
ByteGraph: A High-Performance Distributed Graph Database in
ByteDance

Changji Li1,2,†, Hongzhi Chen2,∗, Shuai Zhang2, Yingqian Hu2, Chao Chen2, Zhenjie Zhang2, Meng
Li2, Xiangchen Li2, Dongqing Han2, Xiaohui Chen2, Xudong Wang2, Huiming Zhu2, Xuwei Fu2,
Tingwei Wu2, Hongfei Tan2, Hengtian Ding2, Mengjin Liu2, Kangcheng Wang2, Ting Ye2, Lei Li2,

Xin Li2, Yu Wang2, Chenguang Zheng1,2,†, Hao Yang2, James Cheng1
1{cjli, cgzheng, jcheng}@cse.cuhk.edu.hk, 2{lichangji, chenhongzhi, zhangshuai.root, huyingqian, chenchao.chen,

zhangzhenjie.zz, limeng.1, lixiangchen, handongqing, chenxiaohui.ai, wangxudong.zsy, zhuhuiming.eureka, fuxuwei,
wutingwei, tanhongfei, dinghengtian, liumengjin, wangkangcheng.qwq, yeting.dev, lilei.rd, lixin.andy, wangyu.cole,

zhengchenguang, yanghao.2019}@bytedance.com
1The Chinese University of Hong Kong, 2ByteDance Inc

ABSTRACT
Most products at ByteDance, e.g., TikTok, Douyin, and Toutiao,
naturally generate massive amounts of graph data. To efficiently
store, query and update massive graph data is challenging for the
broad range of products at ByteDance with various performance
requirements. We categorize graph workloads at ByteDance into
three types: online analytical, transaction, and serving processing,
where each workload has its own characteristics. Existing graph
databases have different performance bottlenecks in handling these
workloads and none can efficiently handle the scale of graphs at
ByteDance. We developed ByteGraph to process these graph work-
loads with high throughput, low latency and high scalability. There
are several key designs in ByteGraph that make it efficient for pro-
cessing our workloads, including edge-trees to store adjacency lists
for high parallelism and low memory usage, adaptive optimizations
on thread pools and indexes, and geographic replications to achieve
fault tolerance and availability. ByteGraph has been in production
use for several years and its performance has shown to be robust
for processing a wide range of graph workloads at ByteDance.

PVLDB Reference Format:
Changji Li, Hongzhi Chen, Shuai Zhang, Yingqian Hu, Chao Chen, Zhenjie
Zhang, Meng Li, Xiangchen Li, Dongqing Han, Xiaohui Chen, Xudong
Wang, Huiming Zhu, Xuwei Fu, Tingwei Wu, Hongfei Tan, Hengtian Ding,
Mengjin Liu, Kangcheng Wang, Ting Ye, Lei Li, Xin Li, Yu Wang,
Chenguang Zheng, Hao Yang, James Cheng. ByteGraph: A
High-Performance Distributed Graph Database in ByteDance. PVLDB,
15(12): 3306 - 3318, 2022.
doi:10.14778/3554821.3554824

∗ Hongzhi Chen is the Corresponding Author.
† This work was done when the authors were in ByteDance.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 12 ISSN 2150-8097.
doi:10.14778/3554821.3554824

1 INTRODUCTION
Graph data exists ubiquitously in ByteDance’s products, e.g., Tik-
Tok, Douyin, and Toutiao, where the sizes of graphs are in the scale
of tens of billions of vertices and trillions of edges (and still grow-
ing). Graph workloads in ByteDance can be categorized into three
types: online analytical, transaction, and serving processing (i.e.,
OLAP, OLTP, and OLSP). OLAP workloads on graph data usually
contain multi-hop graph traversal queries which generally have
large intermediate results due to the existence of super-vertices (i.e.,
vertices with a large number of neighbors). OLTPworkloads require
transactional guarantee for modifications on multiple graph objects
(i.e., vertices, edges, and their properties). OLSP workloads serve ap-
plications in real time and data freshness is critical [25]. In addition,
OLSP workloads usually have high concurrent writes (with higher
throughput requirement than OLTP), while read queries need to
fetch the latest data to serve applications (e.g., recommendation
service, risk management). We describe the OLAP, OLTP and OLSP
workloads in details in Section 2.

Existing graph databases suffer from various performance prob-
lems in handling these workloads. Graph databases offered by cloud
vendors such as AWS Neptune [8] and Alibaba GDB [6] only use
one (master) machine to handle write operations and thus can-
not scale to handle high concurrent writes in our OLSP and OLTP
workloads, while Azure CosmosDB [9] stores graph data in a docu-
ment store where super-vertices are managed as large JSON doc-
uments which leads to high latency in data access. Open source
graph databases such as ArangoDB [4], AgensGraph [3], Neo4j [10]
and JanusGraph [5] generally have poor scalability and cannot
satisfy the high throughput and low latency required in handling
ByteDance’s workloads. A1 [15] and TigerGraph [20] focus on in-
memory architectures to provide low query latency, but in-memory
systems are hard to be scaled to handle large graphs at ByteDance,
while storing the entire graph data in memory is also a waste of the
resource as not all graph data are needed for query processing at
all times. There are also other graph databases proposed in recent
years [16–18, 23, 26, 33], but these systems are more research proto-
types and do not provide fault tolerance and availability guarantee
required by ByteDance. We will discuss the limitations of existing
graph databases in details in Section 7.

3306

https://doi.org/10.14778/3554821.3554824
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3554821.3554824


Table 1: The amplification rate of OLAP workloads

Cluster Mean P99 Max
A 989.6 6732.2 81735.7
B 1625.7 82066.9 188620

We developed ByteGraph, a distributed graph database, to effi-
ciently store, query and update large scale graph data at ByteDance.
ByteGraph adopts a two-tier architecture that consists of a durable
storage layer to ensure data durability and a cache layer for low
latency data accessing. To optimize the cache layer, we propose a
btree-like structure, edge-tree, to store the adjacency lists of ver-
tices, which not only provides high parallelism for accessing super-
vertices’ large neighborhood, but also reduces the overall data
loaded into memory for queries such as edge searching. The edge-
tree can be configured to fit different workloads with various read-
write requirements to balance the read and write amplifications.
For the durable storage layer, since most data do not have a fix size
(i.e., the number of neighbors, length of vertex/edge properties), we
choose to use a persistent Key-Value store to provide fine-grained
storage management for the edge-tree.

As a large scale production system, ByteGraph should be ro-
bust to sudden workload changes and machine failure. First, to
promptly react to sudden situations (e.g., rapid workload increases)
and protect the system from crash, we propose two adaptive opti-
mizations on thread pools and indexes to adapt to such situations.
Second, to provide continuous services during machine failure or
even whole cluster shut-down, we provide several techniques to
guarantee the availability of ByteGraph, including weighted con-
sistent hashing [31] and geographic replications. Geographically
replicating our data can also reduce the latency of queries from
different regions. We demonstrate the performance, scalability and
availability of ByteGraph with both simulated workloads and our
real production workloads.

