independent of each other.

The resource isolation in OceanBase is the behavior of the OB-
Server to control the resource allocation among multiple local Re-
source Units, which is the local behavior of the OBServer. Similar
technologies are Docker and virtual machines, but OceanBase does
not rely onDocker or virtual machine technology, and it implements
resource isolation within the database. Compared with Docker and
virtual machines, the tenant isolation of OceanBase database is
more lightweight. The effects of OceanBase resource isolation are
as follows:

1) Memory is completely isolated, e.g., the memory used by
various operators in the SQL execution process is separated,
and the memory exhaustion of one tenant will not affect
another tenant.

2) CPUs are isolated through user-mode scheduling.
3) Data structures are separated, e.g., SQL’s Plan Cache is tenant-

separated, and the retirement of Plan Cache of one tenant
will not affect another tenant.

4) Transaction-related data structures are separated, e.g., a
transaction of a tenant is suspended and does not affect
other tenants.

2.6 Features
OceanBase has six main features as listed below.
• High performance: the storage adopts the read-write sepa-
ration architecture, the thorough performance optimization
of the computing engine, and the performance of the quasi
memory database.

• Low cost: using PC server, the high storage compression
ratio reduces the storage cost, and efficiently reduces the
computing cost, besides the multi-tenant deployment mak-
ing full use of the system resources.

• High availability: data is stored with multiple copies, and
therefore, the failure of a few copies does not affect the data
availability. Through the deployment of 5-zone among 3-
region, the automatic lossless disaster recovery of the urban
level faults has been realized.

Figure 3: Storage Engine of OceanBase.

• Strong consistency: strong consistency is guaranteed by
Paxos. By default, read and write operations have been per-
formed in the primary replica to ensure strong consistency.

• Scalability: the cluster nodes are all peer-to-peer, and each
node has computing and storage capabilities without a single
point of bottleneck. It supports linear, online expansion, and
contraction.

• Compatibility: it is compatible with the common MySQL
functions and MySQL front, besides the background proto-
cols. Businesses can be migrated from MySQL to OceanBase
with zero modification or a few minor modifications.

3 STORAGE ENGINE
In this section, we introduce our LSM-tree-based storage engine,

which supports the asymmetric read and write data block, daily
incremental major compaction, and different replica types.

3.1 LSM Tree-Based Architecture
OceanBase has a Log-Structured Merge-tree (LSM-tree) storage

system, similar to Bigtable [17]. Based on the LSM-tree architecture,
the storage engine of OceanBase is depicted in Figure 3. The data
has been grouped into two parts, viz., the static baseline data (placed
in SSTable) and dynamic incremental data (placed in MemTable).
SSTable is read-only and will not be modified after it is generated.
MemTable supports reading and writing, and is stored in the mem-
ory. Database data manipulation language (DML) operations such
as insert, update, and delete are first written to MemTable. When
MemTable reaches a certain size, it is dumped to disk and becomes
SSTable. While querying, we need to query SSTable and MemTable
separately, merge the query results, and return the merged query
results to the SQL layer. Concurrently, Block Cache and Row Cache
are implemented in the memory to reduce the random reading of
the baseline data.

When the incremental data in the memory reaches a certain
scale, OceanBase will perform minor compaction, i.e., to convert
MemTable to SSTable. Furthermore, the system will perform the
daily incremental major compaction to merge the mutations and
produce a new version of the baseline, and a more detailed dis-
cussion is given in §3.3. Since OceanBase adopts a baseline plus
increment design, a part of the data is in the baseline and the re-
maining in the increment. In principle, each query needs to read
both the baseline and increment. Therefore, OceanBase has made
a lot of optimizations, especially with respect to the single-row.

3388

Besides caching the data blocks inside OceanBase, rows are also
cached. Row caching will significantly accelerate the query per-
formance of a single row. For “empty checks” where rows do not
exist, Bloom filters could be constructed and cached. Bulk of the
OLTP business operations are small queries. Through small query
optimization, OceanBase achieves a performance close to that of
the in-memory database.

3.2 Asymmetric Read and Write
There are often heavy read and write operations in a database.

Similar to a classical RDBMS, the basic read unit of OceanBase,
called microblock, has a relatively small size, e.g., 4KB and 8KB, and
it is configurable through a database administrator. On the contrary,
the write unit of OceanBase, called macroblock, is 2MB. Macroblock
is also the basic unit of allocation and garbage collection of the
storage system. Many microblocks are packed into a macroblock
and this makes the disk utilization more efficient at the cost of a
larger write amplification.

3.3 Daily Incremental Major Compaction
OceanBase is essentially based on a baseline plus incremen-

tal storage engine, which is different from the classical relational
databases. OceanBase divides the data into many macroblocks of
2MB size. During a major compaction, if there is certain data modifi-
cation (insert, update, delete) within a macroblock, the macroblock
will be rewritten, otherwise, the macroblock will be reused in the
new baseline data without any IO cost. This makes the major com-
paction cost of OceanBase significantly lower than that of Lev-
elDB [4] and RocksDB [9]. Furthermore, OceanBase staggers the
normal service and the merge time through a round-robin com-
paction mechanism, thus isolating the normal user requests from
the interference of the compaction operation.

Since the major compaction is generally scheduled during the
off-peak business time, which implies further vacant CPU clock
cycles and memory, OceanBase can employ a more aggressive com-
pression algorithm which yields a higher data compression ratio
with no performance damage. Generally, only the modified mac-
roblocks need to be rewritten during the daily incremental major
compaction. When the schema of a table is modified, e.g., adding
or removing a column, or changing the attribute of a column, it
is just a metadata operation, as is the case in classic RDBMS. For
example, when adding a column, the new column will gradually
be filled in the background through progressive merge, so that the
query performance will be better. To minimize the ensuing impact
on the business, this full rewriting can be configured for a gradual
execution, e.g., 10% per day.

Unlike a major compaction, a minor compaction in OceanBase
will compact the in-memory mutations, viz. the MemTable, to the
disk and free the memory occupied by the MemTable. Several mi-
nor compactions might be merged in another, usually larger, com-
paction.

3.4 Replica Type
In OceanBase, a complete replica of a partition or table consists of

the baseline, mutation increment, and redo log and such a complete

replica is called a full replica. Besides full replica, there are certain
other replica types as listed below.

• Data replica: a data replica consists of the baseline and redo
log. A data replica copies the minor compactions (minor
compacted mutations) from a full replica on demand. A data
replica can be upgraded to a full replica when it completes
the replaying redo log after the last minor compaction has
received from a full replica. Data replica can reduce both the
CPU and memory cost by eliminating the redo log replay
and MemTable.

• Log replica: a log replica consists of redo log only. The
Log replica is a member of the corresponding Paxos group,
though there exists neither MemTable nor SSTable. By the
deployment of two full replicas and one log replica instead
of three full replicas, a system still owns quite a high avail-
ability while the storage and memory cost is significantly
reduced.

Table 1 gives a comparison of different replica types.

Table 1: Replica comparison.

Type Log MemTable SSTable
Full replica Yes, vote Yes Yes
Data replica Yes, vote No Yes
Log replica Yes, vote No No

4 TRANSACTION PROCESSING ENGINE
In this section, we proceed to present our transaction processing

engine in details.

4.1 Partition and Paxos Group
A table partition is the basic unit for the data distribution, load

balance, and Paxos synchronization. Typically, there is a Paxos
group for each partition. For example, there is a Paxos group for a
partition P7, in which P7 in Zone 3 is a primary replica as depicted
in Figure 4.

!"#$%&'%&#(

)()*

)+),

!"#$%&'%&#*

)-).

