
Operon: An Encrypted Database for Ownership-Preserving
Data Management

Sheng Wang, Yiran Li, Huorong Li, Feifei Li, Chengjin Tian, Le Su, Yanshan Zhang, Yubing Ma,
Lie Yan, Yuanyuan Sun, Xuntao Cheng, Xiaolong Xie, Yu Zou

{sh.wang, yiranli.lyr, huorong.lhr, lifeifei, tianchengjin.tcj, le.su, yanshan.z, yubing.myb,
yanlie.yl, yuanyuan.sun, xuntao.cxt, changbie.xxl, zouyu.zou}@alibaba-inc.com

Alibaba Group

ABSTRACT
The past decade has witnessed the rapid development of cloud com-
puting and data-centric applications. While these innovations offer
numerous attractive features for data processing, they also bring
in new issues about the loss of data ownership. Though some en-
crypted databases have emerged recently, they can not fully address
these concerns for the data owner. In this paper, we propose an
ownership-preserving database (OPDB), a new paradigm that charac-
terizes different roles’ responsibilities from nowadays applications
and preserves data ownership throughout the entire application.
We build Operon to follow the OPDB paradigm, which utilizes the
trusted execution environment (TEE) and introduces a behavior
control list (BCL). Different from access controls that merely han-
dle accessibility permissions, BCL further makes data operation
behaviors under control. Besides, we make Operon practical for
real-world applications, by extending database capabilities towards
flexibility, functionality and ease of use. Operon is the first database
framework with which the data owner exclusively controls its data
across different roles’ subsystems. We have successfully integrated
Operon with different TEEs, i.e., Intel SGX and an FPGA-based im-
plementation, and various database services on Alibaba Cloud, i.e.,
PolarDB and RDS PostgreSQL. The evaluation shows that Operon
achieves 71% - 97% of the performance of plaintext databases under
the TPC-C benchmark while preserving the data ownership.

PVLDB Reference Format:
Sheng Wang, Yiran Li, Huorong Li, Feifei Li, Chengjin Tian, Le Su, Yanshan
Zhang, Yubing Ma, Lie Yan, Yuanyuan Sun, Xuntao Cheng, Xiaolong Xie,
Yu Zou. Operon: An Encrypted Database for Ownership-Preserving
Data Management. PVLDB, 15(12): 3332 - 3345, 2022.
doi:10.14778/3554821.3554826

1 INTRODUCTION
For the past few decades, database management systems have been
evolving towards superior capabilities (e.g., efficiency, availability
and scalability) [3, 11, 22, 42, 45, 61, 66] to cope with the surge of
digital activities and data volumes. In contrast, practical techniques
for database security have witnessed relatively less significant ad-
vances, where access control, file encryption, database audit have
become de-facto standards [17, 19] that protect the database from
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 12 ISSN 2150-8097.
doi:10.14778/3554821.3554826

unexpected accesses and external attacks. In conventional settings,
a database system shall run in a private domain, and the system
owners (as well as administrators) inherently have full access to the
data inside. However, recent trends have overturned the assumption
and brought new security issues.

The issues mainly come from two fundamental changes. The first
one is the widespread adoption of cloud computing. Notice that,
although nowadays cloud systems are able to offer many attrac-
tive features (e.g., pay-as-you-go model, multi-region availability),
they break the private domain assumption. This outsourced in-
frastructure could be compromised by insiders (e.g., co-tenants or
rogue staffs from the cloud). In particular, anyone with privileges
(or physical access [35]) on that server can look into the databases
and cause data breaches, which is out of customers’ control. The
second one is that the data-centric revolution has complicated the
data management in applications. More specifically, the data needs
to flow between different processing components, each of which is
probably controlled by a different entity (e.g., internal sub-divisions,
business partners, and independent software vendors). Once the
data flow into others’ subsystems and databases, it is no longer un-
der the control of the original data owner, leading to a contradiction
between the utilization and the ownership of sensitive data.

On the surface, the above issues appear merely to be a confiden-
tiality problem of database systems. To this end, several encrypted
database systems have been built by both academia and industry,
while most of them focus on protecting the confidentiality of sen-
sitive data in outsourced databases. They either exploit special
cryptographic primitives [13, 29, 49] to support data manipulation
directly over ciphertext [12, 38, 50–52] or use trusted execution
environments (TEE) [20, 37] to operate on sensitive data in an iso-
lated enclave inaccessible from the rest of the host [2, 6, 27, 30, 39,
47, 53, 62, 65]. However, due to functional limitations, only a few of
them are commercialized, e.g., SQL Server Always-Encrypted [2].
Moreover, an even more fundamental problem has rarely been
considered: existing solutions assume that the authorized endpoint
directly interacting with the database is trusted and can touch sensi-
tive data, which is hard to achieve in application subsystems hosted
on the cloud or controlled by other entities.

Deep down, the above issues come from the loss of data owner-
ship, where simply extending prior systems with data confidential-
ity protection is insufficient. Concerning this, we propose a new par-
adigm for the encrypted database. We name it ownership-preserving
database (OPDB), with which the data is not even revealed to any
subsystems and the data owner exclusively governs data accessibil-
ity. In a nutshell, all sensitive data remains in ciphertext wherever

3332

https://doi.org/10.14778/3554821.3554826
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3554821.3554826

E-Commerce Platform

Human Resource
Management

Electronics
Manufacturer

Operon
SDK

OpeJDBC

Operon

Data Owner (DO) Data Manipulator (DM)
Independent Software Vendor (ISV)

Data Processor (DP)
Cloud Service Provider (CSP)

Cloud
DB Service

Operon

BCL Rule

BCL Rule

Figure 1: Illustration of supporting the OPDB with Operon.
Data owners use their keys (differently colored) to protect
data against any application processes or databases. Operon
only performs permitted operations (i.e., by BCL) within TEE.

it appears (e.g., in the memory of application/database server pro-
cesses or on the disk) and only the data owner can decrypt the
data. Compared with the existing data owner - service provider
model [33, 34], by adding a separate data manipulator role, OPDB
brings data ownership into control. When an entity (e.g., a business
partner) needs to process or utilize the sensitive data in its business
logic, the data owner only needs to grant it access to necessary
operations that are adequate to complete the task using cipher
processing capability in an OPDB instance. With OPDB, sensitive
data can be securely passed and processed across different entities’
subsystems and databases, which significantly reduces the risk of
data abuses and leakages throughout the entire process.

This paper presents Operon1, the first framework we built at
Alibaba Cloud that follows the OPDB paradigm. From its core,
Operon utilizes TEE to re-establish the private domain assumption.
To prevent application system owners from compromising data
ownership, Operon introduces a behavior control list (BCL), which
extends conventional system-oriented resource access control with
the control of data operation behaviors, decoupling data ownership
and system ownership. To the best of our knowledge, Operon is the
first database framework with which the data owner exclusively
controls the accessibility and behaviors of sensitive data, even when
the data has passed through many entities’ untrusted subsystems.
Figure 1 shows an example of supporting OPDB with Operon.

The design and implementation of Operon face two challenges.
First, since different entities and cloud may have diverse infrastruc-
tures, a flexible architecture is necessary to make Operon performs
as the basis of the OPDB paradigm across all subsystems, and to
adapt to different database systems and TEEs. As a solution, Operon
adopts a modular architecture and acts as a feature enhancement to
existing database systems. We have successfully integrated Operon
with different TEEs, i.e., Intel SGX and an FPGA-based implemen-
tation, as well as various database services on Alibaba Cloud, i.e.,
PolarDB [11] and RDS PostgreSQL. Second, since real-world appli-
cations always involve rich database functionalities (e.g., mix-typed
expression, connection pool, client driver) beyond basic operational
primitives, Operon should also provide corresponding functionali-
ties while preserving data ownership. Note that existing encrypted
databases mostly focus on cipher processing primitives, short of
fully-functional database support. Operon uses a set of server-side
and client-side co-designs to address this challenge.

In summary, our major contributions are as follows:

1OPE-ron here stands for Ownership-Preserving Encrypted database.

• We propose the OPDB paradigm and achieve it using BCL.
It is the first database solution with which the data owner
can exclusively control its sensitive data across multiple
subsystems and entities (Section 3).

• We build Operon to implement the above solution with TEE.
By co-designing the server-side system and client-side SDK,
Operon completes and extends database capabilities towards
flexibility, functionality, and ease of use (Section 4).

• We analyze the security and privacy aspects of Operon,
making a solid foundation for data owners to outsource
data processing to other entities (Section 5).

• We discuss practical application scenarios and evaluate
the performance of Operon. The result shows that Operon
achieves 71% - 97% of the performance of plaintext databases
under TPC-C, while preserving the data ownership (Sec-
tion 6 & 7). Operon has commercialized on Alibaba Cloud
through RDS [16] and DataTrust [15] services2.

2 PRELIMINARIES AND OVERVIEW
In this section, we first brief the preliminaries about trusted exe-
cution environments and our threat model. We then provide an
overview of Operon’s workflow using entities in Figure 1.

2.1 Trusted Execution Environments
A Trusted Execution Environments (TEE) provides a secure area
called an enclave that helps to secure applications in untrusted
environments where the host might conduct malicious or curious
actions. Typically relying on special hardware support, TEE im-
plementations are available on various platforms, such as Intel
SGX [20, 46], AMD SEV [37], ARM TrustZone [43], RISC-V Key-
stone [41], as well as chip-based IBM 4758 [26] and FPGA-based
AEGIS [56]. Though they are slightly different in either features or
security assumptions, Operon only relies on their common features,
including execution isolation, remote attestation and data sealing.

TEE requires the application to be divided into two memory-
isolated parts, i.e., trusted and untrusted, where the untrusted part
runs as an ordinary process, and interacts with the trusted part
inside the enclave through the prescribed interfaces (e.g., ECall).
Besides execution isolation, TEE also provides remote attestation
(RA) that allows the client to verify the authenticity of an enclave
and its loaded code/data on a remote host. It also facilitates the
establishment of a secure channel between client and enclave, with
which the data owner can safely pass over its secret keys. Fur-
thermore, hardware-dependent data sealing enables the enclave to
securely persist its internal data on the host, by deriving a sealing
key from the hardware identity and loaded binary. Hence, only the
original enclave on the original machine can read back its sealed
data, preventing the data from malicious access.

For any TEE, a small trusted computing base (TCB) is always pre-
ferred, especially for a small loaded library, as it is more robust and
can be exhaustively examined. However, this limits the complexity
of the supported ciphertext operators. In addition, frequent-and-
short invocations of the enclave will result in significant context
switch overhead (e.g., Intel SGX ECall is about several microsec-
onds [24]). Hence, the choice of TCB is extremely vital to Operon.
2Currently, Operon is only available in China regions.

3333

‘\x9CE8’

EM_Employee
post los salary
sales ‘\x9CE8’ ‘\xD65A’

Electronics
Manufacturer

Human Resource
Management

Operon Database Engine

SELECT AVG(salary)
FROM EM_Employee
WHERE post = ‘sales’
AND los > ‘\xA2E3’

Operon Enclave

‘\xA2E3’

‘\x311C’

‘\x311C’‘\x311C’

Data Owner (DO) Data Manipulator (DM)
Independent Software Vendor (ISV)

Data Processor (DP)
Cloud Service Provider (CSP)

‘\xA2E3’
sales

‘\xA2E3’

Operon SDK

enc(2)

dec(‘\x311C’)
Behavior

Control List

4 > 2‘\xD65A’

True

Secure Eavesdropped Encrypted PlaintextClient SDK

9
1

2
3

4
8 7

6

AVG(1000,...)
5

Figure 2: Detailed workflow of an electronics manufacturer using a cloud-based human resource management service (the top
half of Figure 1). Data remains in ciphertext except the two secure endpoints: the manufacturer itself and the Operon enclave.