2 WORKLOAD ANALYSIS
ByteGraph has been extensively used in ByteDance for all kinds of
application scenarios such as social media, knowledge graph search
and analysis, risk management, e-commerce, and recommenda-
tion services. Each business unit in ByteDance may run multiple
ByteGraph clusters to process different types of workloads for its
applications. Currently there are over 600 ByteGraph clusters being
deployed on more than 13 thousands machines, and the numbers
are steadily growing as our businesses grow. We first describe the
workloads handled by the ByteGraph clusters (Section 2.1) and
then discuss some design principles of ByteGraph based on the
characteristics of these workloads (Section 2.2).

2.1 The Workloads
We categorize the workloads into three types: online analytical pro-
cessing (OLAP), online serving processing (OLSP), and online transac-
tion processing (OLTP). We describe the characteristics of each type
of workloads as follows.
OnlineAnalytical Processing (OLAP). In ByteDance, graph ana-
lytical processing exists widely in all kinds of risk management and
knowledge graph applications. OLAP queries are relatively more

0 6 12 18 24
0

25

50

75

100

125

Elapsed Time (hour)

T
hr

ou
gh

pu
t

(M
q/

s)

Read Write

1

Figure 1: The throughput (million queries per second) of
read and write queries of an OLSP cluster

complex compared with OLSP and OLTP queries, and they also
access a larger portion of the graph data. For example, subgraph
pattern matching is required by risk management applications that
aim to detect abnormal patterns in a transaction graph. The filters
on the intermediate results vary from simple property filtering to
complex subquery matching. OLAP queries often traverse multi-
ple hops from a starting vertex. Due to the nature of ByteDance’s
applications (e.g., Douyin, TikTok, Toutiao), a graph in ByteDance
usually has a relatively high number of super-vertices (i.e., vertices
with very high degree). Thus, OLAP queries can easily access a
massive number of vertices through some super-vertices in just
2 hops. We show the amplification rate for the OLAP workloads
of a typical day in two ByteGraph clusters in Table 1, where the
amplification rate is defined as the average number of accessed
vertices per query per minute. The amplification rate can be three
orders of magnitude on average and five to six orders of magnitude
at peak, which indicates the large volume of intermediate results
generated by the analytical queries. In addition, OLAP workloads
in ByteDance also process periodical graph updates, which may
be generated in two ways: (1) The updates are invoked by user
actions, where the overall throughput is not high (i.e., up to tens of
thousands writes per second). (2) The updates are aggregated by
applications and scheduled to be executed in batches periodically
with high write throughput.

Latency and error rate are two crucial metrics that ByteDance
uses to measure the performance of its OLAP workloads. On the
one hand, we need to provide high parallelism to process a query
(especially a complex query) to reduce its latency as most of our
applications require quick response. On the other hand, when the
computing resources are saturated, we should also provide high
scalability to avoid frequent errors that would causes poor service
level objective (SLO) and expensive retries.
Online Serving Processing (OLSP). The concept of serving pro-
cessing is introduced in [1], which describes the scenarios that
real-time features are fetched or further processed (e.g., aggregated)
to serve continuously updated applications or models. ByteDance
has numerous scenarios with such workloads in which data are
graphs. For example, to support real-time training for recommen-
dation services in short video applications, real-time user actions
(e.g., clicks, views, likes) are aggregated to provide samples for
model training. These user actions are recorded in the form of edge
insertion between users and video vertices, or by modifying the
attributes of existed edges. Since the updates come mostly from
frequent actions in users’ daily life, there can be a large volume of

3307



Table 2: The characteristics of OLAP, OLSP and OLTP workloads in ByteDance (Thpt, Lat, ER, and AR stand for throughput,
latency, error rate, and abort rate)

Workload Applications Read Ratio (%) Overall Thpt (QPS) Traversal
Hops

Write
Frequency

Performance
Concern

OLAP Knowledge Graph,
Risk Management

100%,
dropping to 60%

during data ingestion
tens of thousands (104) 3 to 5 Periodically Lat, ER

OLSP
Recommendation,
GNN Sampling,
Feature Serving

75% to 90% hundreds of millions (108) 1 to 2 Real-Time Thpt, Lat, ER

OLTP E-commerce,
Content Record 90% to 99.9% tens of millions (107) 1 Real-Time Thpt, Lat, AR

updated data. Figure 1 shows the read and write query through-
put for a typical OLSP cluster. There are tens of millions of write
queries per second, where each write query inserts an edge, and
the number of read queries at least doubles that of write queries.

A read query for an OLSP workload is usually used to select
samples or aggregate features for model training. In most cases,
the query only accesses the neighboring vertices/edges within two
hops of a given vertex. Compared to OLAPworkloads, OLSP queries
are simpler and easier to be processed. However, usually a massive
number of read queries are processed concurrently for an OLSP
workload. As shown in Figure 1, the throughput of read queries
can reach more than 70 millions queries per second, where most
of them (99.9%) are retrieving one-hop neighbors. In addition, the
throughput can burst within a short time. As shown in Figure 1,
the number of read queries is nearly doubled within a short pe-
riod. This explosive increase in the read throughput can result in
high latency and error rate if the computing resources are satu-
rated. Therefore, ByteGraph needs to provide high elasticity and
scalability to promptly react to this situation.

Moreover, there are also predicates on the vertex/edge proper-
ties that need to be verified during graph traversals in read queries.
However, the key of the most frequently accessed property changes
dynamically, which may invalidate the existing index and accord-
ingly incur high CPU consumption for full scan. Thus, ByteGraph
also needs to decide whether and which index should be built.
Online Transaction Processing (OLTP). Transactional require-
ments in the graph context consist of mainly two aspects: (1) To
ensure the consistency of index and original data, ByteGraph should
provide atomic update inside the system to ensure data freshness.
(2) Some applications require atomicity when updating multiple
vertices and edges. For example, if a user posts an article with a
tag, three edges, namely (user ,article), (user , taд) and (article, taд)
should be atomically inserted. Otherwise, this triangle relationship
can be lost if failure happens during the insertion, which can fur-
ther lead to other cascading problems in our business and hurt user
experience.

Both read and write transactions are lightweight in our OLTP
workloads. Specifically, read transactions mostly only contain one-
hop traversal, while writes are usually manipulating a handful of
vertices/edges. The overall throughput of an OLTP workload can
reach from tens of millions to hundreds of millions of transactions
per second. Meanwhile, read operations can dominate the overall
throughput, where the percentage of reads varies from 90% to 99.9%.