)/)0

!"#$ %

!"#$%&'%&#(

)()*

)+),

!"#$%&'%&#*

)-).

)/)0

!"#$ &

!"#$%&'%&#(

)()*

)+),

!"#$%&'%&#*

)-).

)/)0

!"#$ '

!"#$% &'$()

!"#$%"&
"'()#*%

+'*,-.%"&
"'()#*%

Figure 4: Paxos group.

4.2 Timestamp Service
To enable a high available timestamp service, a timestamp Paxos

group has been used. Paxos leader of the timestamp Paxos group
is often in the same region as Paxos leaders of the table partitions.

3389

Each OceanBase node retrieves the timestamp from the timestamp
Paxos leader periodically.

4.3 Transaction Processing
The traditional two-phase commit (2PC) protocol is often used

to implement the distributed transactions. Taking the distributed
transfer as an example, assuming that the account UA on the server
node A transfers money to the account UB on the server node
B, the modification of the account value is completed during the
execution of the SQL statement, including the verification of the
value, etc. Node A and node B respectively check whether the status
of the accounts UA and UB are normal, the balance of account UA is
sufficient to be transferred out (no limit exceeded), and the account
UB can be transferred in (not frozen). The account UA and UB will
be locked if the check is passed. The steps of the two-phase commit
are given below.

1) prepare phase: The prepare phase is to generate redo logs
and persist all the determined values.

2) commit phase: If the prepare operations of the accounts
UA and UB are successful in the first phase, the node A is
notified to deduct the balance of the account UA. Further, the
node B is notified to add the balance of the account UB, and
the transfer is successful. Alternatively, node A and node B
are notified to roll back the operation of the corresponding
account, and the transfer is cancelled.

However, in a shared-nothing scenario, if a node, such as A, fails
during the execution of the two-phase transaction, the status of A’s
operation on account UA is inaccessible. The prepare of account UA
may not be completed, or completed and succeeded, or completed
but failed. Further, Node A may recover quickly, or it may not
recover for a long time, or is permanently damaged. It is not even
possible to assess the failure or recovery of the node A, and hence
the execution result of the distributed transaction is uncertain.
For example, the monitoring node cannot always determine the
status of the monitored node, since the monitoring node itself or
the communication between it and the monitored node may be
abnormal.

OceanBase introduces the Paxos distributed consistency protocol
to 2PC [24], enabling the distributed transactions with automatic
fault tolerance. As shown in Figure 5, each participant in the two-
phase commit contains multiple copies, and the copies are readily
available through the Paxos protocol. When a participant node
fails, the Paxos protocol can quickly elect another replica to replace
the original participant to continue providing services, and restore
the state of the original participant. Thereby, it determines the
execution of the distributed transaction and continues advancing
the completion of the two-phase commit agreement.

To enhance the performance of the distributed transaction pro-
cessing and reduce the latency, OceanBase further improves the
traditional two-phase commit protocol by adopting the optimization
of operations of both the participant and the coordinator. According
to Figure 6, the coordinator maintains the state of the distributed
transaction, and responds to the client after performing the prepare
and commit operations. Each operation needs to be logged before
the coordinator processes. This reduces the two-phase commit to

!"#$%#&'()$*

+#$#,-"

!.)/01#%-

0#"'(&(0#$'%

!"#$%#&'()$*

+#$#,-"

!.)/01#%-

0#"'(&(0#$'%

!"#$%#&'()$*

+#$#,-"

!.)/01#%-

0#"'(&(0#$'%

2-#3-"

4#5)%

"-06(&#

4#5)%

"-06(&#

4#5)%

"-06(&#

Figure 5: Paxos-based 2PC.

!""#$%&'("#)*)+

!"#$%$&"'&()*+

!"##$%

!"##$% &'

()*$+ !"##$%
,-),.-) -)/

,-),.-) &'

!"##$% -)/

!"##$% &'

012

(a) Traditional 2PC

!" !#

!"#$%$&"'&()*+

!"##$% &'(&)'('(*

&'(&)'(+,

!"##$% '(*

!"##$% +,

!"##$% +,

$%%&'()*+%&

-./

(b) OceanBase 2PC

Figure 6: Traditional 2PC vs. OceanBase 2PC.

three Paxos synchronizations instead of four synchronizations be-
cause traditional 2PC with presumed abort [32] does not require
logging in the coordinator at the beginning of 2PC, as shown in
Figure 6(a). In OceanBase, the first participant of each distributed
transaction is the coordinator of the two-phase commit. Further-
more, the coordinator terminates in the state of the two-phase
commit, but dynamically constructs it through the local state of
all the participants during a disaster recovery. This results in two,
instead of three Paxos synchronizations, in a two-phase commit,
and the delay of a two-phase commit is further reduced to one
Paxos synchronization, as shown in Figure 6(b). Note that Ocean-
Base can add a switch to control whether a read optimization is
turned on. When this optimization is turned on, it causes an extra
network round trip in OceanBase 2PC. When all prepare logs of a
transaction are persisted on a majority of the corresponding Paxos
group, all states of the transaction are persisted. In a fault scenario,
OceanBase 2PC protocol will continue to advance the transaction
to the final completion according to whether all participants of the
transaction have completed the prepare phase.

4.4 Isolation Level
Usually, higher transaction isolation level implies a higher cost

and lower performance. For SQL statements with relatively complex
predicates, to the best of our knowledge, the performance cost of se-
rializable isolation is significantly high. Therefore, the mainstream
classical RDBMS do not take serialization isolation as their default
isolation level. For compatibility and performance considerations,
OceanBase supports read committed and snapshot isolation, and
makes the former as the default isolation level. A normal read will
only happen on the leader, and it refers to a query of general select.

3390

In contrast, OceanBase supports a weakly consistent query, which
needs to be explicitly specified by a user through hint in SQL.

4.5 Replicated Table
Certain tables are frequently accessed by other ones. For example,

a dimension table may be joined to fact tables through a foreign
key, frequently. This could significantly degrade the performance
in a distributed database system owing to the frequent network
accessing.

In OceanBase, a replicated table is replicated on each OceanBase
node. There are two kinds of replicated tables, viz., synchronously
replicated and asynchronously replicated tables. For a synchronously
replicated table, a mutation is committed only after the mutation
is performed by every replica of the table. This ensures that any
transaction in any OceanBase node will see the same content of a
synchronously replicated table. But synchronous mutation of all
replicas deteriorates the write performance of the corresponding
replicated table.

For an asynchronously replicated table, however, a mutation is
committed after the redo log of themutation continues on amajority
of the Paxos group of the table. Thereafter, the mutation will spread
to all replicas of the table in a cascading mode. Asynchronous
mutation of all replicas guarantees the write performance of the
corresponding replicated table such that replicas except the Paxos
leader may have the slightly old version of data. If a transaction
encounters a very old version of an asynchronous replicated table,
it will attempt a remote replica.

5 TPC-C BENCHMARK TEST
In this section, we proceed to present the TPC-C benchmark test

that we performed in 2020, including the benchmark configuration,
challenges, and results.

!

!

!""#$%&#'()*()'

!""#+(,#'()*()'

!

-./(0

!"#$%&$%

!"#$%&$%

!

!"#$%&$%'

()*+,$%-

!"#$%&$%

!"#$%&$%

!

!"#$%&$%

!"#$%&$%

!

./0'!"#$%&$%+

-./(1

!"#$%&$%

!"#$%&$%

!

!"#$%&$%'

()*+,$%-

!"#$%&$%

!"#$%&$%

!