2.2 Threat Model
Operon aims to ensure that the data owner can exclusively control
the ownership (i.e., confidentiality, accessibility, and behavior) of
its sensitive data fields hosted by untrusted entities’ subsystems
and databases. We target a strong adversary (e.g., a third-party ser-
vice provider) that has privileged access to the OS and database
of any machines for all involved subsystems. It could not only
monitor the content of resources (e.g., memory, disk and network),
but also tamper with the execution logic. However, the adversary
cannot access enclaves. More specifically, data and execution in-
side an enclave are protected for confidentiality and integrity. The
communication between the enclave and host (e.g., invocations of
ciphertext operators) is still exposed to the adversary. We exclude
TEE side-channel attacks [48, 60], since these vulnerabilities are
mostly implementation-specific and we can easily switch to more
secure TEEs when needed (e.g., Intel SGX leaks memory access
pattern but FPGA-based TEEs do not).

Note that we do not pursue strict indistinguishability of cipher-
text and corresponding operators, since it usually results in unac-
ceptable performance overhead [27, 47]. Instead, we provide op-
erational data confidentiality similar to prior work [2, 4, 52, 57] —
what the adversary learns is a function of ciphertext operations
that the data owner allows performing. For example, a compare
with plaintext result will reveal the order information of ciphertext
to the adversary. Since only necessary operations are granted, we
can significantly reduce the risk of data abuses and leakages. In
Section 5.3, we will analyze privacy leakage of operations in detail.

2.3 Examples of Operon’s Workflow
We zoom in the top half of Figure 1 to demonstrate how Operon
utilizes TEE to preserve data ownership against other entities. In
this example, an electronics manufacturer (i.e., DO) uses a human
resource management system (HRMS) to manage its organization,
but worries that the HRMS provider (i.e., DM) might obtain and
sell its sensitive human resource data. The HRMS provider further
chooses to use a CSP (i.e., DP) to host its application, and also wor-
ries that its data might leak from the cloud side. The responsibilities
of DO, DM and DP will be discussed formally in Section 3.1.

Figure 2 illustrates Operon’s overall workflow for the example.
Suppose that the electronics manufacturer wants to find the average
salary of all salesmen whose length of service (i.e., los) is more
than two years. With the salary and los fields encrypted, the
company first prepares the ciphertext “2” using Operon SDK (1),
and then sends “sales” and ciphertext “\xA2E3” to the HRMS (2).

The HRMS then embeds ciphers into the query template “SELECT
AVG(salary) FROM EM_Employee WHERE post = ? AND los >
?” and outsources the final query to Operon hosted by CSP (3). In
Operon, most stages of the query execution are as usual, such as
query parsing, execution planning, table lookup, and filtering on
position attribute (4). However, part of the expression evaluation is
performed in the enclave by comparing the ciphertext (e.g., “\xA2E3”
and “\x9CE8”) via a compare operation, and those salary values
from qualified records (e.g., “\xD65A”) are averaged via an average
operation (5). The final result “\x311C” is then securely sent back
to the company (6 - 8), and gets decrypted by Operon SDK (9).

To let Operon process ciphertext, DO needs to issue BCL (Sec-
tion 3.2) and share secret keys to the enclave via a secure channel
(Section 2.1). Hence, in the entire workflow, only two endpoints,
i.e., DO and Operon’s enclave, are able to obtain the plaintext data.

3 DATA OWNERSHIP MANAGEMENT
The data ownership discussed in this paper means that the data
owner should exclusively control the accessibility and behavior
of its data in whichever subsystems the data appears. Existing
encrypted database systems fail to protect data ownership during
the entire business process. Even though they have successfully
provided confidentiality protection to sensitive data hosted by third-
party entities, existing systems require that the client-side process,
which interacts with the server-side encrypted database, can access
the plaintext of sensitive data during query preparation and exe-
cution [2, 30, 51, 52, 62]. That is to say, the application subsystem
(probably hosted on the cloud or controlled by other entities as
discussed in Section 1) can still obtain sensitive data.

Preserving data ownership during the entire business process
needs additional design restrictions to databases. In this section,
we start by presenting the paradigm derived from analyzing the un-
derlying requirements of ownership-preserving data management.
It puts a lot of demands on the database beyond data encryption.
Then, we show Operon’s solution of implementing the paradigm,
by leveraging TEE to control the behavior of data processing.

3.1 Ownership-Preserving Database Paradigm
We now propose a new paradigm of an encrypted database named
ownership-preserving database (OPDB), which by its own can pre-
serve data ownership across all entities’ subsystems and databases.
The data owner only needs to trust the design and implementation
of an OPDB, and no additional protections are required against
other subsystem owners or application logic.

3334

3.1.1 OPDB paradigm principles. The key to making the OPDB
paradigm effective is to ensure that a system implementing the
paradigm always preserves data ownership. Thus, at its core, the
OPDB paradigm proposes three principles.

Principle 1: An entity can not access the sensitive data content
without the data owner’s authorization. This principle guarantees
the content of all sensitive data remains inaccessible wherever
it appears in other entities’ subsystems or databases (e.g., in the
memory of application/database processes or on the disk). This
principle can be simply met by encrypting the data with its owner’s
secret key before sending it out to any entity.

Principle 2: An entity can only conduct authorized operations on
sensitive data without knowing its content. This principle permits
the data owner to authorize other entities to manipulate the data,
separating data ownership and application logic. As this principle
prevents other entities from knowing the data content, the autho-
rized entity cannot perform operations that reveal the data property
knowledge (e.g., relative orders of different data items).

Principle 3: An entity can only use authorized operations to learn
properties of sensitive data. This principle enables full-featured data
processing by authorizing necessary data properties to other enti-
ties (e.g., order property for building tree-based indexes).

With the above principles, we can safely pass and process sensi-
tive data across different entities’ subsystems and databases, while
granting access to only necessary operations to preserve the data
ownership. This significantly reduces the risk of data abuse and
leakages throughout the entire business process.

3.1.2 Operators and measures. As above principles suggest, OPDB
strictly differentiates operations that leak nothing (Principle 2) and
those that return specific properties (Principle 3). We name oper-
ations under Principle 2 and Principle 3 as operator and measure,
respectively. The term measure is borrowed from quantum comput-
ing, where measuring a qubit collapses its state. Likewise, in OPDB,
after an operation under Principle 3, the data owner permanently
shares the returned data property with the authorized entity.

More specifically, measures may reveal a limited degree of infor-
mation (i.e., property), but significantly facilitate the application
execution. For example, a database may need relative data orders
to build tree-based indexes or perform range queries; a business
partner may need hashed identity to associate two records. To
support various business processes and allow the data owner to
grant restricted capabilities to an entity, the measure, as well as the
Principle 3 it is designed to achieve, are indispensable for OPDB.

3.1.3 OPDB roles and responsibilities. OPDB paradigm abstracts
out three roles: 1) Data Owner (DO), who owns the data and wants
to utilize data in its business activities. It exclusively controls data
accessibility and behaviors. 2) Data Manipulator (DM), who deter-
mines (alone or joint with DO) the purposes and means of data
processing. It develops the software (i.e., subsystem) to manipulate
the data. 3) Data Processor (DP), who processes data on behalf of
DM. It provisions infrastructural resources to run the subsystem
and host the OPDB. These roles are similar to those defined in
GDPR [59], but are derived from a different perspective: OPDB de-
fines roles based on the rights and dependency over data ownership,
while GDPR abstracts from the task separation in data processing.

The three roles cannot be further simplified as the abstraction
reflects different responsibilities related to operators and measures.
In general, the DO grants the DM operators and measures based on
the application logic, and the DP enforces authorization while exe-
cuting the operators and measures. Without the DO/DM separation,
a DO cannot utilize third-party data processing applications while
preserving data ownership, which suffers the limitation of existing
encrypted databases. According to our threat model (Section 2.2),
the DO neither trusts DM nor DP. However, without the DM/DP
separation, a DO cannot gain the benefits of enjoying various ser-
vices (i.e., provided by DM) and trusting only a compact system
(i.e., inside TEE enclaves hosted by DP) at the same time. In other
words, instead of expanding the trust to a DM, OPDB, by design,
keeps it untrusted and ensures the DO is aware of the potential
data leakage through the DM’s processing logic.

In the real world, there are many examples of the above roles: a
DM might be an internal sub-division or a business partner; a DP
might be an on-premise datacenter or a cloud service provider. An
entity might have multiple roles, e.g., in Figure 1, the e-commerce
platform is both DO and DM as it owns platform data and provides
transaction services to merchants (e.g., electronics manufacturer).

3.2 Data Behavior Control and Processing
Although leveraging cryptographic data encryption is sufficient to
achieve the first principle of OPDB (Section 3.1), the second and
third principles lead to additional requirements beyond data encryp-
tion: while the former demands for decoupling data ownership and
operator processing, the latter depends on a fine-grained control of
measure to preserve data ownership across multiple entities.

Access control list (ACL) is a canonical solution that allows an
issuer to grant the access permission of particular objects he owns
(e.g., protected data, network interface cards) to a subject. However,
this traditional approach is insufficient in our context. With ACL,
the issuer (i.e., DO) has to allow the subject (i.e., DM and DP) to
access the particular data encryption keys for data decryption. Once
such access is granted, the data becomes out of the issuer’s control.
Instead, Operon proposes a behavior control list (BCL), which, on
top of basic ACL concept, further controls the behavior of data (e.g.,
cannot be viewed but is only allowed to participate in comparisons).
TEE is used to validate the authenticity of the BCL, as well as
enforce the defined data behaviors, so that Operon can ensure data
ownership throughout the entire workflow process.

3.2.1 Ciphertext operators and measures. The BCL controls primi-
tive cipher operations to perform information flow control (IFC) [5,
9, 10, 63]. Formally, we can define a cipher operation FUNC as

FUNC{𝑐,𝑝 } : 𝐴 × 𝐵 × · · · → 𝑅,

where arguments (i.e., 𝐴, 𝐵, etc.) may belong to different DOs, and
the subscript 𝑐 or 𝑝 respectively denotes FUNC returns𝑅 in ciphertext
or plaintext. According to OPDB, FUNC is an operator if and only if
the subscript is 𝑐 and all arguments have the same DO; otherwise,
whenever the subscript is 𝑝 or the arguments come from multiple
DOs, FUNC is a measure. Thus, for instance, EQUAL𝑝 represents an
equality measure that returns plaintext, while ADD𝑐 can be either a
measure or operator based on its argument composition.

3335

Table 1: BCL Specification

Field Value Description

ver <version> BCL specification version no.
serno <uuid> BCL rule serial number.
type GRANT|REVOKE Either grant or revoke ops.
i_id <puk-id> Issuer’s public key ID.
s_id <puk-id> Subject’s public key ID.
a_src NULL|ISSU|ISSU_SUBJ Argument source restriction.
i_dek [{<min>,<max>},...] List of issuer’s DEK ranges.
s_dek [{<min>,<max>},...] List of subject’s DEK ranges.
prep NULL|MASK|FPHASH|... Arg. preprocessing method.
ops [NULL|<op>,...] List of cipher operations.
postp NULL|MASK|FPHASH|... Result postprocessing method.
r_dek NULL|SUBJ|<dek> Result DEK, NULL for FUNC𝑝 .