2.2 System Design Principle
Table 2 summarizes the key characteristics of the three types of
workloads. We discuss the limitations of existing systems in han-
dling these workloads in Section 6 and Section 7. To the best of
our knowledge, there is no existing system that can efficiently han-
dle OLAP, OLSP and OLTP graph workloads. While we may use a
dedicated system for each type of workloads, maintaining multiple
systems significantly increases the costs of system development, op-
eration and maintenance. To this end, we set out to design a unified
system to handle OLAP, OLSP and OLTP workloads in ByteDance.
We summarize our design principles as follows.

• Decoupling computation and storage. Different types of
workloads present different requirements on CPU and stor-
age utilization. To fully utilize both resources, ByteGraph
can adopt the design of separating computation and storage,
which provides independent scalability.

• Read-write amplification. Our storage design should con-
sider both read and write amplifications from the persistent
storage. The read amplification incurs overhead on read op-
erations and wastes the limited memory resource, which
further leads to a low cache hit rate. The write amplification
results in high latency on write operations and also occupies
more I/O bandwidth. There is sometimes a trade-off between
reducing read and write amplifications. Our design should
balance the read and write amplifications on different types
of workloads for the best overall performance.

• Cache hit rate. Frequent disk access is detrimental to per-
formance due to the significant speed difference between
SSD and memory. The cache in memory should be fully
utilized to accelerate data extraction. The system should pro-
vide fine-grained data management to reduce the volume of
accessed data during execution to increase cache hit rate.

• High scalability. The system should have high scalability
when the throughput requirement of our workloads is in-
creased both normally and explosively. In particular, the
system should promptly react to explosive throughput in-
creases as they are common in ByteDance’s workloads.

3 SYSTEM ARCHITECTURE
The architecture of ByteGraph is depicted in Figure 2. A ByteGraph
cluster consists of three layers: an execution layer (BGE), a cache
layer in memory (BGS), and a durable storage layer based on a
persistent KV store. BGE mainly handles computation-intensive

3308



Gremlin APIs

Query Parser

Query Optimizer

Plan Executor

Graph Partition

Request APIs

BGE

BGS Local Monitor

WAL

Persistent Key-Value Store

Client

Vertex Storage Edge Storage

Schema Manager

Global Monitor

Index

Transaction

Figure 2: The architecture of ByteGraph

operations (e.g., sorting, aggregation), while BGS focuses on graph-
native cache data management and log management. Both layers
can be independently scaled out according to the workloads and
available resource. The durable storage layer is responsible for per-
sisting all KV pairs generated by BGS (i.e., graph data, logs, and
metadata). Existing KV stores (e.g., RocksDB [12], TerarkDB [29])
can be used in this layer, which is treated as a black box in Byte-
Graph.

ByteGraph uses Gremlin [7] as the query language as most of the
applications built on ByteGraph are based on navigational queries.
Currently, ByteGraph supports 54 Gremlin steps, where the unsup-
ported Gremlin steps are mostly graph algorithms (e.g., PageRank,
Single-Source Shortest Paths, and Peer Pressure) for which we have
a dedicated graph system (i.e., a Pregel-like system) to process
them, or rarely-used steps in ByteDance (i.e., Skip, None, and Coin).
A Gremlin query is translated into a physical execution plan by
the parser and optimizer in BGE. We provide both rule-based and
cost-based optimizer. To increase the cache hit rate, we logically
partition the graph data with consistent hashing algorithm [27]
where a partition is mapped to a BGS instance. Thus, to access the
data, vertices located at the same partition are grouped and shipped
to the associated BGS instances through RPCs for further process-
ing. BGE maintains a global view of BGS instances by monitoring
their heartbeats. Moreover, BGE coordinates the distributed trans-
actions using the 2PC protocol, which we discuss in Section 5.1.
For fast predicate evaluation and data compaction, the schemas
of vertices and edges should be defined before loading into Byte-
Graph. To allow schema modification during runtime, the schema
manager assigns versions to schemas such that vertices/edges can
be deserialized based on the version number.

BGS receives the requests from BGE and caches the accessed
data in memory for fast accessing. In addition to the graph data,
BGS also maintains system data that are used to accelerate the
processing or to ensure the consistency and atomicity (i.e., indexes
and logs). We enforce schema on vertex and edge properties for fast
lookup and data integrity. The schema is multi-versioned to provide
asynchronous modification. Besides, we introduce two adaptive
optimizations to address workload changing issues in Section 4.3.

Moreover, as a large-scale industry-level graph database, Byte-
Graph provides availability by replicating data cross data centers

Post{date}

Like{date}

Comment  
{content}

User A 
{name,age}

Video A 
{tag}

Video D 
{tag}

Video C 
{tag}

Video B 
{tag}

Post{date}

User C 
{name, age}

Post{date}

Like{date}

User B 
{name,age}

User D 
{name, age}

User E 
{name, age}

Follow{date}

Post{date}

Like{date}

Like{date} Like{date}

Like{date}

Like{date}

Like{date}

Follow{date}

Follow{date} Follow{date}

Follow 
{date}

Follow
{date}

Figure 3: An example of property graph

and geographical regions. The synchronization among different
clusters is completed via binlog [13]. We introduce how ByteGraph
guarantees fault tolerance and availability in Section 5.2.

4 SYSTEM DESIGN
ByteGraph adopts the property graph model where both vertices
and edges have associated types and properties. An example of a
property graph is shown in Figure 3. There are two vertex types
(User, Video) and four edge types (Like, Post, Comment, and Follow),
where the schema is various with the type of vertex/edge (e.g., User
{name, age}, and Video {tag}). We first discuss how graph data are
stored in a KV store (Section 4.1) and how queries are executed (Sec-
tions 4.2). Then we present two adaptive optimizations to handle
workload changing situations (Section 4.3).

4.1 Data Storage
As shown in Figure 4, BGS caches vertices and edges in memory
with Vertex Storage and Edge Storage, respectively. Each vertex and
its properties are stored as a KV pair, where the key is encoded by
a unique ID and the vertex type, and the value is a list of properties
of the vertex. For example, the key of vertex User A in Figure 3
is encoded as ⟨A,User ⟩. To access the properties of a vertex, BGS
invokes a get() request to the underlying KV store and caches this
KV pair in Vertex Storage. Once there is a modification on any
property of a vertex, its associated KV pair will be instantly flushed
to disk by a set() request.