!"#$%&$%

!"#$%&$%

!

./0'!"#$%&$%+

-./(2

!"#$%&$%

!"#$%&$%

!

!"#$%&$%'
()*+,$%-

!"#$%&$%

!"#$%&$%

!

!"#$%&$%

!"#$%&$%

!

./0'!"#$%&$%+

!"#$%&'(')'*#%
+,$$#-(./.(0%1!&2+3%

3./45.)#'()*()'

45'$*'-(.,$'6%7#**'8#*%

Figure 7: TPC-C benchmark test topology.

5.1 Benchmark Configuration
In May 2020, OceanBase performed the TPC-C benchmark test

for the second time. TPC-C benchmark test topology is depicted
in Figure 7. A total of 2,360 Alibaba Cloud ECS servers have been
employed in this benchmark test.

• There are 400 remote terminal emulator (RTE) servers to
emulate the total 559,440,000 users, and RTE parameters is

Table 2: RTE parameters.

Parameters Setting
Ramp-up Duration 3,300 seconds
Ramp-down Duration 150 seconds
Measurement Interval 28,800 seconds
Database Scale 55,944,000 warehouses
Total terminals 559,440,000
Terminals/Driver 55,944
Number of RTEs nodes/instances 10,000

shown in Table 2. A remote terminal emulator emulates a
user entering input data on the input (output) screen by
generating and sending the transactional messages to a web
server.

• There are 400 web servers. A web server receives requests
from several RTEs and implements TPC-C transactions as
SQL stored procedures 1 via the SQL engine of OceanBase
and invokes the data servers through the Open Database
Connectivity (ODBC) interface.

• The OceanBase cluster in this benchmark test consists of
1,557 servers in a shared-nothing architecture. Each server
has 84 vCPUs (2.5GHz Intel Xeon Platinum 8163 Skylake
hyper-threading processor), 712GB RAM, and 3.5TB*4 SSD.
These servers are evenly divided into 3 zoneswith 519 servers
in each zone, with 1,554 data servers and 3 management
servers in charge of the management of the cluster. These
1,554 data servers store all the data of the 9 TPC-C tables
and run all 5 TPC-C transactions. Note that in order to be
compatible with legacy databases, e.g., MySQL, as much as
possible, tables need to be explicitly partitioned. All tables
except the ITEM table are partitioned and spread to all data
servers. The ITEM table is configured as a synchronous repli-
cated table and is replicated on each data server, which is a
space-time tradeoff.

• There are 3 monitor servers in charge of the monitoring of
the OceanBase cluster.

5.2 Challenges
Many challenges that have been encountered and solved, while

running the TPC-C benchmark test and meeting the requirements
specified by the benchmark on a cluster consisting of 1500+ servers,
are given below.

The first challenge is the durability requirement by the bench-
mark specification. Single region with 3 zones deployment has been
chosen for this shared-nothing database system running on com-
modity hardware. Each Paxos group consists of 3 replicas, viz., a
full replica, a data replica, and a log replica. Compared with the
3 full replicas, this configuration cuts two-third of RAM used by
MemTable and one-third of storage used by the baseline data. It also
cuts certain CPU cycles by eliminating the redo log replaying on
the data replica and log replica. However, this also accrues certain
network bandwidth cost and disk IO cost as every data replica needs

1Stored procedures are considered part of the application program in TPC-C bench-
mark [21].

3391

to copy the minor compacted MemTable (minor compactions) from
the corresponding full replica, periodically.

The second challenge is with respect to the time-consuming
process of the generation of the initial data of the benchmark test.
Owing to the number of rows per warehouse (499,000+) and the
huge number of warehouses (total 55,944,000 and 36,000) for each
OceanBase node, and the required data population, the generation
of the initial data of the benchmark test is heavily taxing. To cut
this initial data generation time, the OceanBase cluster is first con-
figured as 1 replica instead of 3 replicas and no-logging. Besides,
thousands of rows are batch-inserted into the database through a
single transaction during the initial data generation period. Follow-
ing the insertion of all initial data, the database is reconfigured as 3
replicas, i.e., one full replica, one data replica, and one log replica,
and the partitions are re-replicated and rebalanced automatically.
No-logging is also turned off, and the system is ready for testing
after the above-said re-replicating and rebalancing, along with a
major compaction, are completed.

The third challenge is the ITEM table. Since ITEM table is fre-
quently accessed by the transactions in the TPC-C benchmark, it
should be replicated on every OceanBase node to avoid remote
access and guarantee the performance. Besides, ACID properties
must be met for any transaction on the ITEM table. Therefore, the
ITEM table is configured as a synchronous replicated table.

The fourth challenge is that the variations of the cumulative
performance throughput during the benchmark test measurement
interval should not exceed 2% according to the TPC-C benchmark
specification. There are several background operations in Ocean-
Base, e.g., minor compaction, merging compaction (merging several
minor compactions into one), and copying minor compactions from
a full replica to a data replica. The CPU threads pool for all the
background operations are reserved to minimize the performance
throughput variations. The upper limit of the MemTable size should
be chosen to be small enough for minor compaction to be completed
before the RAM is exhausted by new transactions during minor
compaction. Further, it must be large enough to exploit the RAM
of each node and produce minimal minor compactions. Finally, the
cumulative variations of the performance throughput during the
eight hours benchmark test measurement interval is less than 1%.
5.3 Results
5.3.1 tmpC. Using the above configuration, TPC-C benchmark
tests have been run on OceanBase clusters with 3, 9, 27, 81, 243, 510,
and 1554 data servers for an eight hour measurement interval. The
performance (tpmC) of these tests are displayed in Figure 8. We can
see that tpmC rises linearly as the number of data nodes increases.
Figure 8 shows that OceanBase is highly scalable. Furthermore,
OceanBase, with an online transaction processing performance of
707 million tpmC in 2020 [8], has broken the TPC-C world record
of 60 million tpmC that it created in 2019 [1]. The cumulative
tpmC variations during these tests are quite small as depicted in
Figure 9, where the smallest and largest top jitters are 0.03% and
0.37%, respectively, and the largest and smallest bottom jitters are
-0.03% and -0.81%, respectively.

5.3.2 New-Order. New-Order response time is shown in Figure 10.
The maximum, ninetieth percentile, average, and minimum re-
sponse times are reported for the New-Order transaction type, and

!"#$%"!&!' %"!!(")%)' !*"#+("#!%'
#$"&)*"!#,'

!!!"*#&"*!+'

*##"%%%"#)$'

$&$"#+!"&&$'

!"#$!!

%"#$!&

'"#$!&

("#$!&

)"#$!&

*"#$!&

+"#$!&

,"#$!&

&"#$!&

(- ', &% ')(*%! %.**)

!"
#
$

%&'(&)'*+,

Figure 8: tpmC.

!"#$%
!"!&% !"!'% !"!(% !"!(% !"!)%

!")$%

*!"++%

*!"#!% *!"!,% *!"!(% *!"!)% *!"!(%

*!",#%

!"#$$%

!$#&$%

$#$$%

$#&$%

"#$$%

! " #$ %& #'! (&) &*(('

!"
#
$
%&
'!
!(
)

* +,%-+.(/

!"#$%&''() *"''"+$%&''()

Figure 9: tpmC jitter.

the last three ones are overlapped as shown in Figure 10(a). All
the minimum ones are 103ms, whereas the average and ninetieth
percentile ones are proximate, with the smallest and largest dif-
ferences being 5ms and 33ms, respectively. The 90th percentile
response time for New-Order is greater than the average response
time of that transaction 2. There are marked gaps only for all the
maximum ones. From the perspective of New-Order, we can see
that OceanBase is highly scalable. This is because: 1) Through the
transparent forwarding of stateless OBProxy, distributed transac-
tions are greatly reduced, and local transactions are also optimized.
2) Distributed transactions are accelerated via OceanBase 2PC. 3)
Stored procedures speed up transaction execution. 4) The optimized
LSM-tree reduces transaction write operations. 5) Fast SQL param-
eterization is very efficient, which is useful for OLTP short query
scenarios.