3.2.2 Behavior control list. Operon BCL implements the behavior
control by defining and enforcing a list of operational tasks to be
included in the BCL. To maximize ownership management flex-
ibility, besides restricting data encryption key (DEK) and cipher
operations, participating DOs can also negotiate preprocessing and
postprocessing actions on data before and after the operation, re-
spectively. Table 1 provides the abstraction of BCL specification.
Notice that the preprocessing and postprocessing actions are re-
quired to be format-preserving (e.g., format-preserving hashing that
generates the hash value of the same type) to retain the operation
semantics. To allow authorization under key rotation (Section 5.1),
BCL accepts DEK ranges instead of individual DEKs, and uses -1
and INF to denote unrestricted lower and upper boundaries.

One or multiple DOs can utilize BCL to authorize cipher opera-
tions. For a single DO, BCL helps the DO to configure for a richer
operation set, or achieve a lower leakage by enforcing result encryp-
tion or disabling operations (i.e., specifying REVOKE for type). For
multiple DOs, BCL enables a DO to grant measures (i.e., specifying
SUBJ for r_dek or adding FUNC𝑝 to ops) to other DOs, while re-
stricts information leakage with preprocessing and postprocessing
actions. Figure 3 illustrates a simplified version of how BCL enables
the addition of data from multiple DOs within TEE, ignoring the
steps to find DEKs and match BCL rules.

3.2.3 Issuing BCL. For security considerations, issuing a new BCL
requires both the issuer and the subject to sign it with their private
keys. When a BCL only involves a single DO, the DO only needs to
sign it once as the issuer. The DO can either manually sign the BCL
through command line with system utilities (e.g., OpenSSL), or call
the corresponding function provided by SDK. Once issued, BCL is
checked and enforced by Operon, and will not further involve the
issuer DO in subsequent query processing. The detailed BCL issuing
procedure and its security analysis are discussed in Section 5.2.

Existing literature has proposed numerous access control models,
such as role-based access control (RBAC) and organization-based
access control (OrBAC). As they perform batch authorization ac-
cording to different target classification rules, BCL considers the
problem from another perspective by performing operational be-
havior control to meet ownership requirements. To support those
batch access control models, we can extend BCL with a virtual DO
that represents multiple actual DOs, which is left as future work.

Enclave
lval = dec_ck(lop, i_dek, 45, INF);
rval = dec_ck(rop, s_dek, -1, INF);

lpre = mask_tail2(lval);
rpre = mask_tail2(rval);

sval = lpre + rpre;

spos = sval;

res = enc(spos, s_dek);

BCL Rule

omitted fields

a_src: ISSU_SUBJ
i_dek: [{45,INF}]
s_dek: [{-1,INF}]
prep: MASK_TAIL2
ops: [ADD_C]
postp: NULL
r_dek: SUBJ

Data Processor (DP)
Cloud Service Provider (CSP)

BCL-Enforced Cipher Addition

Figure 3: Illustration of how BCL enables the addition of data
from two DOs. To preserve data ownership, the last two digits
of the operands are masked before addition.

3.2.4 Database-compatible default BCL. The FUNC𝑝 and FUNC𝑐 re-
turn results of different data types (i.e., plain or cipher type). To
avoid ambiguity, only one of them can be configured as the default
cipher operation to database operators. Consequently, targeting
to minimize modification on the database system, the default BCL
setting of Operon makes a trade-off among security, compatibility
and the TCB size. For example, given that equi-join utilizes Boolean-
typed equality test results to instruct execution engine, disabling
EQUAL𝑝 and configuring EQUAL𝑐 as default operation will inevitably
lead to a large TCB size and complex logic within TEE. Operon
thus enables EQUAL𝑝 and configures it to be the default equality
operation for all cipher types.

Formally, Operon enables a cipher operation FUNC𝑝 and config-
ures it to be the default operation if and only if the operation FUNC
is involved in control flow decisions. In other words, the default
configuration of Operon enables condition measures (e.g., EQUAL𝑝 ,
LIKE𝑝) and sets them as default, while leaving the rest of operations
as operators (e.g., ADD𝑐) with corresponding measures disabled. To
further preserve data ownership, a DO can still explicitly call FUNC𝑐
(e.g., equal_c(a,b) that returns enc_bool result) and disable the
corresponding FUNC𝑝 measure through BCL, at the cost of sacrific-
ing feature richness. In general, BCL allows the DO to configure the
privacy level of Operon, where the privacy level of other systems
(e.g., CryptDB [52]) can be imitated through this configuration. The
default configuration of Operon follows the convention of enabling
server-side filtering [2, 62]. The full operation set, the default system
configuration and the corresponding privacy leakage (discussed in
Section 5.3) are presented in Table 2.

4 SYSTEM DESIGN AND IMPLEMENTATION
Recall that in the OPDB paradigm, the DP and DM are responsible
for provisioning infrastructural resources and developing the soft-
ware to manipulate the data, respectively. Their demands for data-
base systems are different from the DO. The DP needs a flexible and
less-intrusive system architecture to provide a consistent and stable
user experience across a variety of environmental specifications
(Section 4.1). The DM is most concerned with the database func-
tionalities that facilitate application development. Hence, Operon
should make its new functionalities (e.g., ciphertext operators and
measures) easy to use, while making itself compatible with the
way conventional plaintext databases are used (e.g., connection
pool). This is achieved by a co-design of server-side and client-side

3336

Type System (§ 4.4)

Stateless ECall & Failure Handling (§ 4.3)

Key Mgmt. (§ 4.2)
Key Miss

Key Store
Scheduler Module

Computation Module

Database Engine Adaptor Module

Data Processor (DP)
Cloud Service Provider (CSP)

Unmodified Database Operon Database Extension (§ 4.1)

BCL & Operation (§ 3.2)

ORE Indexing (§ 4.5)

Soft-State Cache (§ 4.3)

(§ 4.2)

Key Load

Figure 4: The Operon server-side architecture. The compo-
nents of the Operon database extension consist of the exten-
sion, the scheduler, and the computation modules.

architectures. From the server side, Operon supports built-in key
management (Section 4.2), connection pool and parallel processing
(Section 4.3), type system for mix-typed cipher expression evalua-
tion (Section 4.4), as well as indexing (Section 4.5). From the client
side, Operon provides an SDK for explicit data encryption and de-
cryption, as well as a driver that performs automatic handling of
ciphertext, implementing the same interface as JDBC (Section 4.6).

4.1 Server-side Architecture
The Operon’s architecture reflects a joint consideration from the
system’s perspective: it protects primitive operations using TEE,
and relies on the conventional database system outside the enclave
to execute queries and store secured data. By carefully choosing the
boundary between the trusted and untrusted parts, Operon imple-
ments OPDB with restricted TCB size, while achieving both easy
product integration and seamless database feature compatibility.

4.1.1 Flexible architecture for easy integration. The naïve solution
of putting the whole database into the enclave has two drawbacks:
1) it does not implement the OPDB paradigm; 2) it results in the
dilemma of TCB (Section 2.1). Hence, as Figure 4 shows, Operon’s
server-side architecture consists of three components, i.e., the adap-
tor, the scheduler, and the computation modules. Only the computa-
tion module resides in the enclave, while the adaptor and scheduler
modules execute together with unmodified conventional database
system (e.g., query parser and execution engine) and may be eaves-
dropped. This architecture makes Operon easy to adapt to various
TEE and database implementations. We have built Operon with
Intel SGX and an FPGA-based TEE, and integrated it into database
systems like PolarDB and RDS PostgreSQL on Alibaba Cloud.

The computation module is the key to re-establish the private
domain assumption. Since the module runs inside the enclave, it is
protected against memory and execution attacks. Operon only puts
minimal functionalities into this module, including the BCL, data
operators, and measures, as well as required cryptographic primi-
tives and caches. Benefiting from its simplicity, all the operations
in this module can complete without nested interactions with the
scheduler. Apart from the security guarantee, the simplicity of the
computation module also improves the architectural flexibility. For
example, to support an FPGA-based TEE plugged on PCIe, we only
need to implement the computation module’s interface with the
arguments complying with the flat memory model. As the compu-
tation module code remains the same for different TEEs, Operon
ensures consistent behavior on various specifications.

The adaptor and the scheduler improve the architectural flexibil-
ity from another angle, i.e., ease for adapting to various databases.
As different systems may have different methods of extending their
functionality, the adaptor is responsible for connecting databases
to the scheduler, and shielding the scheduler from system-specific
functions, such as query execution and logging. Similarly, The
scheduler abstracts the operations provided by Operon, and shields
the extension module from implementation details (e.g., the parame-
ter of ECall). Furthermore, apart from behaving as a wrapper of the
computation module, the scheduler also executes those operations
that do not involve the enclave (e.g., deducing operation signatures).

4.1.2 Database feature compatibility. Operon is designed to operate
as a database extension. Apart from allowing easy integration, with
the help of default BCL (Section 3.2), Operon also leads to a stable
user experience, which is critical for cloud products. The extension
only routes primitive cipher operations to Operon, keeping the rest
of the database execution workflow intact. For functions requiring
to access internal database tables (e.g., key management in Sec-
tion 4.2), the Operon extension interacts with the tables through a
standard SQL interface. Subsequently, existing products can add
Operon support without in-depth feature compatibility inspection.

More specifically, the majority of database features (e.g., repli-
cation and recovery) are inherently compatible with Operon, as
they perform data-content-independent manipulations. For clauses
such as JOIN, ORDER BY and GROUP BY, benefit from the fact that
the execution engine accomplishes them with primitive operations,
Operon supports them without further mechanism beyond default
BCL. To co-exist with high-availability deployment, Operon oper-
ates on read-only replicas by forwarding the write SQL, i.e., MEK
sealing (Section 4.2), to read-write replicas. Only those features
involving cipher operations may require additional efforts, e.g.,
Operon implements parallel processing and connection pool with
stateless computation (Section 4.3) and adapts to ETL tools using
client SDK and OpeJDBC (Section 4.6).

4.2 Key Management
The server-side Operon incorporates a built-in key management
system, which (by taking full advantage of TEE) removes the need
to trust and access additional key management services.

4.2.1 Key hierarchy. Similar to prior systems [2, 36],Operon adopts
a two-layer key hierarchy: the lower layer data encryption key
(DEK) encrypts data, and the upper layer master encryption key
(MEK) further encrypts the DEKs. The benefit of a two-layer key
hierarchy is twofold: it reduces the key management cost for DOs
and also enables fine-grained ciphertext management.