To efficiently execute graph traversal queries, edges are orga-
nized as adjacency lists. To reduce the possibility of generating
massive intermediate results after visiting super-vertices in a graph
traversal, adjacency lists are further divided according to edge types
and directions. Thus, the key to identify an adjacency list is en-
coded as ⟨vID,vType, eType,dir ⟩, where eType denotes the edge
type and dir is the edge direction. To handle super-vertices and
frequent updates, the storage should be able to (1) reduce the write
amplification brought by edge insertion and (2) incur less disk I/Os
during a whole list scanning. To satisfy these requirements, each
adjacency list is stored as a tree structure, called edge-tree. As shown
in Figure 4, an edge-tree is composed of three types of nodes, i.e.,
Root Node, Meta Node, and Edge Node, each of which is stored as
a KV pair. Edge-tree works like a B-Tree. That is, both root node

3309



Tree ptr ... Tree ptrDirty List

WAL

LogN

LogN-1

...

LogN-2

LRU Lists Root Node

Meta Node

E0 E1 Ei...

Ei+1 ...Ei+2 Ej

Em...

ENode0 ENode1

Edge Node0

Edge Node1

Edge NodeN

... ENodeN

vID+vType+eType+dir

Edge StorageVertex Storage

Edge-tree PtrvID+vType Property List

MNode0 MNode1

...

...

...

...

Tree ptr

Figure 4: The memory layout of BGS

and meta nodes play the roles of indexes, while only edge nodes
store the physical edge data. All the three types of nodes have a
lower/upper bound on their size to balance the read/write amplifi-
cation. Initially, an edge-tree has only two layers (i.e., root node and
edge nodes). But with the increase in the number of edges managed
by an edge-tree (i.e., the size of the edge nodes indexed by the root
node exceeds the upper bound), we will create meta nodes as the
middle-layer to index the edge nodes. Similarly, one edge node will
be split into two nodes if its size is larger than the upper bound,
or two edge nodes will be merged into one node if their sizes are
smaller than the lower bound. Empirically, we set the lower/upper
bound to be 1000/2000, for which the capacity of a three-layer edge-
tree is 8 billions, which is enough to store an adjacency list from
even a massive real-world graph. In practice, we will adjust this
bound dynamically based on the read/write workloads of a cluster.
For example, if read queries dominate, we set a relatively larger
upper bound for the edge-tree, and consequently it will reduce the
number of disk I/Os and also improve data locality in the durable
storage layer. Each edge instance is formed by the ID and type
of the destination vertex, as well as the list of its edge properties.
Then, we compress the property data based on its schema to reduce
storage footprint. Edges in an edge-tree are sorted by a specific sort
key, determined by the schema of the edge properties. ByteGraph
uses “tsUs” as the default sort key if no particular property has been
given, where “tsUs” is the timestamp when this edge is inserted.
Moreover, this sort key is configurable or dynamically adjusted
according to real-time workloads (Section 4.3.2).

We follow an asynchronous workflow to process updates on
an edge-tree using Write-Ahead-Log (WAL). During an update,
modifications are persisted by WAL first and then applied to the
edge-tree in memory, where a new node is marked as a dirty node.
BGS periodically flushes dirty nodes to disk. As updates may lead
to node split/merge that modifies more than one node, a child node
should be flushed before the parent node to ensure consistency.
Consequently, we use edge-tree as the granularity of flushing. As
shown in Figure 4, BGS maintains a global Dirty List represent-
ing the edge-trees that include dirty nodes. We only insert a dirty
edge-tree to the list when (1) the number of WALs after the last
checkpoint exceeds a threshold, or (2) a least used node in the LRU
list is selected to be evicted for more available memory. The WALs

for an edge-tree are indexed with monotonically increasing IDs.
Meanwhile, the root node records the log ID of the last persist oper-
ator as the checkpoint. Therefore, Condition (1) above reflects that
BGS restricts the number of WALs to avoid incurring a heavy recov-
ery load. For Condition (2), if a dirty node is selected to be swapped
out in the LRU list, we also insert the associated edge-tree into the
dirty list to release memory as soon as possible. Similar to flush,
swap is also periodically conducted to evict the least used nodes
from memory. Due to the limited CPU resources, the frequency
of flushes and swaps should depend on the memory consumption.
Specifically, we linearly reduce the wait time between two flushes
or swaps with the increase in the overall memory consumption.

4.2 Query Processing
When a query is sent to ByteGraph, it is routed to a random BGE
instance. A gremlin query is parsed and translated into an execu-
tion plan by the parser and optimizer. We provide both rule-based
optimizer (RBO) and cost-based optimizer (CBO). The RBO contains
a rich set of rules (29 rules), involving step fusion, predicate push-
down, limit forward, data prefetch, and subquery elimination. And
we also provide a CBO that can select the optimal execution order
for queries that have multiple execution plans. For example, a query
tries to check the existence of an edge between two given vertices.
We can locate the target edge in the adjacency lists of both vertices.
To reduce the data accessed, this query will start from the vertex
with fewer neighbors. As we record the number of edges in the root
node for each edge-tree, the overhead of the CBO is negligible. This
optimization reduces the accessed data size of the current query and
further balances the workload by navigating the requests to avoid
starting from a super-vertex when possible. To avoid redundent
processing on the same query, every BGE instance can cache the
results of frequent queries. We sacrifice the consistency between
the data and query cache by periodically updating the query cache.
Therefore, BGE only caches the results of query with extreme high
frequency and low requirement on data freshness.

For load balancing and to increase the cache hit rate, BGE log-
ically partitions a graph by consistent hashing [27], where each
partition is assigned to one BGS instance. Both vertices and adja-
cency lists are partitioned by their keys. Consequently, a vertex or

3310



Access EdgeTree

BGE BGS BGS

 g.V(A, user).outE(post).has(date, within($range)).in(like). 

     has(age, lt($age)).order().by(age, asc).properties(name, age)

Access EdgeTreeAccess EdgeTree

Access VertexAccess Vertex

Evaluate Predicate Evaluate Predicate

Construct  
Execution Plan

Evaluate Predicate

Group Vertices

Property Prefetch Property Prefetch

1 3

1

3

5 6

5

6

2

2

4

4

Group Vertices

Aggregate (order)

Figure 5: The workflow of processing an example query

an edge-tree only appears in a single BGS instance, which prevents
write conflicts happening in the underlying KV store. However, if
BGS is scaled in or out, a vertex or edge-tree may still be written by
more than one BGS instance at the same time. If the underlying KV
store provides atomicity on writing a single KV pair, ByteGraph
can directly rely on this feature. Alternatively, we can wrap a CAS
set() function to ensure atomicity based on normal KV store APIs.