Meanwhile, the New-Order response time distribution is shown
in Figure 10(b), where the vast majority of all New-Order trans-
actions are completed within 20ms. The vast majority of all the
other transactions, except Delivery, are also completed within 20ms.
Note that the emulated display delay is 100ms according to the
requirements of the TPC-C benchmark test [21], and real response
time is its experimental value minus 100ms.

5.3.3 Payment. Figure 11 shows the Payment response time. Fig-
ure 11(a) demonstrates the minimum, average, ninetieth percentile,
and maximum response times for the Payment transaction type,
where the first three ones are overlapped. The smallest average
one is 110ms (3 nodes), and the largest average one is 123ms (1,554
nodes), whereas the smallest ninetieth percentile one is 114ms (3
nodes), and the largest ninetieth percentile one is 154ms (1,554
nodes). Their differences are smaller than 100ms, viz. 4ms and 31ms.

2Based on one of rules of TPC-C: if the 90th and the average response times are
different by less that 100ms, then they are considered equal [21].

3392

3 9 27 81 243 510 1554

of nodes

0

1

2

3

4

5

R
e
s
p
o
n
s
e
 T

im
e
 (

s
e
c
o
n
d
s
)

Min

Average

90th

Max

(a) Scalability

0 100 200 300 400 500 600

Time in milliseconds

0.0

0.5

1.0

1.5

2.0

2.5

#
 o

f
tr

a
n
s
a
c
ti

o
n
s

1e10 New-Order Response Time Distribution

(b) RT Distribution with 1,554 nodes

Figure 10: New-Order Response Time (RT).

3 9 27 81 243 510 1554

of nodes

0

1

2

3

4

5

R
e
s
p
o
n
s
e
 T

im
e
 (

s
e
c
o
n
d
s
)

Min

Average

90th

Max

(a) Scalability

0 100 200 300 400 500 600

Time in milliseconds

0.0

0.2

0.4

0.6

0.8

1.0

1.2

#
 o

f
tr

a
n
s
a
c
ti

o
n
s

1e10 Payment Response Time Distribution

(b) RT Distribution with 1,554 nodes

Figure 11: Payment Response Time (RT).

The 90th percentile response time is greater than the average re-
sponse time in Payment. For the first three response times, they
are almost stable lines with negligible gaps. Similarly, Figure 11(a)
presents that OceanBase is highly scalable because of the five same
reasons with the New-Order transaction type. Concurrently, the
Payment response time distribution with 1,554 nodes is shown in
Figure 11(b).

5.3.4 Order-Status. Order-Status response time is illustrated in Fig-
ure 12. The maximum, ninetieth percentile, average, and minimum
response times are reported for the Order-Status transaction type,
where the last three ones are overlapped as shown in Figure 12(a).
The smallest and largest averages are 107ms and 117ms, respec-
tively, whereas the smallest and the largest ninetieth percentile is
109ms and 141ms, respectively. Their differences are 2ms and 24ms,
which are much smaller than 100ms. Simultaneously, Figure 12(b)
demonstrates theOrder-Status response time distribution with 1,554
data nodes. Due to the five same reasons, the Order-Status transac-
tion type has similar trends to the first two transaction types.

3 9 27 81 243 510 1554

of nodes

0

1

2

3

4

5

R
e
s
p
o
n
s
e
 T

im
e
 (

s
e
c
o
n
d
s
)

Min

Average

90th

Max

(a) Scalability

0 100 200 300 400 500

Time in milliseconds

0.0

0.5

1.0

1.5

2.0

2.5

3.0

#
 o

f
tr

a
n
s
a
c
ti

o
n
s

1e9 Order-Status Response Time Distribution

(b) RT Distribution with 1,554 nodes

Figure 12: Order-Status Response Time (RT).

5.3.5 Delivery. Figure 13 illustrates the Delivery response time.
Figure 13(a) shows the ninetieth percentile, maximum, minimum,
and average response times for the Delivery transaction type. In

Delivery, the 90th percentile response time is greater than the aver-
age response time. For 3, 9, 27, 81, 243, and 510 nodes, the smallest
and the largest average values are 17ms and 19ms, respectively,
while the smallest and largest ninetieth percentile values are 22ms
and 27ms, respectively. Their differences are much smaller than
100ms, viz., 5ms and 8ms. Meanwhile, the Delivery response time
distribution over 1,554 nodes is shown in Figure 13(b). The average
response time is 1.55 seconds and the ninetieth percentile response
time is 6.34 seconds, which are longer than those of other transac-
tion types, because the Delivery transactions are heavy tasks.

3 9 27 81 243 510 1554

of nodes

0

2

4

6

8

10

12

14

R
e
s
p
o
n
s
e
 T

im
e
 (

s
e
c
o
n
d
s
)

Min

Average

90th

Max

(a) Scalability

0 5000 10000 15000 20000 25000

Time in milliseconds

0.0

0.2

0.4

0.6

0.8

1.0

#
 o

f
tr

a
n
s
a
c
ti

o
n
s

1e6 Deliery-Deferred Response Time Distribution

(b) Delivery RT with 1,554 nodes

Figure 13: Delivery Response Time (RT).

5.3.6 Stock-Level. Stock-Level response time is shown in Figure 14.
The maximum, ninetieth percentile, average, and minimum re-
sponse times are reported for the Stock-Level transaction type, and
the last three ones are overlapped as shown in Figure 14(a). With
respect to Stock-Level, the 90th percentile response time is greater
than the average response time. The smallest and largest average
values are 109ms (3 nodes) and 120ms (1,554 nodes), respectively,
whereas the smallest and the largest ninetieth percentile values
are 114ms (3 nodes) and 152ms (1,554 nodes), respectively. Their
differences are much smaller than 100ms, viz., 11ms and 32ms. Si-
multaneously, Figure 14(b) illustrates the Stock-Level response time
distribution over 1,554 data nodes. The Stock-Level transaction type
has similar trends to other ones except the Delivery transaction
type owing to the same previous five reasons.

3 9 27 81 243 510 1554

of nodes

0

1

2

3

4

5

R
e
s
p
o
n
s
e
 T

im
e
 (

s
e
c
o
n
d
s
)

Min

Average

90th

Max

(a) Scalability

0 100 200 300 400 500 600

Time in milliseconds

0

1

2

3

4

#
 o

f
tr

a
n
s
a
c
ti

o
n
s

1e9 Stock-Level Response Time Distribution

(b) RT Distribution with 1,554 nodes

Figure 14: Stock-Level Response Time (RT).

Owing to the space constraint, we do not present more TPC-
C benchmark results, e.g., keying and think times. More TPC-C
benchmark results and information are shown in [2].

6 LESSONS IN BUILDING OCEANBASE
In this section, we detail what we have learnt in building Ocean-

Base for over ten years.

3393

6.1 From NoSQL to NewSQL
We initially built OceanBase as a distributed NoSQL storage

system for the Favorite of Taobao.com [3] in 2010. As shown in
Figure 15, there are three stages for OceanBase evolution, viz.,
(1) Stage 1: Towards a distributed architecture from 2010 to 2012,
primarily focusing on distributed NoSQL storage, (2) Stage 2: Native
distributed database from 2013 to 2016, starting with SQL engine
and enhancing Paxos-based high availability, (3) Stage 3: Hybrid
transactional and analytical processing (HTAP) system from 2017 to
current, primarily aiming at distributed transactions, inter-region
fault tolerance and HTAP.