Figure 5 shows this key management system. Operon indexes
keys using various types of IDs, which are kept in key store tables
and cached within TEE. While the MEK ID is globally unique and
chosen randomly, the DEK ID and Cipher Context (CC) ID are
locally unique, and increased monotonically under a specified MEK
ID or a database instance, respectively. The cipher context performs
as a shorthand for the full cryptographic metadata (e.g., MEK ID and
DEK ID to retrieve the DEK, cryptography algorithm), making it
sufficient to include only CC ID in cipher header. By default, Operon
associates a unique DEK for each encrypted table column, while

3337

Enclave
MEK Table

MrEnclave MEK ID Sealed MEK

0xa031 0x5b14 0x3e9fba02

Cipher Context Table

CC ID MEK ID DEK ID Rotated Algorithm

430 0x5b14 26 452 AES128

452 0x5b14 28 AES128

DEK Table

MEK ID DEK ID Encrypted DEK

0x5b14 28 0x890ae3bb

MEK Cache

MEK ID MEK Plaintext

0x5b14 0x98a0b453

DEK Cache

MEK ID CC ID DEK Plaintext Algorithm

0x5b14 452 0x24a3f101 AES128

Seal

Dec

MEK_ID: 0x5b14

INT 452 0x4a9c028b

Dec 93

Cipher: CKS

Data Processor (DP)
Cloud Service Provider (CSP)

Figure 5: The Operon key management system. The three
tables are internal database tables with specific fields (i.e.,
“Sealed MEK” and “Encrypted DEK”) being encrypted. The two
caches are of plaintext form in the enclave.

also allowing the DO to specify different granularities (i.e., from
table cell to database level). Due to the ambiguity of CC ID when
migrating data among instances, Operon will reallocate CC IDs to
the targeting instance and update cipher headers accordingly.

The security of the above design roots in the hardware-dependent
sealing that is used to encrypt the MEK, which is secure according
to the design of TEE. The security of the MEK provision, the DEK
transfer from DO to the enclave, and the append-only key rotation,
are analyzed in Section 5.1.

4.2.2 Cipher format. Operon adopts a compact cipher format. To
reduce ciphertext expansion, Operon uses CC ID to index cryp-
tographic metadata instead of including them explicitly, which
typically saves over 16 bytes. Apart from the CC ID (e.g., 452 in
Figure 5), the cipher header also includes a checksum (e.g., CKS) and
a data type (e.g., INT) fields. They are used to protect the ciphertext
from unintentional corruption or misoperation, and guide the type
system (Section 4.4) to decide the function overload, respectively.

4.3 Stateless Computation
The enclave inherently requires some state information to process
ciphertext (e.g., keys, interaction with callers), and this limits its
usability. To address this, Operon provides stateless computation in-
side the computation module, which facilitates rich features, such as
connection pool and parallel processing. The stateless computation
permits cipher operations to be invoked like those over plaintext.
Recall that the ECall parameters and ciphertexts contain sufficient
metadata to perform corresponding operations. This makes the
computation module be executed stateless naturally.

4.3.1 Failing-fast. The first step of making the computation mod-
ule stateless is to eliminate stateful context-dependent operations.
Although the computation module already operates without nested
interactions, the enclave isolation still makes error handling chal-
lenging. For example, when the result buffer overflows, as the sched-
uler cannot access the memory allocated by the computation mod-
ule, the computation module should switch to the scheduler to
reallocate the buffer. Such context switches not only complicate
the design, but also increase the attacking surface. Thus, instead
of handling errors inside the enclave, Operon lets the computation

Time Type

String Type enc_timestamp
=, >, extract

enc_base

enc_text
=, >, ||

enc_text’
=, >, ||

enc_decimal
=, >, +, /

enc_float8
=, >, +, /

enc_float4
=, >, +, /

enc_int8
=, >, +, /

enc_int4
=, >, +, /

Greatest

Least

Numerical Type

Literal Value

Virtual Type

Encrypted Type

Literal Value

Figure 6: The Operon’s lattice of encrypted types. The box
below each type name examples several operation overrides.

module fail fast and carry out necessary exception messages as
if the enclave is not isolated. To throw exceptions with arbitrary
messages, Operon allocates a message buffer in the scheduler before
ECall. When the buffer itself overflows, the computation module
will utilize the same mechanism and fill the buffer with a fixed-
length buffer doubling exception. Receiving the exception message,
the scheduler is responsible for handling the exception and retrying
with new parameters (e.g., with a larger result buffer).

4.3.2 Caching soft-states. A fully stateless computation module
requires the scheduler to prepare all the necessary information for
each possible operation, including the keys and BCL rules. Sup-
porting such a fully stateless computation will result in a high
overhead as the enclave is only used for primitive-level operations
here. Instead, Operon keeps caches (Section 4.2), and makes them
cache soft-states inside the enclave. The soft-state is widely used in
the domain of network protocol [14]. Different from the hard-state
that is being maintained carefully, the use of soft-state improves
efficiency, but is not necessary for computation. These soft-states
can be discarded or generated as will. In Operon, all the states in the
enclave, including keys and BCL rules, are soft-states. When cache
access misses, Operon loads the cache by throwing an exception.

4.3.3 Connection pool and parallel processing. The stateless mode
decouples the database connection from secrets (i.e., keys and BCL
rules) and operations. Although running in separate contexts, dif-
ferent computation module instances still execute the same binary
on the same hardware platform, which generates the same sealing
key (Section 2.1). Thus, any computation module instance is able to
fetch and unseal a required MEK when it fails to find it in its cache.
This allows the dynamic launch of computation module instances.

The stateless computation also enables connection pools and
parallel processing. After a DO provisions its MEK to Operon, the
subsequent connections created by the connection pool can ob-
tain the MEK by unsealing corresponding table entry. Similarly, as
parallel processing is helpful for long-running queries, Operon can
inherit parallel capabilities from the integrated database easily.

4.4 Operon Type System
Conventional databases rely on a combination of implicit type con-
versions, default rules, priorities, etc., to evaluate mixed expressions
of different data types [18, 31]. Supporting mixed type expressions
not only improves ease of use, but is also necessary to support

3338

ORE

ORE Floating-Point Encryption

-2.4 0.5-9.3 -6.1 4.6 8.9

-5.2 2.8

-3.2

Operon B-Tree Index

Index SearchCMP Cond.: -3.2

0MIN MAX
0x0000

0x8000

0xffff Bit Flip

Figure 7: Illustration of the Operon B-tree index search on
floating-point-typed column with the ORE acceleration.

various queries. For example, the aggregation operation usually
returns a data type with higher precision than its operands (e.g.,
the result of performing sum over integers is a long value). If the
database only accepts operations among exactly matched types,
writing a valid expression while ensuring the type correctness of
each operand will become extremely complicated.

Operon proposes a type system that is specially designed for en-
crypted types. The implicit type cast has two main drawbacks when
applying to encrypted types: firstly, each type cast operation intro-
duces an ECall cost; and secondly, the type cast leaks information
on failure. Different from conventional databases, Operon explicitly
specifies all the possible function signature overrides according
to its type system. At its core, the type system uses a lattice of
encrypted types, as shown in Figure 6. The line represents the tran-
sitive relation of “greater than” (e.g., enc_float4 < enc_decimal).
Note that the greatest element of the lattice is enc_text', which is
introduced to avoid loops between enc_text and other types. The
operation set of enc_text' is the same as that of enc_text.

When matching function signatures, the type system first finds
the least upper bound enc_m of argument types. Then, starting
from the enc_m, the type system returns the matched type if it finds
a registered signature; otherwise, it repeats by checking the least
type enc_m' that satisfies enc_m < enc_m'. Finally, if the check of
the greatest element enc_text' remains unmatched, the match-
ing process fails. For example, enc_int4 < enc_text matches at
enc_decimal, while enc_int4 || enc_textmatches at enc_text'.

Operon implements the above type system by converting the
lattice to its topological order. For 𝑛 arguments and𝑚 encrypted
types, the overhead of matching the function signature is O(𝑛𝑚).
The type system is also extensible: adding a new encrypted type
only requires updating the lattice and its topological order.

4.5 Indexing
Due to the cost of ECall and cryptographic primitives, the overheads
of ciphertext operations are much higher than plaintext operations,
making the index way more important for Operon than for conven-
tional databases. Existing encrypted databases leverage the original
database index by using ciphertext operations to directly build in-
dexes on ciphertexts [2]. This approach applies well to the hash
index, where an index look-up only involves a single ECall to get
the hash value of the condition, and a few ECalls to compare slot
entries with the condition. However, for the tree-based index, each
node requires multiple ciphertext comparison measures against a
set of keys, which degrades the performance significantly.

Operon improves the tree-based index performance by replac-
ing the ECall-based comparison measure with the ECall-less order-
revealing encryption (ORE) measure. To achieve this, Operon adopts

an extended version of the CLWW ORE algorithm [13]. The origi-
nal CLWW takes a byte array as input, and uses special encryption
and comparison algorithms to preserve the order of ciphertexts.
Observing that the signed integer and floating-point numbers are
of fixed lengths, we flip specific plaintext bits before CLWW en-
cryption, making the byte-order consistent with the represented
value. Figure 7 shows how Operon looks up a B-tree index.

Since the tree structure already leaks the order information,
introducing CLWW will not further compromise data ownership.
In fact, the use of ORE measures in tree-based indexes is similar to
the use of hash measures in hash indexes, where hash measures
also reduces ECalls. Note that Operon maintains a separate DEK
for each column, and hence the use of ORE measures on different
columns will not leak extra information beyond in-column orders.
Operon requires the DO to issue BCL for ORE measures before it
can create CLWW indexes.

4.6 Client-side SDK and OpeJDBC
Operon provides an Operon SDK for DO and DM to interact with a
database. The SDK implements client-side functionalities for key
management (Section 4.2), caches DEKs locally, encrypts data for a
query and decrypts ciphertext results as well. However, migrating
a legacy application to Operon using the SDK requires considerable
efforts from both the DO and DM. DO needs to specify correct
DEKs for thousands of tables, while DM needs to modify a huge
codebase to adjust data types and process ciphertext.

To this end,Operon providesOpeJDBC, which analyzes the query
statement and performs automatic data encryption/decryption by
calling the SDK. Note that OpeJDBC is designed for cases that the
DO also controls the caller applications’ run-time environments.
OpeJDBC uses the same interface as conventional JDBC, which
greatly reduces the migration overhead. OpeJDBC achieves auto-
matic encryption and decryption through query analysis. On each
new query, OpeJDBC parses the query to an abstract syntax tree
(AST), acquires from the Operon server the function signatures and
table schema to label the AST, and replaces plaintexts with corre-
sponding ciphertexts if necessary. Similar to the SDK,OpeJDBC also
caches query analysis results and metadata to improve efficiency.

5 SECURITY & PRIVACY ANALYSIS
Here we discuss the overall security and privacy of Operon from a
system perspective and further explain some of our design choices.

5.1 Key-related Security
With the carefully designed key hierarchy and its management
system, the key-related security aspect are mainly the following:

5.1.1 MEK provision. The security of this process is guaranteed
through the RA process between the DO and the TEE that validates
the enclave’s authenticity. The DO then encrypts the MEK using the
enclave’s public key and sends it to the server side. This encrypted
MEK can only be decrypted (and cached) within the enclave.

5.1.2 DEK rotation. Standard key rotation technique applies here.
However, we stress that deprecated DEKs are not erased. As data
may get encrypted/decrypted at and copied to various locations
at various times, maintaining those deprecated keys are vital to

3339

Table 2: Operon Cipher Operations & Privacy Leakage

Operand Type Primitive Operation Return Type Leakage

Operator enc_{int,float,decimal} None.
enc_{int,float,decimal}3 +, −, ×, ÷, %, EXP Measure int,float,decimal Arithmetic operation result.

Operator enc_{int,float,decimal} None.
enc_{int,float,decimal} SUM, AVG, MIN, MAX Measure int,float,decimal Aggregation result.

Operator enc_text None.
enc_text SUBSTRING, ∥ Measure string String manipulation result.

Operator enc_int None.
enc_timestamp EXTRACT_YEAR Measure int Year of the timestamp.