To execute a query, BGE sends read/write requests to BGS based
on the graph partition. Specifically, according to the inputs of each
step, BGE generates a set of requests, each of which contains the
fetch/update operations on target objects (i.e., vertices/adjacency
lists) located on the same partition. BGSwill execute the request and
ship the results back to BGE for subsequent execution. We illustrate
the procedure in Figure 5 with an example query, where the query
attempts to obtain the two-hop neighbors of a given vertex with
the filters on both edge and vertex properties. The actual execution
location for each step is marked in Figure 5. BGE first sends a
request to the BGS instance that handles the adjacency list with
the first edge label (i.e., post) of the start vertex for accessing the
neighbors (step 1 ). The predicate evaluation (step 2 ) is pushed
down to BGS by RBO to save the network cost and the number
of RPCs. After receiving the results from the first traversal, BGE
groups the intermediate vertices with the edge type of the second
traversal (i.e., like) and dispenses them to the corresponding BGS
instances. As BGS is not aware of how a graph is partitioned, the
result vertices of step 3 have to be sent back to BGE for further
routing, which can also de-duplicate the intermediate vertices. The
evaluation on the property of the vertices (step 4 ) and extracting
the properties (step 6 ) are executed together on the corresponding

BGS instances. BGE receives the results from the BGS instances
and applies the aggregation (step 5 ). After receiving read/write
requests from the BGE, BGS splits a request into a set of tasks
where each task is responsible for accessing one KV pair. Tasks
generated from one request can be executed in parallel to maximize
the parallelism. The generated tasks are dispensed to task queues
in a round-robin manner for load balancing.

When there are multiple BGS instances participating in one step,
we provide two modes (i.e., barrier mode and eager mode) to decide
when to start the execution of the next step. The barrier mode does
not start the next step until all BGS instances return the results.
Consequently, BGE can send all intermediate vertices located on
the same BGS instance with a single RPC. Alternatively, BGE can
also immediately start the next step once the results are received
under the eager mode. Although the eager mode incurs more RPCs,
it can avoid a long-running request blocking the whole procedure.
Note that we only apply the eager mode for applications that accept
partial results.

4.3 Adaptive Optimizations
We may encounter many sudden situations (e.g., rapid workload
increases, significant predicate changes) in a ByteGraph cluster
and we need to ensure that ByteGraph can provide continuously
services with minimal degradation in performance. We introduce
two adaptive optimizations, dynamic thread pools and adaptive
secondary edge-trees, to handle such situations.

4.3.1 Dynamic Thread Pools. Read/write requests may have dif-
ferent loads depending on how many tasks are simultaneously
generated for the requests. For a request with a large number of
parallel tasks, we need to restrict the available resources that will
be assigned to process them to avoid starving the other requests.. In
particular, super-vertices often become hotspots where massive re-
quests are pushed into a single BGS instance. In the worst case, the
BGS instance rejects all subsequent requests such that ByteGraph
may have a high error rate and cannot provide normal services.

To ensure the quality of service, two thread pools are created
to handle the light and heavy requests, respectively (Figure 6(a)).
A request is considered heavy when the number of its tasks is
larger than a threshold. All the tasks of a heavy request can only
be executed in the heavy thread pool. As the number of heavy
requests is much less than that of light requests in our workloads,
we initiate a small number of threads for the heavy thread pool.
Although we can achieve a better overall error rate by restricting
the available threads for heavy requests, it is also unacceptable to
sacrifice the error rate of the heavy requests due to the expensive
retry overhead. Intuitively, we should scale out the BGS cluster to
providemore capacity. Unfortunately, as some hotspots may quickly
vanish, adding new machines not only cannot address the issue
in time because of the warm-up time (Section 5.2), but also incurs
more overheads on solving remote write conflicts (Section 5.1).

To fully utilize the resources and scale out when necessary,
we propose dynamic thread pools where the numbers of available
threads are adjusted according to the loads. Specifically, we monitor
the average number of tasks queued in each thread pool, which
indicates the pressure of a thread pool. We denote the pressures as

3311



GetOneHop 
(weight=0.5)

Adjacency List: 
Nw += 2

Primary EdgeTree 
<ts>

Secondary EdgeTree 
<weight>

Edge StorageLight Thread Pool Heavy Thread Pool

Thread 
Group

Thread 
Group

Thread 
Group

Thread 
Group

Thread Group

Thread Group

ThreadThread Thread Thread

Task Queue

(a) (b)

Figure 6: (a) Thread pools; (b) Secondary edge-tree

P̂L and P̂H for light and heavy thread pools, respectively. We adjust
the number of threads in the heavy thread pool (Th ) as follows:

T ′
h = (1 + α ∗ log(P̂H /P̂L)) ∗Th , (1)

where α is a decay factor to slow down the adjustment rate (α = 0.2
by default). With the increase in the number of heavy requests, we
can assignmore threads to the heavy thread pool.When the number
of heavy requests reduces, we also reduce the number of threads in
the heavy pool by Equation (1). Meanwhile, we still need to ensure
the performance of light requests. Thus, we stop the adjustment
process when the light requests start to be timeout. If the error rate
of heavy requests is still increasing, scale-out is invoked.

4.3.2 Adaptive Secondary Edge-Trees. The edge-tree structure is
also the essential data structure for our index on BGS to facilitate
searching on the adjacency list with the sort key. However, if the
search key does not match with the sort key, then a whole edge-tree
scanning is still required, which leads to high CPU occupation and
high possibility of cache misses. Thus, we provide a secondary edge-
tree where the adjacency list is sorted by another edge property.
Once a secondary edge-tree is built, a pointer pointing to the new
edge-tree is added into the Edge Storage to form a forest for an
adjacency list (Figure 6(b)). Each read request can select the edge-
tree that matches with the search key. If all the edge-trees do not
match with the search key, the read request will select the edge-tree
with more edge nodes existing in memory to maximize the cache hit
rate. However, if the size of an adjacency list is small or the accessing
frequency is low, constructing a new edge-tree cannot improve the
cache hit rate but will occupy more space. Therefore, we adopt an
adaptive method to dynamically decide whether a secondary edge-
tree should be built. For each property, we use the number of saved
edge nodes in an edge-tree to measure the benefit brought by the
secondary edge-tree. Specifically, for a request, we first record the
number of accessed edge nodes in the primary edge-tree (Npr i ) and
then estimate the number of edge nodes required in the secondary
edge-tree (Nsec ). The number of saved edge nodes is calculated by
subtracting the above two numbers. We accumulate the number of
saved edge nodes for all the requests in a time period to measure the
benefit of building a secondary edge-tree. An example is given in
Figure 6(b), the request GetOneHop(weight=0.5) has to access all the
three edge nodes in the primary edge-tree, while it only requires
one edge node in the secondary edge-tree. Therefore, we record
that two more edge nodes can be saved by the secondary edge-tree
of property weight. BGS will build the secondary edge-tree once

BGE BGSClient
start trx write WI

ack

write status
ackreply 

commit
apply WI

ack

Txn1 BGS

Del e

prepare 
phase

commit 
phase

Timeout

Retry

Ack

Ack

Txn2

Insert e
Ack

(a) (b)

Figure 7: (a) The workflow of 2PC; (b) The inconsistency
caused by retry

the benefit exceeds the threshold. However, as different clusters
require different thresholds, we further count the number of all the
edge-nodes accessed in the current BGS instance (Nall ). Therefore,
the final benefit (Btp ) of building the secondary edge-tree for an
edge property (p) in a time period (t ) is calculated as:

Btp =

∑
r (N

r
pr i − N r

sec )

Nall
. (2)

Each primary edge-tree maintains a list of Btp for all the edge
properties. For the number of estimated edge nodes required by
the secondary edge-tree, we optimistically consider the best case
where the smallest number of edge nodes is used. Moreover, as
many edge-trees may invoke the construction of secondary edge-
trees at the same time, we restrict the available threads for this
process. Meanwhile, as the secondary edge-trees are persisted, BGS
can directly read them from the KV store when they are needed.