The lessons learnt from practice, while building OceanBase from
a distributed NoSQL storage system to a distributed NewSQL re-
lational database system, are given as follows. 1) The application
layer should not use a database system as a key-value storage sys-
tem, and should rely on the advanced features of database; 2) The
stored procedure still has great value for OLTP applications; 3) For
the applications using distributed databases, every transaction and
every SQL should have a timeout set because of the higher failure
rate of distributed system networks and nodes. If the application
sets a timeout, the database may be retried in many failure situa-
tions to improve robustness. The infinite timeout period may lead
to logical deadlock in complex situations, which is not conducive
to the overall disaster recovery.

6.2 Both cost and performance
The LSM-tree architecture is naturally more suitable for data

encoding and compression. Part of the extra CPU consumption
is exchanged for a great reduction in storage cost. Concurrently,
it has no impact on the performance of OLTP services. Instead,
the encoding features are used in certain scenarios for improved
performance, e.g., higher cache hit rate, faster query, and lower IO
cost.

OceanBase encodes and compresses data in the microblock ac-
cording to the mode specified by the user table including flat and
encoding. When encoding is turned on in the user table 3, the data
in each microblock will be encoded in the column according to the
column dimension. The encoding rules include Dictionary Encod-
ing, Run-Length Encoding, and Delta Encoding. Coding can help
users to compress the data, besides accelerating the subsequent
query speed by the extracted feature information in the column.
After encoding and compression, OceanBase supports further loss-
less compression of microblock data using a user-specified general
compression algorithm for improving the data compression rate.
For example, a business system of Alipay was migrated from Oracle
to OceanBase, and the data was compressed from 100TB to 33TB.

6.3 Data validation
As a financial-level relational database, OceanBase has persis-

tently prioritised data quality and security first. Every data part
involving persistence in the whole data link will enhance data vali-
dation and protection. Concomitantly, by exploiting the inherent
advantages of multi-copy storage, data validation between replicas
is added to further validate that the overall data is consistent.

3It is supported in commercial OceanBase instead of open-source OceanBase.

In a common deployment mode, each user table of OceanBase
will have multiple copies in the cluster. When the cluster is merged
daily, all copies will generate consistent baseline data based on the
globally unified snapshot version. Using this feature, all copies will
be compared with the checksum of the data when the merge is
completed to ensure complete consistency. Further, based on the
index of the user table, the checksum of the index column will
continue to be compared to ensure that the index is consistent with
the column corresponding to the original table.

6.4 Partitioning vs. sharding
In OceanBase, partitioning refers to breaking a table into smaller,

easier-to-manage parts according to certain rules specified by users,
such as secondary partitioning and virtual column-based partition-
ing. However, sharding is based on hash, and there is no secondary
sharding. Each partition is an independent object with its own
name and optional storage characteristics. For applications access-
ing OceanBase database, only one table or one index is logically
accessed, though this table may be composed of dozens of physical
partitions. Partitioning is completely transparent to the application
and does not affect the business logic of the application.

From the perspective of the application, there is only one schema
object. Access to partitioned tables does not require modification of
the SQL statement. Partitions are useful for many different types of
database applications, especially those that manage large amounts
of data. A partitioned table can consist of one or more partitions
that are managed individually and can operate independently of
other partitions. OceanBase stores the data of each table partition
in its own SSTable, and each SSTable contains a part of the table
data. OceanBase can support from tens of thousands to millions of
partitions.

Compared with sharding, partitioning has the following benefits:
1) Improved usability. An unavailable partition does not im-

ply that the object is unavailable. The query optimizer auto-
matically removes unreferenced partitions from the query
plan. Therefore, queries are not affected when a partition is
unavailable. However, the queries are affected when a shard
is unavailable.

2) Manage objects more easily. Partition objects have frag-
ments that can be managed collectively or individually. Dif-
ferent from sharding, DDL (Data Definition Language) state-
ments can operate on partitions rather than entire tables or
indexes. Therefore, resource-intensive tasks such as rebuild-
ing indexes or tables can be decomposed. If something goes
wrong, we just redo the partition move instead of the table
move. Also, we can TRUNCATE the partitions to avoid to
DELETE large amounts of data.

3) Reduce contention for shared resources in OLTP sys-
tems. In OLTP scenarios, partitioning can reduce the con-
tention for shared resources, but sharding cannot, e.g., DML
is distributed over many partitions instead of one table.

4) Enhance query performance in the data warehouse. In
OLAP scenarios, partitioning can speed up the processing
of ad-hoc queries. However, sharding only can limitedly
accelerate it due to no secondary sharding. Partition keys
have natural filtering capabilities. For example, to query the

3394

!"#$!"#% !"!"

!"#&

!"#$%&'
()%*+%,(#-*
+&+(./0',-).'
12+#*.++

+&+(./+ %('!*('
3)-2$

!"!#

!"!#

45!6'.*7#*.0
56894':;<=>'
/#""#-*?$@40
,-//2*#(&'
A,.%*B%+.
).".%+.

!"#$% &'

()!*+

!"#$% ,'

(#"-.%/0-1"2-34"%5/0#"#3#1%

!"#$% 6'

7832-5/92#:1#;"-):#</#:5/=:#<8"-;#</>2);%11-:$/!81"%?

!"#'

8-).'
%,,-2*(#*70

,-).'
()%*+%,(#-*'
$%&/.*('%('
!*('3)-2$

>#@)1A3#1%5/B-$B/#.#-<#3-<-"8C/
0-1"2-34"%5/"2#:1#;"-):1

D:"%2A2%$-):/E#4<"/")<%2#:;%0-1"2-34"%5/()!*+/!")2#$%

!"#%

56898'>C<DD'
/#""#-*'($/8

!"!"

56898'ECE'
/#""#-*'($/8

!"#"

(@.'F%G-)#(.'-H'
5%-1%-<,-/

!"#(

I2"(#$".'
12+#*.++'
+&+(./+ %('
!"#$%&<,-/

%*J'
5%-1%-<,-/

K*(.)*.('
1%*L#*7'
+&+(./'%('
,-//.),#%"'

1%*L

!"#$

7832-5/92#:1#;"-):#</#:5/=:#<8"-;#</>2);%11-:$

!"!!

M(-)%7.9-*9
J./%*J0'*.N'

M?O'
G.,(-)#P%(#-*'
.*7#*.0 .(,

!"#!

A(@.)'
12+#*.++'
+&+(./+'%('
5%-1%-<,-/

Figure 15: OceanBase Evolution.

sales data of a quarter, when the sales data is partitioned by
sales time, only one partition or several partitions need to
be queried, not the entire table.

5) Provide better dynamic load balancing performance.
The storage unit and load balancing unit of OceanBase are
partitions. Different partitions can be stored on different
nodes. Therefore, a partitioned table can distribute different
partitions on different nodes, so that the data of a table can
be distributed evenly in the entire cluster. However, sharding
can hardly achieve dynamic load balancing.

6.5 Internet vs. Non-Internet companies
With the development of the Internet, the processing of mas-

sive data has increasingly become a problem for large Internet
companies. The services provided by traditional IT companies
are no longer applicable in terms of system scalability and cost-
effectiveness. Large Internet companies uses large memory and
multiple CPUs to maximize high performance, while traditional IT
companies pursue mainstream configuration and high cost perfor-
mance. For databases, compared with traditional enterprises, one of
the biggest differences of Internet enterprises is high concurrency.