Operator enc_bool None.
enc_bool NOT,AND,OR Measure bool Boolean operation result.

Operator enc_bool None.
enc_{int,float,decimal,text,timestamp} =, ≠, >, <, ≥, ≤ Measure bool Operands order.

Operator enc_bool None.
enc_text LIKE Measure bool String match result.
enc_{int,float,decimal,text,timestamp} HASH Measure bytes Hashed value.
All encrypted types COUNT Measure int Number of input items.
3 For simplicity, we omit size suffixes (i.e., 4 and 8) of int and float data types.

avoid complicated consistency problems. The security of DEKs,
even those deprecated ones, is protected through MEK encryption.
Key rotation is vulnerable to rollback attacks, same as all systems
that support this functionality. Operon adopts classical approaches
(e.g., client-side or trusted counter [44]) to solve the freshness issue.

5.2 BCL Security
When multiple users and their data are involved in a specific work-
load, Operon requires both the issuer and subject to sign the BCL
(i.e., the subject must be aware of being granted with certain capa-
bilities), to prevent potential forged BCL attack that may result in
data leakage. Without such a dual-signature (i.e., only the issuer
signs the BCL), an adversary (e.g., a malicious DBA) could forge
data and DEKs, and grant a victim access to these DEKs by issuing a
BCL without alerting him. Subsequently, the adversary assumes the
role of the victim (DBA could easily do this), processes the queries,
and encrypts results using the forged DEKs over the victim’s data
(as the victim has been granted access to use these DEKs). In this
manner, it can obtain the processing results. Although the adver-
sary DOES NOT have access to the victim’s data (i.e., no victim’s
DEK access), the leakage comes from the results of crafted query
(e.g., equality comparison) to infer the victim’s data.

For easy verification of the BCL signatures, the public key infor-
mation and MEK IDs of system users are stored in a key pair table.
To further protect the integrity of the stored key information, it
is signed using TEE’s enclave-embedded private key. Users could
verify the signature to assure the authenticity of the public keys
used to generate the BCLs.

5.3 Privacy Leakage
Operon allows the users to choose a balance between the data
privacy and system usability, through the careful design and sepa-
ration of primitives into either operator or measure as defined in
Section 3.1. Table 2 provides a (non-exhaustive) list of primitives
that are supported in Operon and their corresponding privacy leak-
age based on whether they are executed as operators or measures.

In Operon, most of the primitives, except COUNT and HASH, could be
used in both modes, and those in bold indicate the default setting
in Operon. The privacy consideration for not defining the opera-
tor version for COUNT is that this aggregation function is typically
applied after a filtering condition (e.g., comparisons and/or LIKE)
with a bool return value. This non-encrypted bool already leaks
the privacy of the comparison result, rendering an operator COUNT
meaningless. For HASH, the reason is straightforward: an encrypted
hash result defeats the purpose of using hash operation in the first
place, that is to make equality comparisons efficient compared to
throwing encrypted values into the enclave.

The leakage induced by measure inevitably degrades the overall
security strength. For example, a HASH measure leaks the hashed
values of plaintext data. In the event of a small plaintext domain, an
adversary may brute force the original value. A more complicated
attack may also apply to encrypted values if their relevant orders
are leaked through the compare measure, and subsequently recover
the plaintext value. However, these privacy leakage and induced
security degradation are not caused by the design of Operon, but
rather inherited from the use of various measures. The users could
still adhere to a high level of security, e.g., by disabling the hash
measure and putting encrypted values into enclave for comparison.
However, these approaches greatly degrade the overall performance
and system usability. Nevertheless,Operon provides a flexible design
that allows the users to configure according to their requirements
and guarantees the corresponding security and privacy level.

6 APPLICATION
Operon preserves data ownership while compatible with conven-
tional databases. In this section, we list several application scenarios
covering different stages of the software lifecycle, including devel-
opment, deployment, operation, and maintenance.

Legacy application migration. Due to the lack of maintainers,
legacy but critical applications are inherently hard to migrate. Even
worse, since operating on encrypted data is essentially different

3340

Granted Equality
Measure BCL to DBA

Granted Agg.
Operator BCL to DBA

omitted fields
id_id: <user-id>
type: GRANT
a_src: ISSU
i_dek: [{-1,INF}]
prep: NULL
ops: [EQUAL_P, NE_P,

GT_P, GE_P,
LT_P, LE_P,
LIKE_P]

postp: NULL
r_dek: NULL

omitted fields
i_id: <user-id>
s_id: <dba-id>
type: GRANT
a_src: ISSU
i_dek: [{-1,INF}]

prep: MASK_TAIL1
ops: [EQUAL_P,

NE_P]
postp: NULL
r_dek: NULL

omitted fields
i_id: <user-id>
s_id: <dba-id>
type: GRANT
a_src: ISSU
i_dek: [{-1,INF}]
s_dek: [{xx,yy}]
prep: NULL
ops: [SUM_C,

AVG_C]
postp: MASK_TAIL2
r_dek: SUBJ

Default Operon
Measure BCL

Figure 8: An example of granting DBA diagnosis operations
using BCL. The DBA can only perform approximated equal-
ity measures and aggregation operators.

from that on plaintext data, existing encrypted databases intro-
duce limited operations and non-standard interfaces, which typ-
ically require modifying or even refactoring to migrate. Operon
provides applications with OpeJDBC (Section 4.6), which complies
with standard JDBC interfaces. OpeJDBC automatically encrypts
input plaintext data before querying and decrypt ciphertext results
transparently. The application only needs to replace the original
JDBC driver with OpeJDBC and embed MEK into the connection
info. Typically, this only involves several lines of modification (in
configuration file), easing the migration of legacy applications.

Data-centric application deployment. In data-centric applications,
data protection is crucial for data-driven decision-making. However,
for an external offline deployment of such an application, data has
to be shipped together, and hence a malicious user may be able
to steal the data by, e.g., diskcopy or memory dump. In Operon,
as data is always encrypted outside the enclave both at rest and
on the fly, even a veteran attacker can learn nothing from either
database storage or runtime memory, which is guaranteed by TEE.
Combined with the BCL to restrict the allowed actions during user’s
joint analysis, DO and ISV can ensure that the ownership of the
shipped data will not be compromised.

Database diagnosis. Database administrator usually needs to lo-
cate problems based on specific inputs and outputs. However, as
existing encrypted databases strictly prevent anyone except the
owner to access the data, diagnosis on those databases is difficult
or even impossible. By using Operon’s ownership-preserving func-
tionality regulated by BCL, the data owner can grant the DBA the
permission to access desensitized data. The benefits are three-fold:
1) the DBA can perform SQL queries, observe results, and locate
problems just like on normal database; 2) the doubly-signed BCL
enables the owner to clearly know what the DBA might learn from
the data; and 3) as the data are dynamically desensitized, the owner
can specify proper desensitization rules based on the data security
level and minimum requirements of the DBA. Figure 8 shows an
BCL example of granting DBA diagnosis operations.

7 EVALUATION
We evaluate Operon using both micro- and macro-benchmarks:
Sysbench [40] and OLTP-Bench [23] (containing benchmarks for
TPC-C [21] and SmallBank[1]). Operon has been implemented on
two TEE platforms: Intel SGX and an FPGA-based TEE developed

Table 3: SQL Templates of Sysbench Microbenchmark

Operation SQL template

Point Query SELECT c FROM sbtest WHERE id = ?
Range Query SELECT c FROM sbtest WHERE id BETWEEN ? AND ?
Update UPDATE sbtest SET c = ? WHERE id = ?
Insert INSERT INTO sbtest (id, k, c, pad)

VALUES (?, ?, ?, ?)

Table 4: TEE-related Overheads on SGX and FPGA

TEE Enclave Init. ECall Encryption Decryption

Time Pct. Time Pct. Time Pct. Time Pct.

SGX 33 µs 0.11% 4.4 µs 47% 1.8 µs 0.01% 1.8 µs 33%
FPGA 785ms 2.61% 67 µs 50% 39 µs 1.0% 24 µs 36%

by Alibaba Cloud (denoted as FPGA hereafter). We evaluate and
compare both of them.

7.1 Setup
7.1.1 Hardware specification. We run the evaluations on a client-
server setup. For the SGX version of Operon, we use ApsaraDB RDS
for PostgreSQL (with Operon feature [16]) of pg.x8t.3xlarge.2c
instance type (24 vCPU, 192GB of memory and one 2TB PL1 ESSD,
cloud SSD with maximum IOPS of 50K) as the database server
and an ECS instance with the type of ecs.c7.4xlarge (16 vCPU,
32GB of memory and one 40GB ESSD) as the client server where
benchmarks are deployed and executed. All these resources are
available in the Alibaba Cloud.

For the FPGA version, we use two servers of the same specifi-
cation (16 vCPU, 32GB of memory and one 40GB ESSD) for the
database server and client, except that the server is equipped with
the FPGA card (containing two soft RISC-V IP cores running at
180MHz and a cryptography algorithm acceleration logic).

7.1.2 Benchmark configuration. We use Sysbench to evaluate the
performance ofOperon for point and range look-up queries, updates
and inserts. Table 3 shows the detailed test SQL templates. We use
Sysbench to load 32 tables, each containing a million records. All
columns in these 32 tables are encrypted when we evaluate Operon.

We use OLTP-Bench [23] to run the TPC-C and SmallBank bench-
marks on Operon. To achieve peak performance, we run the bench-
mark on four client instances at the same time with 128 client
drivers. We use 256 warehouses for TPC-C, 8 million accounts for
SmallBank. In TPC-C and SmallBank, we do not encrypt the ID
columns which are non-sensitive sequence numbers.

We evaluate the version of Operon with PostgreSQL 13 [32]. If
not otherwise specified, Operon is configured to use the randomized
AES-CBC [25] mode for data encryption in all tests.

7.2 Microbenchmark
7.2.1 TEE implementations. We run the OLTP_read_write bench-
mark of Sysbench to evaluate the overhead of TEE-related opera-
tions in Operon (i.e., enclave initialization, ECall, encryption, and
decryption). Table 4 shows the time consumption of a single opera-
tion and the percentage of the corresponding operation’s total time

3341

0

0.5

1

8 16 24 32N
or
m
.T
hr
ou
gh
pu
t

Threads

CMP-measure ORE-measure

(a) Point query.

0

0.5

1

8 16 24 32N
or
m
.T
hr
ou
gh
pu
t

Threads

CMP-measure ORE-measure

(b) Range query.

0

0.5

1

8 16 24 32N
or
m
.T
hr
ou
gh
pu
t

Threads

CMP-measure ORE-measure

(c) Update.

0

0.5

1

8 16 24 32N
or
m
.T
hr
ou
gh
pu
t

Threads

CMP-measure ORE-measure

(d) Insert.

Figure 9: Normalized index performance using Sysbench with varying number of client threads.

consumption in the OLTP_read_write Sysbench test. We can see
that ECall and decryption take most of the execution time on both
platforms, as the benchmark contains many comparisons. Each
comparison needs to trigger ECall and perform data decryption
within the enclave. The FPGA implementation has a similar break-
down at a slower execution, compared with Intel SGX. In the rest
of this paper, we only report results achieved on the SGX platform.