5 SYSTEM IMPLEMENTATION
We discuss some implementation details of ByteGraph in this Sec-
tion. We will also open source ByteGraph in due course.

5.1 Distributed Transaction Processing
ByteGraph supports ACID transactions with Read-Committed (RC)
isolation level. Currently we do not consider higher isolation levels
since RC can satisfy most requirements of our applications.

We leverage the two-phase commit (2PC) for distributed trans-
action processing. Figure 7(a) shows the workflow. Same as query
processing, each transaction is received by a random BGE instance,
which is designated as the coordinator. During the prepare phase,
the modification requests are sent to the corresponding BGS in-
stances. Similar to CockRoachDB [32], each participant stores the
update in a provisional value, write-intent, which records the before
and after image of the data and the unique identification of the cor-
responding transaction. However, as ByteGraph does not support
MVCC, the write-intent acts as a write lock rather than a new ver-
sion, where each vertex/edge can only contain one write-intent to
avoid write-write conflicts. To avoid deadlock, a timestamp, startTs,
is assigned to each transaction. The transactionswith smaller startTs
should abort during a write-write conflict.

After receiving acknowledgments from all write-intents, the co-
ordinator starts the commit phase. To reduce the latency, we atomi-
cally persist the transaction status (i.e., commit or abort) and then
reply to the client. The write-intents are asynchronously applied
to the original data. Specifically, when encountering a write-intent,

3312



a transaction should check the status of the transaction generating
the write-intent. If the status is “commit”, an asynchronous thread
is invoked to apply the changes to the original data and erases the
write-intent. Alternatively, if the status is “abort”, the write-intent
is directly erased. Moreover, if the transaction status cannot be
found, we directly abort this transaction by persisting the trans-
action status as “abort”. Therefore, the uncommitted changes of
an on-going transaction would not be visible to other transactions,
which guarantees the Read-Committed isolation level.

To reduce the abort rate, ByteGraph will retry the requests if
they are timeout. However, such a design may cause inconsistency
and break the atomicity in some circumstances. As shown in Fig-
ure 7(b), a transaction, Txn1, tries to delete an edge e . However,
due to some network issue, the deletion request cannot reach the
BGS instance. After the timeout, Txn1 retries the deletion and suc-
cessfully commits. Meanwhile, another transaction, Txn2, tries to
insert the same edge e , which also succeeds. And after all these
operations, the deletion request drifting in the network eventually
arrives the BGS instance and deletes e again. Consequently, the
insertion of e by Txn2 is overwritten. If Txn2 contains other opera-
tions than inserting e , then the atomicity of Txn2 is also broken in
this case. To address this problem, we maintain a table to record the
transactions that touch the edge-tree in the previous five minutes.
All transactions presenting in this table should be rejected.

5.2 High Availability and Fault Tolerance
As a system providing production-level services, we should ensure
fault tolerance and high availability. We introduce the methods we
adopt to provide high availability within a data center, within a
region and crossing the regions.
Within a data center. We should ensure that the whole cluster
can still serve its applications with minimal degradation in perfor-
mance during machine fails. The BGS instances are monitored by
all BGE instances where each BGE instance maintains the same
consistent hashing ring. When a machine hosting a BGS instance
is down, the heartbeat sent by this instance is stopped. BGE routes
the requests belonging to the lost machine to the next machines
on the hash ring. However, directly shifting all workloads of one
machine to a few machines can cause workload imbalance. We
adopt the weighted consistent hashing algorithm [31]. By assigning
the weight indicating the load of each machine, we can keep load
balancing by adjusting the weight of machines and correspond-
ing locations on the hash ring. Meanwhile, during scale-out, the
new machines without warm-up have a low cache hit rate and can
further affect the overall performance. The worst case is that the
instant high throughput can crash the newly added machines. The
weighted consistent hashing algorithm can also avoid such a situa-
tion. We only assign small weights to the newly added machines
and adjust the weights to normal according to the real and expected
throughput.
Cross data centers in the same region. When the data centers
are located in the same region, ByteGraph chooses to use a master-
slaves replications approach to ensure high availability, as the net-
work latency between data centers in the same region is at millisec-
ond level. Specifically, as shown in Figure 8, both master and slave
clusters can receive read and write queries as usual, while the write

BGE

Master

BGS

KVS

Persist

BGE

BGS

KVS

Read Write

Sync

Read WriteSlaves

Region A
Read Read

Region B

Slave cluster
Sync

Slave cluster

Slave cluster

Master cluster
binlog queue

delete set

Object:hlcTS

Online Checker

binlog

Sync

Figure 8: The cross DC and region deployment of ByteGraph

queries received from each cluster will be broadcast to the others.
These updates will be applied to the BGS layer in a normal way to
make them visible to the read queries immediately, but only the
master cluster has the permission to flush these writes into the per-
sistent KVS layer with WAL, in order to avoid write inconsistency
among the replicas. Then, the KVS on the master cluster will syn-
chronize the persistent writes to the other KVS replicas on the slave
clusters in milliseconds. When cache missing or data expiration
happens on the BGS layer of the slaves, it will read the latest data
from the KVS layers. Thus, we only guarantee eventual consistency
among the replicas. Note that in this setting, write queries posted
to the slave clusters will only return “successful” when these writes
have been flushed down to the master’s KVS. According to the
return flags from the master cluster, a slave cluster can monitor
the status of the master. If entries in the master cluster fail due to
unexpected situations (e.g., power loss), the write operators will
not be successful and one of the slave clusters can be promoted to
be the master. By default, we only hold one or two slave clusters to
avoid a heavy master-selection procedure.
Cross data centers in different regions. To provide high avail-
ability and avoid high latency brought by the cross-region com-
munication, ByteGraph provides the ability to replicate across geo-
graphical regions. Each region contains the whole master-slaves
architecture and accepts both read and write requests.