In traditional commercial enterprises and banks, users need to
conduct business and access databases through special equipments
such as bank terminals, ATM teller machines, and POS machines.
Hundreds and thousands of concurrent requests to databases are
relatively common, whereas requests exceeding tens of thousands
of concurrent requests are scarce. On the Internet, every user can
initiate a shopping transaction and access the database. Hundreds
of thousands of concurrent database accesses are a common occur-
rence, and millions or even tens of millions of concurrent accesses
can also be seen (such as Taobao.com, Tmall.com andAlipay.com un-
der “Double 11”). Owing to such large concurrent access, the cost of
commercial database software and its highly reliable database server
and shared storage has become unaffordable. Compared with tradi-
tional databases, one of key features of OceanBase is the grayscale
upgrade of software versions for large-scale distributed clusters
with commodity machines. Through the grayscale upgrade, Ocean-
Base avoids the “one-shot deal” upgrade of traditional databases,
which greatly reduces the risk of database maintenance and up-
grades.

7 RELATEDWORK
The literature available in Google, viz. for 2012 and 2013, has

established the position of Spanner [19, 20] and F1 [40, 41] as the
founder of NewSQL database supporting both OLTP and OLAP.
Spanner has evolved into a complete database with its own SQL

Engine [15], taking into account both OLAP and OLTP scenarios
since 2012.

7.1 In-Memory Database Systems
Peloton [36] is a single-node, in-memory database designed

for self-driving database management with SQL support. Here,
data origination [14] has been utilized for the HTAP workloads at
run time. It employs lock-free, multi-version concurrency control
(MVCC) to support real-time analytics.

SAP HANA [22] is an in-memory database engine designed for
HTAP workloads. To provide real-time analytics (OLAP), it depends
on MVCC with a main and delta data-structures, in which the delta
is periodically merged with the main. A scale-out extension of
HANA named SAP HANA SOE [23] has been proposed to support
large scale analytics over real-time data. BatchDB [30] depends
on the primary-secondary replication with dedicated replicas, and
each being optimized for OLTP or OLAP, and it minimizes load
interaction between OLTP and OLAP engines, thus enabling the
real-time analysis over fresh data for both HTAP workloads.

HyPer [26] is a hybrid OLTP and OLAP main memory data-
base system based on virtual memory snapshots, and it relies on
single-threaded in-core partitioned database. It employs an MVCC
implementation that offers serializability, fast transaction process-
ing, and fast scans [33].

MemSQL [39] supports bothHTAPworkloads offering distributed
query processing, dynamic code generation, and high performance
in-memory data-structures, e.g., lock-free skip-lists. With respect to
the generation of highly efficient distributed query execution plans
with fast optimization times, the MemSQL Query Optimizer [18]
has proposed as a modern optimizer for MemSQL designed to opti-
mize complex queries efficiently and effectively.

7.2 Distributed Database Systems
Google is a pioneer in distributed HTAP systems. Google Per-

colator [37] is one of precursors of the distributed transaction
processing systems used in production despite its relatively long
transaction latency (e.g., a few seconds) and its lack of a query lan-
guage, e.g., SQL. Google Spanner [19][15] implements quite perfect
distributed transaction processing. There are several similarities
between the Spanner and OceanBase: (1) Both use commodity hard-
ware instead of a high-end server and high reliable storage used by
classical RDBMS. (2) Both employ LSM-tree. (3) Both utilize Paxos
replication instead of primary and backup mirroring. (4) Both offer
SQL interface.

3395

F1 Lightning [43] enables high-performance analytic queries
over hybrid query workloads on top of the existing OLTP sys-
tems. It has been deployed for the business-critical transactional
databases, e.g., AdWords [31]. It saves up to orders of magnitude
in computational resources, and it decreases the query latency
without compromising on the query semantics. However, there are
significant differences between Spanner and OceanBase:

• OceanBase is identical to classical RDBMS despite its dis-
tributed property. OceanBase implements various kinds of
data types, viz., SQL syntax, various constraints, various trig-
gers, cursor and stored procedure, and JDBC and ODBC of
classical RDBMS. OceanBase is also compatible with certain
mainstream classical RDBMS that enables the applications
based on these RDBMS to migrate to OceanBase with or
without only a few minor modifications.

• OceanBase can be deployed using hundreds or even thou-
sands of high-profile nodes which are suitable for high per-
formance and huge volume of data of large organizations. It
can also be deployed for employing a few low-profile nodes
which are suitable for small organizations.

• Many organizations do not own a high-precision atomic
clock, and therefore, OceanBase is designed to be indepen-
dent of an atomic clock. OceanBase can work normally if the
clock skew between the servers is under certain threshold,
e.g., 100ms and clock skew has no impact on the performance
and transaction response time.

• OceanBase provides multi-tenancy that is supported by cer-
tain classical RDBMS. It further cuts the TCO of customers.

CockroachDB [42] is inspired by Google Spanner, but instead of
TrueTime API, it uses HLC (hybrid logical clock), i.e., NTP (Network
Time Protocol) and logical clock to replace TrueTime timestamp. It
relies on HLC to do transactions, and the accuracy of the timestamp
cannot achieve a delay within 10 ms. Therefore, the commit wait
needs to be specified by the user, which is unfriendly to the user.
Furthermore, it employs Raft [34] as the data replication protocol,
and its underlying storage is based on RocksDB. CockroachDB
owns a standard shared-nothing architecture, and it employs range-
partitioning on the keys to split the table data into contiguous
ordered chunks of size ~64 MiB. OceanBase, by itself, does not split
the partition or table of users.

The design of YugabyteDB [12] is very similar to that of Google
Spanner, and it is an open source NewSQL database developed by
Yugabyte. Similar to CockroachDB, YugabyteDB uses hybrid logical
clocks instead of specialized hardware clocks for the TrueTime
protocol. It supports both snapshot isolation and serializability, and
it allows the users to select the level of transaction isolation they
need. Furthermore, it is compatible with the PostgreSQL protocol.

TiDB [25] is an open-source distributed database system sup-
porting SQL interface that is compatible with the MySQL wire
protocol. It is designed to support both OLTP and OLAP workloads.
Although TiDB is independently developed, it adopts open-source
products on several key modules, e.g., RocksDB for storage layer
and Spark SQL [13] for the distributed parallel computing.

As a large-scale data-warehouse system, Greenplum [29] presents
another pathway to evolve into an HTAP database. It adds OLTP
capability to a traditional OLAP system, and supports a fine-grained

resource isolation. By running the OTLP and OLAP workloads si-
multaneously in a single system, Greenplum has effectively utilized
the CPU and memory using the resource group.

There are numerous works on HTAP from the academic commu-
nity. For example, ES2 [16] is an elastic cloud data storage system,
which is designed to support both OLTP and OLAP within the same
storage. Umzi [28] is the multi-version and multi-zone LSM-like
indexing method to support the evolving data across multiple zones
with a consistent and unified indexing view in an HTAP database
system. Raza et al. [38] have modeled an HTAP database system
as a set of three individual engines, including OLTP, OLAP, and
Resource and Data Exchange (RDE) engines. To meet the workload
data freshness requirements, a scheduling algorithm has been de-
vised to traverse the HTAP design spectrum through the elastic
resource management.