7.2.2 Index performance. We evaluate the overall throughput of
queries on encrypted records using indexes with and without ORE
acceleration (Section 4.5), denoted as ORE- and CMP-measure. Fig-
ure 9 shows the throughput achieved with an increasing number
of client threads, normalized to those of querying plaintext records
using plaintext indexes. Figure 9b shows that using ciphertext as in-
dex entry without the ORE acceleration introduces high overheads
(73.4% slower than the plaintext index). With the ORE acceleration,
Operon achieves similar throughputs with those of the plaintext
index (84.5% and 96.7% for point and range queries, respectively).
ORE also improves the throughputs of update and insert (Figure 9c
and 9d), as both these operations involve comparisons in the index.

7.3 Macrobenchmarks
Since TEE-related overheads introduced by the encrypted data-
base can not be easily ignored, existing works (e.g., AE [2], En-
claveDB [53], and StealthDB [62]) show that the encrypted databases
they built incur about 30% - 70% penalty to the unencrypted ones,
and the penalty usually increases as the proportion of encrypted
data increases. In this test, we evaluate Operon by using two differ-
ent encryption settings in the TPC-C workloads to show the impact
of different encrypted column settings. We first adopt the same
setting as AE’s evaluation [2] (denoted as 6-Col), i.e., encrypting
name columns (i.e., C_FIRST and C_LAST) and address columns (i.e.,
C_STREET_1, C_STREET_2, C_CITY, and C_STATE) of the Customer
table. We further encrypt all 58 columns except the ID columns
(denoted as 58-Col) as a comparison. RND and DET encryptions
are used in the evaluation.

Figure 10a-10c show the results of the TPC-C benchmark, normal-
ized to the plaintext TPC-C baseline achieved in the same database
setup. For the 6-Col setting, we can see that the performance of
Operon with various warehouses and terminals are on par with
the plaintext TPC-C results. Specifically, Operon with RND encryp-
tion achieves up to 97.7% and 97.9% throughput with different
warehouses and different terminals, respectively. Only the Payment
and Order Status transactions (account for 43% and 4% in the
workload, respectively) involve operations on the six encrypted

columns, which have limited performance impact in this configura-
tion. Hence, the performance penalty is negligible. For the 58-Col
setting,Operonwith RND encryption achieves up to 71.0% and 72.4%
performance of the plaintext TPC-C benchmark. The performance
of RND encryption is similar to DET encryption.

Figure 10c shows the throughputs of the five transactions in
TPC-C. Only the Payment and Order Status transactions contain
the encryption operations when we test using the 6-Col setting,
and Operon achieves 86.3% and 59.1% throughput compared with
the plaintext TPC-C in these two transactions, respectively. For the
58-Col setting, we find that the performance penalty is negligible
for the Delivery transaction, while the penalty increases by more
than 70% for the Order Status and Stock Level transactions. The
former contains complex update and query SQLs with two client
encryption operations, thus the encryption overhead is negligible
compared with the transaction overhead. The latter only contains
simple query SQLs, increasing the proportion of the encryption
overhead significantly and making the overall performance sensi-
tive to the number of columns encrypted.

Figure 10d-10f present the results of the SmallBank benchmark.
Since each table of SmallBank only contains two columns, we
only encrypt the non-ID column. While using the RND encryption,
Operon achieves more than 53.9% and 50.8% throughput compared
with the original plaintext SmallBank with different accounts and
terminals settings, respectively. Note that the transactions of Small-
Bank are mainly composed of simple select SQLs, which leads to
the performance of Operon on SmallBank to be similar to that under
point query mentioned above (i.e., the CMP-measure of Figure 9a).
Figure 10f shows the performance with various transaction types.
For clarity, we use “AM”, “BA”, “DC”, “SP”, “TC”, “WC” to denote the
transaction names of Amalgamate, Balance, Deposit Checking,
Send Payment, Transact Savings, Write Check, respectively.
Operon is 34.9% - 89.0% as fast as the plaintext result.

8 RELATEDWORK
Privacy protection against databases. Data privacy has been
considered a “particularly vital problem” since the Database-as-a-
Service (DBaaS) model was proposed [34]. Observing much of the
data processing can be done on ciphertexts, Hacigümüş et al. made
the first attempt to address the issue of data privacy in relational
databases. They use the DBaaS model to characterize the user and
the service provider [33]. In the following two decades, the above
model forms the basis for encrypted databases [2, 4, 28, 58, 62].
To address recent changes discussed in Section 1, we extend the
DBaaS model to an OPDB model that categorizes more roles in

3342

0

0.5

1

64 128 256 512 1024

N
or

m
.T

hr
ou

gh
pu

t

Warehouses

 6-Col-RND 6-Col-DET
58-Col-RND 58-Col-DET

(a) TPC-C Warehouses.

0

0.5

1

64 128 192 256

N
or

m
. T

hr
ou

gh
pu

t

Terminals

 6-Col-RND 6-Col-DET
58-Col-RND 58-Col-DET

(b) TPC-C Terminals.

0

0.5

1

NewOrder Payment OrderStatus Delivery StockLevel

N
or

m
. T

hr
ou

gh
pu

t

Transactions

 6-Col-RND 6-Col-DET
58-Col-RND 58-Col-DET

(c) TPC-C Transactions.

0

0.5

1

4M 8M 16M 32M 64M

N
or

m
. T

hr
ou

gh
pu

t

Accounts

Encrypted-RND Encrypted-DET

(d) SmallBank Accounts.

0

0.5

1

64 128 192 256

N
or

m
. T

hr
ou

gh
pu

t

Terminals

Encrypted-RND Encrypted-DET

(e) SmallBank Terminals.

0

0.5

1

AM BA DC SP TS WC

N
or

m
. T

hr
ou

gh
pu

t

Transactions

Encrypted-RND Encrypted-DET

(f) SmallBank Transactions.

Figure 10: Normalized TPC-C and SmallBank performance.

real applications. Therefore, data owners can not only protect data
privacy against database hosts, but also control data accessibility
and behavior throughout the entire application path.

Encrypted databases with TEEs. Earlier attempts on building
encrypted databases, such as TrustedDB [7] and Cipherbase [4]
use TEEs connected on PCI-X or PCIe. Although the appearance
of CPU-embedded TEE (e.g., Intel SGX) has greatly improved the
performance, we found that PCIe-connected TEEs with physical
resource isolation still have their application scenarios. Using more
enclave resources, Haven [8] and EdgelessDB [30] explore a straight-
forward approach to utilize TEE to protect the whole database sys-
tem. However, due to the difficulty of restricting DBA permissions,
they add only limited security enhancement than traditional trans-
parent data encryption (TDE). SQL Server Always Encrypted [2]
and StealthDB [62] puts ciphertext operations into the enclave,
which is somehow similar to what Operon does. SQL Server AE
supports comparison and string pattern matching operations that
return boolean results in plaintext (similar to measures in Operon).
StealthDB provides various encrypted types and operations on Post-
greSQL [62], but it needs the client to encrypt the plain SQL as a
whole. EnclaveDB [53] puts the entire query engine in an enclave
to achieve stronger security protection (e.g., integrity and fresh-
ness), but it also needs the client to be fully trusted. In summary,
most TEE-based encrypted databases assume a trusted client that
can touch plaintext of sensitive data. Operon solves this issue by
categorizing more types of roles (i.e., DO/DM/DP).

Encrypted databases with PPEs. Property-preserving encryp-
tion (PPE) is an alternative building block for encrypted databases.
They support a subset of ciphertext operations at the various cost
of computation complexity or information leakage [13, 29, 49, 55].
Symmetria [54] presents two symmetric homomorphic encryp-
tion schemes for efficient addition and multiplication, respectively.
CryptDB [52] achieves a good balance between information leakage

and functionality with the SQL-aware encryption strategy. Arx [51]
introduces ArxRange and ArxEq primitives that achieve semantic
security. MONOMI [58] and KafeDB [64] further improve function-
ality by splitting execution between server and client, following
DBaaS paradigm [33]. However, they all assume a trusted proxy or
client front, which is difficult to fulfill in real applications.

9 CONCLUSION AND FUTUREWORK
In this paper, we propose the paradigm of ownership-preserving
database (OPDB), which characterizes the demand of nowadays
applications for decoupling data ownership and system ownership
throughout complex business processes. We present Operon, an
encrypted database framework that utilizes TEE to protect sensi-
tive data and follows the OPDB paradigm. In particular, Operon
implements the behavior control list (BCL) to preserve the data
ownership by taking the operation behavior into consideration. To
reduce the overhead of migrating legacy applications, Operon also
enables conventional database functionalities including connection
pool, mixed-type expressions, client driver, etc. The current imple-
mentation of Operon supports different TEEs and database products
on Alibaba Cloud, and achieves 71% - 97% of the performance of
plaintext databases under the TPC-C benchmark. As a database en-
hancement, Operon has served several customers in both cloud and
on-premise deployment to protect their sensitive data in application
subsystems and databases controlled by others.

Operon is still being improved from various aspects. One ongoing
work is to utilize both system-level and cryptographic optimiza-
tions to reduce the ciphertext operation overhead. We also face the
challenge of query optimization that adapts to different databases
and TEE implementations. Other improvements include extend-
ing Operon with various access control models, index information
leakage reduction, built-in ownership risk analysis tool, etc.

3343

REFERENCES
[1] Mohammad Alomari, Michael Cahill, Alan Fekete, and Uwe Rohm. 2008. The

Cost of Serializability on Platforms That Use Snapshot Isolation. In Proceedings of
the 2008 IEEE 24th International Conference on Data Engineering (ICDE ’08). IEEE
Computer Society, USA, 576–585. https://doi.org/10.1109/ICDE.2008.4497466

[2] Panagiotis Antonopoulos, Arvind Arasu, Kunal D. Singh, Ken Eguro, Nitish
Gupta, Rajat Jain, Raghav Kaushik, Hanuma Kodavalla, Donald Kossmann, Niko-
las Ogg, Ravi Ramamurthy, Jakub Szymaszek, Jeffrey Trimmer, Kapil Vaswani,
Ramarathnam Venkatesan, and Mike Zwilling. 2020. Azure SQL database always
encrypted. In Proceedings of the 2020 International Conference on Management of
Data (Portland, OR, USA) (SIGMOD ’20). Association for Computing Machinery,
New York, NY, USA, 1511–1525. https://doi.org/10.1145/3318464.3386141

[3] Panagiotis Antonopoulos, Alex Budovski, Cristian Diaconu, Alejandro Hernan-
dez Saenz, Jack Hu, Hanuma Kodavalla, Donald Kossmann, Sandeep Lingam,
Umar Farooq Minhas, Naveen Prakash, Vijendra Purohit, Hugh Qu, Chai-
tanya Sreenivas Ravella, Krystyna Reisteter, Sheetal Shrotri, Dixin Tang, and
Vikram Wakade. 2019. Socrates: The New SQL Server in the Cloud. In Proceed-
ings of the 2019 International Conference on Management of Data (Amsterdam,
Netherlands) (SIGMOD ’19). Association for Computing Machinery, New York,
NY, USA, 1743–1756. https://doi.org/10.1145/3299869.3314047

[4] Arvind Arasu, Ken Eguro, Manas Joglekar, Raghav Kaushik, Donald Kossmann,
and Ravi Ramamurthy. 2015. Transaction processing on confidential data using
cipherbase. In Proceedings of the 2015 IEEE 31st International Conference on Data
Engineering (ICDE ’15). IEEE Computer Society, USA, 435–446.