We leverage the binary log(binlog) [13] to guarantee consistency
among master clusters in various regions (see region B in Figure 8).
The binlog is a set of logs that records the information of updates
happened in a ByteGraph cluster. We assign a timestamp to each
vertex/edge that indicates the update time. Each log contains the
previous and current timestamp to resolve conflicts. Since updates
can be frequently invoked from different machines in a cluster
during scaling out, we cannot directly use the physical clock for
the timestamp. Instead, ByteGraph adopts the Hybrid Logic Clock
(HLC) [28] to avoid the inaccuracy brought by clock skew. The HLC
timestamp is generated during updating or inserting vertices/edges.
Consequently, the HLC timestamps for objects in one transaction
can be different, which can break the atomicity of a transaction dur-
ing synchronization. Therefore, the transaction coordinator selects
the maximum HLC timestamp for all updates in the transaction

3313



Table 3: Workload description

Type Input Description Option
Write N/A Create vertices/edges/properties, Update properties, Delete edges/properties N/A

1-Hop Query 1 vertex Return neighboring vertices/edges of the input vertex filter, property, order, group
2 vertices Find the connecting edge(s) of two input vertices filter, property

2-Hop Query 1 vertex Return 2-hop neighbors of the input vertex filter, property, order, group
2 vertices Find the common neighbors of two input vertices filter, property, order, group

3-Hop Query 1 vertex Return 3-hop neighbors of the input vertex filter, property, group
Path Query 1 vertex Find path by repeat().until() until the requirement in until() is satisfied filter

during the commit phase, where the new HLC timestamp should
be written back to write-intents.

When generating the WAL, ByteGraph also generates the binlog
and sends them to consuming queues for all data centers in other
regions. We follow the last-write-win policy to resolve the conflicts
thanks to the strict monotonicity of HLC. Moreover, when consum-
ing the binlog, the objects in the binlog might be already deleted in
the current cluster. Thus, there is no HLC timestamp that can be
used to resolve the conflicts. To address this issue, we maintain a
set of delete operations with their HLC timestamp for each cluster.
Therefore, the binlog consumer can find the HLC timestamp of the
delete operations. Besides, we also provide an online checker for
each cluster to validate the data consistency by directly reading
data from the clusters that generate the binlog.

6 EXPERIMENTAL EVALUATION
In the experimental evaluation, wewill demonstrate that ByteGraph
achieves high throughput, low latency, and high scalability for
processing various types of workloads. We also demonstrate its
robustness in handling spikes and its fault tolerance and availability.
Workloads. Table 3 lists the query templates we used to simulate
the OLAP, OLSP, OLTP workloads in ByteDance. Here, we only
briefly describes their query patterns and functionalities, while the
specific query-list (more than 40 queries) will be released to public
through our project website. The “Input” column indicates the num-
ber of input vertices to a query and the “Description” shows how the
query does with the input vertices. The “Option” column represents
whether a query may contain the operators being listed, where filter
means that there can be filters on edge/vertex properties, property
means that the query should extract the required properties, order
and group indicate whether the query needs to sort or group the
query result. Each query in our workload should contain at least
one option. Due to the space limitation, we do not include the full
query set here but release them on github1.

6.1 Throughput and Scalability
We first demonstrate that ByteGraph achieves high throughput for
various workloads. We also evaluate the scalability of ByteGraph,
comparing with two well-known graph databases provided by
cloud vendors, Amazon Neptune [8] (v1.0.5.1) and Alibaba GDB [6]
(v1.0.27). We ran the experiments on a cluster of 10 nodes where
each node is equivalent to a db.r4x.large in AWS.

1https://github.com/Aaronchangji/ByteGraph-Paper-Query-Set

Due to data security reasons, we could not run our production
workloads on Amazon Neptune and Alibaba GDB. Thus, we sim-
ulated the workloads described in Table 3 and a smaller Douyin
social graph (as Alibaba GDB cannot handler larger graphs). The
OLAP workload consists of only read queries, which are composed
of 70% 1-hop queries, 20% 2-hop queries, 5% 3-hop queries and
5% path queries. OLSP consists of 75% read queries and 25% write
queries, where the read queries are 1-hop or 2-hop queries while
the write queries create/update/delete edges. The OLTP workload
consists of 99% 1-hop read queries and 1% write queries that cre-
ate/update/delete edges and create/update vertices. The data graph
was simulated by extracting the neighbor distribution and the fea-
tures of vertex/edge properties (i.e., number, value type, and cardi-
nality) from the Douyin social graph. There are totally 3.7 million
vertices and 520 million edges in this dataset. The degree distri-
bution follows a power law, where the P99 (i.e., 99-th percentile)
degree is 116 thousand. The number of vertex and edge proper-
ties are 3 and 7, respectively. Property types include integer, float
number, string, and boolean values.

To test scalability, we first compared with the single-machine
Alibaba GDB by increasing the available number of vCPU cores
from 4 to 16. Then, we compared ByteGraph and AWS Neptune
using 2 to 10 nodes (each with 16 vCPU cores). For each system, we
increased the number of clients until its throughput did not grow,
and the average throughput in one hour is reported.

Figure 9 reports the throughput of the systems. For the OLAP
workload, ByteGraph’s throughput is up to two orders of magni-
tude higher than that of Neptune and Alibaba GDB. As the OLAP
workload contains multi-hop queries, the intermediate result size
grows exponentially with the increasing numbers of hops. To han-
dle the heavy workload, ByteGraph maximizes CPU utilization by
not only accessing the adjacency lists of multiple vertices in parallel,
but also accessing a single adjacency list of any super-vertex in
parallel. This high parallelism also leads to high throughput for the
OLSP and OLTP workloads which have a large number of simple
queries. In addition, ByteGraph does not need to load the entire ad-
jacency list of a super-vertex into memory if the filtering property
is matched with the sort key, which saves disk I/Os. Meanwhile,
the sorted structure of adjacency list can also achieve fast seek
with low latency. Figure 9(b) also shows that the high concurrent
write queries do not stall ByteGraph thanks to its MPP architecture
and asynchronous processing of write requests. In contrast, AWS
Neptune does not scale out well for OLSP because it only uses one
instance to accept write requests in a cluster, which becomes its
bottleneck in processing massive concurrent write requests.

3314

https://github.com/Aaronchangji/ByteGraph-Paper-Query-Set


4 8 16 32 64 96 128 160

102

103

104

105 Vertical Horizontal

16
7.
9

33
7.
2

76
1.
7

83
7.
8

1,
27
1.
1

2,
92
3.
4

7,
75
8.
7

12
,1
76

12
.4
7

30
.2
7

49
.1
7

75
.0
7

11
6.
94

23
4

30
0

38
5

12

30

49

Number of vCPU cores

T
h
ro
u
gh
p
u
t(
q/
s)

ByteGraph Neptune GDB

1

(a) OLAP

4 8 16 32 64 96 128 160

100

101

102

Vertical Horizontal

6

9.
7 17

.6 30
.8 59
.1 86
.2

11
3.
6

15
5.
3

0.
6 1.