8 CONCLUSION
Wehave built OceanBase, a cross-region fault tolerant distributed

database system from the very basics, since 2010. OceanBase can
be deployed in a shared-nothing architecture and can scale from
a few nodes up to thousands of nodes. It is also compatible with
certain mainstream classical RDBMS, e.g., MySQL. This greatly
lowers the threshold of migration of business from these centralized
RDBMS to OceanBase and significantly cuts the time, cost, and risk
of the migration, too. OceanBase has been employed to serve the
Favorite of Taobao.com since June 2011. Hitherto, tens of thousands
of OceanBase nodes are running in the production units of many
organizations. Hence, OceanBase has the following advantages:

❶ Native distributed architecture. It has a good horizon-
tal expansion and automatic load balancing capability. No
additional database middleware products are required, and
there is no invasion over the upper applications, making
the distributed architecture completely transparent to the
applications.

❷ Excellent data reliability and service availability. It strict-
ly follows the Paxos protocol to achieve magnificent data
reliability (RPO = 0) and service availability (RTO < 30 sec-
onds).

❸ Strict verifications of OLTP. Its product maturity and sta-
bility are perfectly guaranteed by tens of thousands of Ocean-
Base servers running in production for OLTP for years by
many commercial organizations.

❹ Exceptional performance. It has been verified by hun-
dreds of applications within Alibaba for many years, includ-
ing the extreme test of “Double 11” for consecutive years.

❺ Perfect MySQL compatibility. It meets the needs of most
users in the industry and reduces the difficulty of business
migration.

Whereas a distributed database compatible with mainstream
classical centralized RDBMS is very valuable, its implementation is
quite tedious and very challenging. For example, a true distributed
deadlock detection and resolution algorithm was not implemented
in OceanBase until recently (and it will be presented in another
paper). Besides, part of a few constraint features and a few DDL
operations are still under development or will be implemented in
the near future. OceanBase SQL optimizer, especially for complex
SQL statements, is under continuous fine tuning.

3396

REFERENCES
[1] 2019. OceanBase: 60 million tpmC. http://tpc.org/1799.
[2] 2020. Ant Financial TPC BenchmarkTM C Full Disclosure Report.

http://tpc.org/results/fdr/tpcc/ant_financial~tpcc~alibaba_cloud_elastic_
compute_service_cluster~fdr~2020-05-17~v01.pdf.

[3] 2021. Favorite of Taobao.com. https://shoucang.taobao.com.
[4] 2021. LevelDB. https://github.com/google/leveldb.
[5] 2021. MulanPubL-2.0. https://license.coscl.org.cn/MulanPubL-2.0/index.html.
[6] 2021. OceanBase. https://gitee.com/oceanbase.
[7] 2021. OceanBase. https://github.com/oceanbase.
[8] 2021. OceanBase: 707 million tmpC. http://tpc.org/1803.
[9] 2021. RocksDB. https://rocksdb.org/.
[10] 2021. RPO and RTO in OceanBase. https://github.com/kioco/oceanbase-1.
[11] 2021. Wish List of Amazon.com. https://www.amazon.com/hz/wishlist/intro.
[12] 2021. YugabyteDB. https://www.yugabyte.com.
[13] Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K.

Bradley, Xiangrui Meng, Tomer Kaftan, Michael J. Franklin, Ali Ghodsi, and
Matei Zaharia. 2015. Spark SQL: Relational Data Processing in Spark. In Proceed-
ings of the 2015 ACM SIGMOD International Conference on Management of Data,
Melbourne, Victoria, Australia, May 31 - June 4, 2015, Timos K. Sellis, Susan B.
Davidson, and Zachary G. Ives (Eds.). ACM, 1383–1394.

[14] Joy Arulraj, Andrew Pavlo, and PrashanthMenon. 2016. Bridging the Archipelago
between Row-Stores and Column-Stores for Hybrid Workloads. In Proceedings of
the 2016 International Conference on Management of Data, SIGMOD Conference
2016, San Francisco, CA, USA, June 26 - July 01, 2016, Fatma Özcan, Georgia
Koutrika, and Sam Madden (Eds.). ACM, 583–598.

[15] David F Bacon, Nathan Bales, Nico Bruno, Brian F Cooper, Adam Dickinson,
Andrew Fikes, Campbell Fraser, Andrey Gubarev, Milind Joshi, Eugene Kogan,
et al. 2017. Spanner: Becoming a SQL system. In Proceedings of the 2017 ACM
International Conference on Management of Data. 331–343.

[16] Yu Cao, Chun Chen, Fei Guo, Dawei Jiang, Yuting Lin, Beng Chin Ooi, Hoang Tam
Vo, Sai Wu, and Quanqing Xu. 2011. ES2: A cloud data storage system for support-
ing both OLTP and OLAP. In Proceedings of the 27th International Conference on
Data Engineering, ICDE 2011, April 11-16, 2011, Hannover, Germany, Serge Abite-
boul, Klemens Böhm, Christoph Koch, and Kian-Lee Tan (Eds.). IEEE Computer
Society, 291–302.

[17] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Deborah A Wal-
lach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E Gruber. 2008.
Bigtable: A distributed storage system for structured data. ACM Transactions on
Computer Systems (TOCS) 26, 2 (2008), 1–26.

[18] Jack Chen, Samir Jindel, Robert Walzer, Rajkumar Sen, Nika Jimsheleishvilli, and
Michael Andrews. 2016. The MemSQL Query Optimizer: A modern optimizer
for real-time analytics in a distributed database. Proc. VLDB Endow. 9, 13 (2016),
1401–1412.

[19] James C Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost,
Jeffrey John Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser,
Peter Hochschild, et al. 2013. Spanner: Google’s globally distributed database.
ACM Transactions on Computer Systems (TOCS) 31, 3 (2013), 1–22.

[20] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher
Frost, J. J. Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Pe-
ter Hochschild, Wilson C. Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li,
Alexander Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean Quinlan,
Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak, Christopher Taylor,
Ruth Wang, and Dale Woodford. 2012. Spanner: Google’s Globally-Distributed
Database. In 10th USENIX Symposium on Operating Systems Design and Imple-
mentation, OSDI 2012, Hollywood, CA, USA, October 8-10, 2012, Chandu Thekkath
and Amin Vahdat (Eds.). USENIX Association, 251–264.

[21] Transaction Processing Performance Council. 2010. TPC BENCHMARK™ C
Standard Specification Revision 5.11 Standard Specification.

[22] Franz Färber, NormanMay,Wolfgang Lehner, Philipp Große, Ingo Müller, Hannes
Rauhe, and Jonathan Dees. 2012. The SAP HANA Database – An Architecture
Overview. IEEE Data Eng. Bull. 35, 1 (2012), 28–33.

[23] Anil K. Goel, Jeffrey Pound, Nathan Auch, Peter Bumbulis, Scott MacLean, Franz
Färber, Francis Gropengießer, Christian Mathis, Thomas Bodner, and Wolfgang
Lehner. 2015. Towards Scalable Real-time Analytics: An Architecture for Scale-
out of OLxP Workloads. Proc. VLDB Endow. 8, 12 (2015), 1716–1727.

[24] Jim Gray and Leslie Lamport. 2006. Consensus on transaction commit. ACM
Trans. Database Syst. 31, 1 (2006), 133–160.

[25] Dongxu Huang, Qi Liu, Qiu Cui, Zhuhe Fang, Xiaoyu Ma, Fei Xu, Li Shen, Liu
Tang, Yuxing Zhou, Menglong Huang, et al. 2020. TiDB: a Raft-based HTAP
database. Proceedings of the VLDB Endowment 13, 12 (2020), 3072–3084.