[5] Eugene Bagdasaryan, Griffin Berlstein, Jason Waterman, Eleanor Birrell, Nate
Foster, Fred B. Schneider, and Deborah Estrin. 2019. Ancile: Enhancing Privacy
for Ubiquitous Computing with Use-Based Privacy. In Proceedings of the 18th
ACM Workshop on Privacy in the Electronic Society (London, United Kingdom)
(WPES ’19). Association for Computing Machinery, New York, NY, USA, 111–124.
https://doi.org/10.1145/3338498.3358642

[6] Maurice Bailleu, Jörg Thalheim, Pramod Bhatotia, Christof Fetzer, Michio Honda,
and Kapil Vaswani. 2019. Speicher: Securing LSM-Based Key-Value Stores Using
Shielded Execution. In Proceedings of the 17th USENIX Conference on File and
Storage Technologies (Boston, MA, USA) (FAST ’19). USENIX Association, USA,
173–190.

[7] Sumeet Bajaj and Radu Sion. 2011. TrustedDB: a trusted hardware based database
with privacy and data confidentiality. In Proceedings of the 2011 International
Conference on Management of Data (Athens, Greece) (SIGMOD ’11), Timos K.
Sellis, Renée J. Miller, Anastasios Kementsietsidis, and Yannis Velegrakis (Eds.).
Association for Computing Machinery, New York, NY, USA, 205–216. https:
//doi.org/10.1145/1989323.1989346

[8] Andrew Baumann, Marcus Peinado, and Galen Hunt. 2015. Shielding Applica-
tions from an Untrusted Cloud with Haven. ACM Transactions on Computer Sys-
tems (TOCS) 33, 3, Article 8 (Aug. 2015), 26 pages. https://doi.org/10.1145/2799647

[9] Eleanor Birrell, Anders Gjerdrum, Robbert van Renesse, Håvard Johansen, Dag
Johansen, and Fred B. Schneider. 2018. SGX Enforcement of Use-Based Privacy.
In Proceedings of the 2018 Workshop on Privacy in the Electronic Society (Toronto,
Canada) (WPES ’18). Association for Computing Machinery, New York, NY, USA,
155–167. https://doi.org/10.1145/3267323.3268954

[10] Lukas Burkhalter, Nicolas Küchler, Alexander Viand, Hossein Shafagh, and An-
war Hithnawi. 2021. Zeph: Cryptographic enforcement of end-to-end data
privacy. In Proceedings of the 15th USENIX Symposium on Operating Systems
Design and Implementation (OSDI ’21). USENIX Association, USA, 387–404.

[11] Wei Cao, Yingqiang Zhang, Xinjun Yang, Feifei Li, Sheng Wang, Qingda Hu,
Xuntao Cheng, Zongzhi Chen, Zhenjun Liu, Jing Fang, Bo Wang, Yuhui Wang,
Haiqing Sun, Ze Yang, Zhushi Cheng, Sen Chen, Jian Wu, Wei Hu, Jianwei Zhao,
Yusong Gao, Songlu Cai, Yunyang Zhang, and Jiawang Tong. 2021. PolarDB
Serverless: A Cloud Native Database for Disaggregated Data Centers. In Pro-
ceedings of the 2021 International Conference on Management of Data (Virtual
Event, China) (SIGMOD ’21). Association for Computing Machinery, New York,
NY, USA, 2477–2489. https://doi.org/10.1145/3448016.3457560

[12] David Cash, Stanislaw Jarecki, Charanjit Jutla, Hugo Krawczyk, Marcel-Cătălin
Roşu, and Michael Steiner. 2013. Highly-scalable searchable symmetric encryp-
tion with support for boolean queries. In Annual cryptology conference. Springer,
353–373.

[13] Nathan Chenette, Kevin Lewi, Stephen A Weis, and David J Wu. 2016. Practical
order-revealing encryption with limited leakage. In International conference on
fast software encryption. Springer, 474–493.

[14] David D. Clark. 1988. The Design Philosophy of the DARPA Internet Protocols. In
Symposium Proceedings on Communications Architectures and Protocols (Stanford,
California, USA) (SIGCOMM ’88). Association for Computing Machinery, New
York, NY, USA, 106–114. https://doi.org/10.1145/52324.52336

[15] Alibaba Cloud. 2022. Alibaba Cloud DataTrust Service. Retrieved March 1, 2022
from https://dp.alibaba.com/product/datatrust

[16] Alibaba Cloud. 2022. Alibba Cloud ApsaraDB RDS for PostgreSQL with Operon.
Retrieved March 1, 2022 from https://help.aliyun.com/document_detail/144156.
html

[17] Microsoft Corporation. 2022. Row-Level Security. Retrieved March 1, 2022
from https://docs.microsoft.com/en-us/sql/relational-databases/security/row-
level-security

[18] Oracle Corporation. 2022. MySQL Reference Manual 12.3 Type Conversion in
Expression Evaluation. Retrieved March 1, 2022 from https://dev.mysql.com/
doc/refman/8.0/en/type-conversion.html

[19] Oracle Corporation. 2022. Virtual Private Database. Retrieved March 1, 2022
from https://www.oracle.com/database/technologies/virtual-private-db.html

[20] Victor Costan and Srinivas Devadas. 2016. Intel sgx explained. IACR Cryptol.
ePrint Arch. 2016, 86 (2016), 1–118.

[21] Transaction Processing Performance Council. 2010. TPC Benchmark C. Re-
trieved March 1, 2022 from http://www.tpc.org/tpcc

[22] Benoit Dageville, Thierry Cruanes, Marcin Zukowski, Vadim Antonov, Artin
Avanes, Jon Bock, Jonathan Claybaugh, Daniel Engovatov, Martin Hentschel,
Jiansheng Huang, AllisonW. Lee, AshishMotivala, Abdul Q. Munir, Steven Pelley,
Peter Povinec, Greg Rahn, Spyridon Triantafyllis, and Philipp Unterbrunner. 2016.
The Snowflake Elastic Data Warehouse. In Proceedings of the 2016 International
Conference on Management of Data (San Francisco, California, USA) (SIGMOD
’16). Association for Computing Machinery, New York, NY, USA, 215–226. https:
//doi.org/10.1145/2882903.2903741

[23] Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino, and Philippe Cudré-
Mauroux. 2013. OLTP-Bench: An Extensible Testbed for Benchmarking Re-
lational Databases. Proceedings of the VLDB Endowment 7, 4 (Dec. 2013), 277–288.
https://doi.org/10.14778/2732240.2732246

[24] Tu Dinh Ngoc, Bao Bui, Stella Bitchebe, Alain Tchana, Valerio Schiavoni, Pascal
Felber, and Daniel Hagimont. 2019. Everything You Should Know About Intel
SGX Performance on Virtualized Systems. Proceedings of the ACM on Measure-
ment and Analysis of Computing Systems 3, 1, Article 5 (March 2019), 21 pages.
https://doi.org/10.1145/3322205.3311076

[25] Morris Dworkin, Elaine Barker, James Nechvatal, James Foti, Lawrence Bassham,
E. Roback, and James Dray. 2001. Advanced Encryption Standard (AES). https:
//doi.org/10.6028/NIST.FIPS.197

[26] Joan G. Dyer, Mark Lindemann, Ronald Perez, Reiner Sailer, Leendert van Doorn,
Sean W. Smith, and Steve Weingart. 2001. Building the IBM 4758 Secure Copro-
cessor. Computer 34, 10 (Oct. 2001), 57–66. https://doi.org/10.1109/2.955100

[27] Saba Eskandarian and Matei Zaharia. 2019. ObliDB: Oblivious Query Processing
for Secure Databases. Proceedings of the VLDB Endowment 13, 2 (Oct. 2019),
169–183. https://doi.org/10.14778/3364324.3364331

[28] Benny Fuhry, HA Jayanth Jain, and Florian Kerschbaum. 2021. Encdbdb: Search-
able encrypted, fast, compressed, in-memory database using enclaves. In Pro-
ceedings of the 2021 51st Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN ’21). IEEE Computer Society, USA, 438–450.

[29] Craig Gentry. 2009. Fully Homomorphic Encryption Using Ideal Lattices. In
Proceedings of the Forty-First Annual ACM Symposium on Theory of Computing
(Bethesda, MD, USA) (STOC ’09). Association for Computing Machinery, New
York, NY, USA, 169–178. https://doi.org/10.1145/1536414.1536440

[30] Edgeless Systems GmbH. 2022. EdgelessDB Official Website. Retrieved March
1, 2022 from https://www.edgeless.systems/products/edgelessdb

[31] The PostgreSQL Global Development Group. 2022. PostgreSQL Documentation
Chapter 10 Type Conversion. Retrieved March 1, 2022 from https://www.
postgresql.org/docs/current/typeconv.html

[32] The PostgreSQL Global Development Group. 2022. PostgreSQL Official Website.
Retrieved March 1, 2022 from https://www.postgresql.org

[33] Hakan Hacigümüş, Bala Iyer, Chen Li, and Sharad Mehrotra. 2002. Executing
SQL over Encrypted Data in the Database-Service-Provider Model. In Proceedings
of the 2002 International Conference on Management of Data (Madison, Wiscon-
sin) (SIGMOD ’02). Association for Computing Machinery, New York, NY, USA,
216–227. https://doi.org/10.1145/564691.564717

[34] Hakan Hacigumus, Bala Iyer, and Sharad Mehrotra. 2002. Providing database as
a service. In Proceedings of the 2002 IEEE 18th International Conference on Data
Engineering (ICDE ’02). IEEE Computer Society, USA, 29–38.

[35] J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson, William
Paul, Joseph A. Calandrino, Ariel J. Feldman, Jacob Appelbaum, and Edward W.
Felten. 2009. Lest We Remember: Cold-Boot Attacks on Encryption Keys. Com-
munications of the ACM (CACM) 52, 5 (May 2009), 91–98.

[36] Amazon Web Services Inc. 2022. AWS KMS key hierarchy. Retrieved March 1,
2022 from https://docs.aws.amazon.com/kms/latest/cryptographic-details/key-
hierarchy.html

[37] Advanced Micro Devices Incorporated. 2005. Secure Virtual Machine Architec-
ture Reference Manual.

[38] Yuval Ishai, Eyal Kushilevitz, Steve Lu, and Rafail Ostrovsky. 2016. Private
large-scale databases with distributed searchable symmetric encryption. In Cryp-
tographers’ Track at the RSA Conference. Springer, 90–107.