[26] Alfons Kemper and Thomas Neumann. 2011. HyPer: A hybrid OLTP&OLAPmain
memory database system based on virtual memory snapshots. In Proceedings
of the 27th International Conference on Data Engineering, ICDE 2011, April 11-16,
2011, Hannover, Germany, Serge Abiteboul, Klemens Böhm, Christoph Koch, and
Kian-Lee Tan (Eds.). IEEE Computer Society, 195–206.

[27] Leslie Lamport. 1998. The Part-Time Parliament. ACM Trans. Comput. Syst. 16, 2
(1998), 133–169.

[28] Chen Luo, Pinar Tözün, Yuanyuan Tian, Ronald Barber, Vijayshankar Raman,
and Richard Sidle. 2019. Umzi: Unified Multi-Zone Indexing for Large-Scale
HTAP. In Advances in Database Technology - 22nd International Conference on
Extending Database Technology, EDBT 2019, Lisbon, Portugal, March 26-29, 2019,
Melanie Herschel, Helena Galhardas, Berthold Reinwald, Irini Fundulaki, Carsten
Binnig, and Zoi Kaoudi (Eds.). 1–12.

[29] Zhenghua Lyu, Huan Hubert Zhang, Gang Xiong, Gang Guo, Haozhou Wang,
Jinbao Chen, Asim Praveen, Yu Yang, Xiaoming Gao, Alexandra Wang, et al. 2021.
Greenplum: A Hybrid Database for Transactional and Analytical Workloads. In
Proceedings of the 2021 International Conference on Management of Data. 2530–
2542.

[30] Darko Makreshanski, Jana Giceva, Claude Barthels, and Gustavo Alonso. 2017.
BatchDB: Efficient Isolated Execution of Hybrid OLTP+OLAP Workloads for
Interactive Applications. In Proceedings of the 2017 ACM International Conference
on Management of Data, SIGMOD Conference 2017, Chicago, IL, USA, May 14-19,
2017, Semih Salihoglu, Wenchao Zhou, Rada Chirkova, Jun Yang, and Dan Suciu
(Eds.). ACM, 37–50.

[31] Aranyak Mehta, Amin Saberi, Umesh V. Vazirani, and Vijay V. Vazirani. 2007.
AdWords and generalized online matching. J. ACM 54, 5 (2007), 22.

[32] C. Mohan, Bruce G. Lindsay, and Ron Obermarck. 1986. Transaction Management
in the R* Distributed Database Management System. ACM Trans. Database Syst.
11, 4 (1986), 378–396.

[33] Thomas Neumann, Tobias Mühlbauer, and Alfons Kemper. 2015. Fast Serializable
Multi-Version Concurrency Control for Main-Memory Database Systems. In
Proceedings of the 2015 ACM SIGMOD International Conference on Management
of Data, Melbourne, Victoria, Australia, May 31 - June 4, 2015, Timos K. Sellis,
Susan B. Davidson, and Zachary G. Ives (Eds.). ACM, 677–689.

[34] Diego Ongaro and John K. Ousterhout. 2014. In Search of an Understandable
Consensus Algorithm. In 2014 USENIX Annual Technical Conference, USENIX ATC
’14, Philadelphia, PA, USA, June 19-20, 2014, Garth Gibson and Nickolai Zeldovich
(Eds.). USENIX Association, 305–319.

[35] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. 1996. The
log-structured merge-tree (LSM-tree). Acta Informatica 33, 4 (1996), 351–385.

[36] Andrew Pavlo, Gustavo Angulo, Joy Arulraj, Haibin Lin, Jiexi Lin, Lin Ma,
Prashanth Menon, Todd C. Mowry, Matthew Perron, Ian Quah, Siddharth San-
turkar, Anthony Tomasic, Skye Toor, Dana Van Aken, Ziqi Wang, Yingjun Wu,
Ran Xian, and Tieying Zhang. 2017. Self-Driving Database Management Sys-
tems. In 8th Biennial Conference on Innovative Data Systems Research, CIDR 2017,
Chaminade, CA, USA, January 8-11, 2017, Online Proceedings.

[37] Daniel Peng and Frank Dabek. 2010. Large-scale Incremental Processing Using
Distributed Transactions and Notifications. In 9th USENIX Symposium on Operat-
ing Systems Design and Implementation, OSDI 2010, October 4-6, 2010, Vancouver,
BC, Canada, Proceedings, Remzi H. Arpaci-Dusseau and Brad Chen (Eds.). USENIX
Association, 251–264.

[38] Aunn Raza, Periklis Chrysogelos, Angelos Christos Anadiotis, and Anastasia
Ailamaki. 2020. Adaptive HTAP through elastic resource scheduling. In Proceed-
ings of the 2020 ACM SIGMOD International Conference on Management of Data.
2043–2054.

[39] Nikita Shamgunov. 2014. The MemSQL In-Memory Database System. In Pro-
ceedings of the 2nd International Workshop on In Memory Data Management and
Analytics, IMDM 2014, Hangzhou, China, September 1, 2014, Justin J. Levandoski
and Andrew Pavlo (Eds.).

[40] Jeff Shute, Mircea Oancea, Stephan Ellner, Ben Handy, Eric Rollins, Bart Samwel,
Radek Vingralek, Chad Whipkey, Xin Chen, Beat Jegerlehner, Kyle Littlefield,
and Phoenix Tong. 2012. F1: the fault-tolerant distributed RDBMS supporting
google’s ad business. In Proceedings of the ACM SIGMOD International Conference
on Management of Data, SIGMOD 2012, Scottsdale, AZ, USA, May 20-24, 2012,
K. Selçuk Candan, Yi Chen, Richard T. Snodgrass, Luis Gravano, and Ariel Fuxman
(Eds.). ACM, 777–778.

[41] Jeff Shute, Radek Vingralek, Bart Samwel, Ben Handy, Chad Whipkey, Eric
Rollins, Mircea Oancea, Kyle Littlefield, David Menestrina, Stephan Ellner, John
Cieslewicz, Ian Rae, Traian Stancescu, and Himani Apte. 2013. F1: A Distributed
SQL Database That Scales. Proc. VLDB Endow. 6, 11 (2013), 1068–1079.

[42] Rebecca Taft, Irfan Sharif, Andrei Matei, Nathan VanBenschoten, Jordan Lewis,
Tobias Grieger, Kai Niemi, Andy Woods, Anne Birzin, Raphael Poss, et al. 2020.
Cockroachdb: The resilient geo-distributed sql database. In Proceedings of the
2020 ACM SIGMOD International Conference on Management of Data. 1493–1509.

[43] Jiacheng Yang, Ian Rae, Jun Xu, Jeff Shute, Zhan Yuan, Kelvin Lau, Qiang Zeng,
Xi Zhao, Jun Ma, Ziyang Chen, et al. 2020. F1 Lightning: HTAP as a Service.
Proceedings of the VLDB Endowment 13, 12 (2020), 3313–3325.

3397

http://tpc.org/1799
http://tpc.org/results/fdr/tpcc/ant_financial~tpcc~alibaba_cloud_elastic_compute_service_cluster~fdr~2020-05-17~v01.pdf
http://tpc.org/results/fdr/tpcc/ant_financial~tpcc~alibaba_cloud_elastic_compute_service_cluster~fdr~2020-05-17~v01.pdf
https://shoucang.taobao.com
https://github.com/google/leveldb
https://license.coscl.org.cn/MulanPubL-2.0/index.html
https://gitee.com/oceanbase
https://github.com/oceanbase
http://tpc.org/1803
https://rocksdb.org/
https://github.com/kioco/oceanbase-1
https://www.amazon.com/hz/wishlist/intro
https://www.yugabyte.com