[39] Taehoon Kim, Joongun Park, Jaewook Woo, Seungheun Jeon, and Jaehyuk Huh.
2019. ShieldStore: Shielded In-Memory Key-Value Storage with SGX. In Proceed-
ings of the Fourteenth EuroSys Conference 2019 (Dresden, Germany) (EuroSys ’19).
Association for Computing Machinery, New York, NY, USA, Article 14, 15 pages.
https://doi.org/10.1145/3302424.3303951

3344

https://doi.org/10.1109/ICDE.2008.4497466
https://doi.org/10.1145/3318464.3386141
https://doi.org/10.1145/3299869.3314047
https://doi.org/10.1145/3338498.3358642
https://doi.org/10.1145/1989323.1989346
https://doi.org/10.1145/1989323.1989346
https://doi.org/10.1145/2799647
https://doi.org/10.1145/3267323.3268954
https://doi.org/10.1145/3448016.3457560
https://doi.org/10.1145/52324.52336
https://dp.alibaba.com/product/datatrust
https://help.aliyun.com/document_detail/144156.html
https://help.aliyun.com/document_detail/144156.html
https://docs.microsoft.com/en-us/sql/relational-databases/security/row-level-security
https://docs.microsoft.com/en-us/sql/relational-databases/security/row-level-security
https://dev.mysql.com/doc/refman/8.0/en/type-conversion.html
https://dev.mysql.com/doc/refman/8.0/en/type-conversion.html
https://www.oracle.com/database/technologies/virtual-private-db.html
http://www.tpc.org/tpcc
https://doi.org/10.1145/2882903.2903741
https://doi.org/10.1145/2882903.2903741
https://doi.org/10.14778/2732240.2732246
https://doi.org/10.1145/3322205.3311076
https://doi.org/10.6028/NIST.FIPS.197
https://doi.org/10.6028/NIST.FIPS.197
https://doi.org/10.1109/2.955100
https://doi.org/10.14778/3364324.3364331
https://doi.org/10.1145/1536414.1536440
https://www.edgeless.systems/products/edgelessdb
https://www.postgresql.org/docs/current/typeconv.html
https://www.postgresql.org/docs/current/typeconv.html
https://www.postgresql.org
https://doi.org/10.1145/564691.564717
https://docs.aws.amazon.com/kms/latest/cryptographic-details/key-hierarchy.html
https://docs.aws.amazon.com/kms/latest/cryptographic-details/key-hierarchy.html
https://doi.org/10.1145/3302424.3303951

[40] Alexey Kopytov. 2022. SysBench. Retrieved March 1, 2022 from https://github.
com/akopytov/sysbench

[41] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste Asanović, and Dawn Song.
2020. Keystone: An Open Framework for Architecting Trusted Execution En-
vironments. In Proceedings of the Fifteenth European Conference on Computer
Systems (Heraklion, Greece) (EuroSys ’20). Association for Computing Machin-
ery, New York, NY, USA, Article 38, 16 pages. https://doi.org/10.1145/3342195.
3387532

[42] Feifei Li. 2019. Cloud-Native Database Systems at Alibaba: Opportunities and
Challenges. Proceedings of the VLDB Endowment 12, 12 (Aug. 2019), 2263–2272.
https://doi.org/10.14778/3352063.3352141

[43] Arm Limited. 2022. TrustZone. Retrieved March 1, 2022 from https://www.arm.
com/technologies/trustzone-for-cortex-a

[44] Sinisa Matetic, Mansoor Ahmed, Kari Kostiainen, Aritra Dhar, David Sommer,
Arthur Gervais, Ari Juels, and Srdjan Capkun. 2017. ROTE: Rollback Protection
for Trusted Execution. In Proceedings of the 26th USENIX Conference on Secu-
rity Symposium (Vancouver, BC, Canada) (SEC ’17). USENIX Association, USA,
1289–1306.

[45] Yoshinori Matsunobu, Siying Dong, and Herman Lee. 2020. MyRocks: LSM-
Tree Database Storage Engine Serving Facebook’s Social Graph. Proceedings of
the VLDB Endowment 13, 12 (Aug. 2020), 3217–3230. https://doi.org/10.14778/
3415478.3415546

[46] FrankMcKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V. Rozas, Hisham Shafi,
Vedvyas Shanbhogue, and Uday R. Savagaonkar. 2013. Innovative Instructions
and Software Model for Isolated Execution. In Proceedings of the 2nd International
Workshop on Hardware and Architectural Support for Security and Privacy (Tel-
Aviv, Israel) (HASP ’13). Association for Computing Machinery, New York, NY,
USA, Article 10, 1 pages. https://doi.org/10.1145/2487726.2488368

[47] PratyushMishra, Rishabh Poddar, Jerry Chen, Alessandro Chiesa, and Raluca Ada
Popa. 2018. Oblix: An efficient oblivious search index. In Proceedings of the 2018
IEEE Symposium on Security and Privacy (S&P ’18). IEEE Computer Society, USA,
279–296.

[48] Alexander Nilsson, Pegah Nikbakht Bideh, and Joakim Brorsson. 2020. A survey
of published attacks on Intel SGX. arXiv preprint arXiv:2006.13598 (2020).

[49] Pascal Paillier. 1999. Public-Key Cryptosystems Based on Composite Degree
Residuosity Classes. In Proceedings of the 17th International Conference on Theory
and Application of Cryptographic Techniques (Prague, Czech Republic) (EURO-
CRYPT ’99). Springer-Verlag, Berlin, Heidelberg, 223–238.

[50] Vasilis Pappas, Fernando Krell, Binh Vo, Vladimir Kolesnikov, Tal Malkin, Se-
ung Geol Choi, Wesley George, Angelos Keromytis, and Steve Bellovin. 2014.
Blind Seer: A Scalable Private DBMS. In Proceedings of the 2014 IEEE Sympo-
sium on Security and Privacy (S&P ’14). IEEE Computer Society, USA, 359–374.
https://doi.org/10.1109/SP.2014.30

[51] Rishabh Poddar, Tobias Boelter, and Raluca Ada Popa. 2019. Arx: An Encrypted
Database Using Semantically Secure Encryption. Proceedings of the VLDB Endow-
ment 12, 11 (July 2019), 1664–1678. https://doi.org/10.14778/3342263.3342641

[52] Raluca Ada Popa, Catherine M. S. Redfield, Nickolai Zeldovich, and Hari Bal-
akrishnan. 2011. CryptDB: Protecting Confidentiality with Encrypted Query
Processing. In Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles (Cascais, Portugal) (SOSP ’11). Association for Computing Ma-
chinery, New York, NY, USA, 85–100. https://doi.org/10.1145/2043556.2043566

[53] Christian Priebe, Kapil Vaswani, and Manuel Costa. 2018. EnclaveDB: A secure
database using SGX. In Proceedings of the 2018 IEEE Symposium on Security and
Privacy (S&P ’18). IEEE Computer Society, USA, 264–278.

[54] Savvas Savvides, Darshika Khandelwal, and Patrick Eugster. 2020. Effi-
cient Confidentiality-Preserving Data Analytics over Symmetrically Encrypted
Datasets. Proceedings of the VLDB Endowment 13, 8 (April 2020), 1290–1303.
https://doi.org/10.14778/3389133.3389144

[55] Dawn Song, David A. Wagner, and Adrian Perrig. 2000. Practical Techniques
for Searches on Encrypted Data. In Proceedings of the 2000 IEEE Symposium on
Security and Privacy (S&P ’00). IEEE Computer Society, USA, 44–55.

[56] G. Edward Suh, Charles W. O’Donnell, and Srinivas Devadas. 2007. Aegis: A
Single-Chip Secure Processor. IEEE Design & Test of Computers 24, 6 (Nov. 2007),
570–580. https://doi.org/10.1109/MDT.2007.179

[57] Yuanyuan Sun, Sheng Wang, Huorong Li, and Feifei Li. 2021. Building Enclave-
Native Storage Engines for Practical Encrypted Databases. Proceedings of the
VLDB Endowment 14, 6 (Feb. 2021), 1019–1032. https://doi.org/10.14778/3447689.
3447705

[58] Stephen Tu, M. Frans Kaashoek, Samuel Madden, and Nickolai Zeldovich. 2013.
Processing Analytical Queries over Encrypted Data. Proceedings of the VLDB En-
dowment 6, 5 (March 2013), 289–300. https://doi.org/10.14778/2535573.2488336

[59] European Union. 2016. Regulation (EU) 2016/679 of the European Parliament
and of the Council of 27 April 2016 on the protection of natural persons with
regard to the processing of personal data and on the free movement of such data,
and repealing Directive 95/46/EC (General Data Protection Regulation). Official
Journal of the Europeran Union 59 (2016), 1–88.

[60] Stephan van Schaik, Marina Minkin, Andrew Kwong, Daniel Genkin, and Yuval
Yarom. 2021. CacheOut: Leaking data on Intel CPUs via cache evictions. In
Proceedings of the 2021 IEEE Symposium on Security and Privacy (S&P ’21). IEEE
Computer Society, USA, 339–354.

[61] Alexandre Verbitski, Anurag Gupta, Debanjan Saha, Murali Brahmadesam, Ka-
mal Gupta, Raman Mittal, Sailesh Krishnamurthy, Sandor Maurice, Tengiz
Kharatishvili, and Xiaofeng Bao. 2017. Amazon Aurora: Design Considera-
tions for High Throughput Cloud-Native Relational Databases. In Proceedings
of the 2017 International Conference on Management of Data (Chicago, Illinois,
USA) (SIGMOD ’17). Association for Computing Machinery, New York, NY, USA,
1041–1052. https://doi.org/10.1145/3035918.3056101

[62] Dhinakaran Vinayagamurthy, Alexey Gribov, and Sergey Gorbunov. 2019.
StealthDB: a Scalable Encrypted Database with Full SQL Query Support. Pro-
ceedings on Privacy Enhancing Technologies 2019, 3 (2019), 370–388.

[63] Mohammad H Yarmand, Kamran Sartipi, and Douglas G Down. 2013. Behavior-
based access control for distributed healthcare systems. Journal of Computer
Security 21, 1 (2013), 1–39.

[64] Zheguang Zhao, Seny Kamara, Tarik Moataz, and Stan Zdonik. 2021. Encrypted
Databases: From Theory to Systems. In 11th Conference on Innovative Data
Systems Research (CIDR ’21).

[65] Wenting Zheng, Ankur Dave, Jethro G. Beekman, Raluca Ada Popa, Joseph E.
Gonzalez, and Ion Stoica. 2017. Opaque: An Oblivious and Encrypted Distributed
Analytics Platform. In Proceedings of the 14th USENIX Conference on Networked
Systems Design and Implementation (Boston, MA, USA) (NSDI ’17). USENIX
Association, USA, 283–298.

[66] Jingyu Zhou, Meng Xu, Alexander Shraer, Bala Namasivayam, Alex Miller, Evan
Tschannen, Steve Atherton, Andrew J. Beamon, Rusty Sears, John Leach, Dave
Rosenthal, Xin Dong, Will Wilson, Ben Collins, David Scherer, Alec Grieser,
Young Liu, Alvin Moore, Bhaskar Muppana, Xiaoge Su, and Vishesh Yadav. 2021.
FoundationDB: A Distributed Unbundled Transactional Key Value Store. In
Proceedings of the 2021 International Conference on Management of Data (Virtual
Event, China) (SIGMOD ’21). Association for Computing Machinery, New York,
NY, USA, 2653–2666. https://doi.org/10.1145/3448016.3457559

3345

https://github.com/akopytov/sysbench
https://github.com/akopytov/sysbench
https://doi.org/10.1145/3342195.3387532
https://doi.org/10.1145/3342195.3387532
https://doi.org/10.14778/3352063.3352141
https://www.arm.com/technologies/trustzone-for-cortex-a
https://www.arm.com/technologies/trustzone-for-cortex-a
https://doi.org/10.14778/3415478.3415546
https://doi.org/10.14778/3415478.3415546
https://doi.org/10.1145/2487726.2488368
https://doi.org/10.1109/SP.2014.30
https://doi.org/10.14778/3342263.3342641
https://doi.org/10.1145/2043556.2043566
https://doi.org/10.14778/3389133.3389144
https://doi.org/10.1109/MDT.2007.179
https://doi.org/10.14778/3447689.3447705
https://doi.org/10.14778/3447689.3447705
https://doi.org/10.14778/2535573.2488336
https://doi.org/10.1145/3035918.3056101
https://doi.org/10.1145/3448016.3457559