3 2.
6 4.
1

4.
2

4.
2

4.
2

4.
3

1.
6 3.
1 6.

8

Number of vCPU cores

T
h
ro
u
gh
p
u
t(
K
q/
s)

ByteGraph Neptune GDB

1

(b) OLSP

4 8 16 32 64 96 128 160

101

102

103 Vertical Horizontal

12

25

51

95

17
5 25
4 34
0

41
0

2.
1 4.

2 8.
7 17

.3 34
.4 52
.4

69 86
.9

1.
9

4.
1 7.

7

Number of vCPU cores

T
h
ro
u
gh
p
u
t(
K
q/
s)

ByteGraph Neptune GDB

1

(c) OLTP

Figure 9: Scalability performance (Vertical: a single machine; Horizontal: 2 to 10 machines, each with 16 cores)

4 5 6 7 8 9 10 11
0

100

200

300

400

500

1.
4

1.
7

2.
7

5 8.
8

15
.8

28
.5 54
.3

7.
2

9 13
.7

25
.2 50
.7 98
.7

19
5.
6

39
2.
3

Number of Clients (2N)

L
at
en
cy
-a
vg

(m
s)

ByteGraph-avg Neptune-avg

4 5 6 7 8 9 10 11
0

200

400

600

12
.1

18
.4

30
.4 62
.7 97
.1 14
7.
8

22
1.
5

43
7.
8

13
.5

21
.6

38
.9 79
.4 11
1.
2

15
9.
8 27
3.
1

47
3

Number of Clients (2N)

L
at
en
cy
-p
99

(m
s)

ByteGraph-p99 Neptune-p99

1

Figure 10: Average and P99 latency

6.2 Query Latency
Next we report the performance of ByteGraph on query latency.
As ByteGraph focuses more on the distributed environment, we
did not include Alibaba GDB in this experiment. We first compared
the average and P99 latency of ByteGraph and AWS Neptune for
OLTP. We used 10 nodes and increased the number of clients from
16 to 2,048 for both systems. Figure 10 shows that although the
two systems have comparable P99 latency, the average latency of
Neptune is 5× to 7× that of ByteGraph as ByteGraph has high
parallelism for processing a large number of queries.

We also compared the single-query latencywith TigerGraph [20],
which is a commercial graph database reported to achieve better
performance than most open-source graph databases. To execute a
query in TigerGraph, its query template should be first registered
into the system, which is called query install in TigerGraph. But
the main issue is that, during query install, all other operations (e.g.,
query execution, data export, or scale-out) are not allowed, and thus
it is impossible to use TigerGraph on high concurrent workloads
with a large number of queries with different query templates from
our users. We thus selected some queries from Table 3, where Q1-
Q3 are 1-hop queries, Q4 is a 2-hop query, Q5 is a 3-hop query,
and Q6 is a path query. Due to the page limit, we will release these
queries in our project website. We used the Enterprise Edition of
TigerGraph with v3.5.0 which was then deployed on five nodes in
our cluster using the docker provided by TigerGraph.

Table 4 shows that ByteGraph has shorter query latency than
TigerGraph for processing all Q1-Q6, even without counting Tiger-
Graph’s long query install time (23-30 seconds). For simple queries,
i.e., Q1-Q3, ByteGraph enjoys the acceleration brought by sorted
edge-tree. For multi-hop traversal queries, i.e., Q4-Q6, ByteGraph
performs much better than TigerGraph due to the high parallelism

Table 4: Single-query latency (inmsec)

System Q1 Q2 Q3 Q4 Q5 Q6
BG 1.97 1.01 0.64 14.66 14.84 18,087.5

TG(install
+execute)

26.1s
+3.6

23.4s
+3.8

26.5s
+2.6

23.7s
+4,652.2

23.9s
+3,440.1

30.7s
+24,991.3

for accessing the edge-trees of visited vertices. TigerGraph exe-
cutes a query within a single machine and pulls the required data
located on other machines, which introduces a large overhead on
distributed computing. We noticed that TigerGraph also provides
another execution mode that allows a query to be concurrently
executed in a cluster. However, this mode is originally designed
to query with a large set of start vertices (e.g., PageRank), while
a query with a few start vertices and multi-hop traversal will be
severely slowed down running this mode.

6.3 Evaluation on Real Production Workload
In Sections 6.1 and 6.2, we only used a smaller graph as the sys-
tems we compared with cannot efficiently handle large graphs at
ByteDance. To illustrate that ByteGraph can process large graphs
efficiently, we report its performance for processing a typical OLSP
workload for 24 hours on a production cluster with 130 nodes (each
with 1 TB RAM) connected with 25 Gbps network, where the graph
data occupies 218 TB on disk.

Figure 11(a) reports the throughput of read and write queries.
The overall throughput can scale from several millions queries
per second (q/s) to more than 30 millions q/s because of the high
parallelism provided by BGS. When the peak throughput is reached,
although the error rate inevitably increases, ByteGraph can keep
less than 0.1% error rate. The average error rate is only 0.002% in
the entire period of 24 hours and ByteGraph achieves a 99.99% SLA.
We also present the latency of read and write queries in Figure 11(b).
There is an obvious spike for the P99 latency of write queries, which
is caused by the increasing throughput of write queries (i.e., the
write throughput increases more than 1 Million q/s). However, the
maximum P99 latency for write query is still low (i.e., less than
60ms) and the average latency is barely affected.

Figure 11(c) reports the memory usage and cache hit rate. The
memory usage is stable thanks to the proper swap and flush fre-
quency (Section 4.1). ByteGraph does not use up all the memory
such that the system has adequate resources when machine failure
happens, even if the cache hit rate is only 92%. Moreover, only

3315



0 6 12 18 24

10

20

30

0.1

0.2

0.3

Elapsed Time (hours)

T
hr

ou
gh

pu
t

(M
q/

s)

E
rr

or
R

at
e

(%
)

Read Write Error Rate

1

0 6 12 18 24

20

40

60

Elapsed Time (hours)

La
te

nc
y

(m
s)

Read-Latency-P99 Read-Latency-Avg
Write-Latency-P99 Write-Latency-Avg

1

0 6 12 18 24
80

85

90

95

100

Elapsed Time (hours)

R
at

io
(%

)

Cache Hit Rate Memory Usage

1

Figure 11: The Throughput, Error Rate, Latency, Cache Hit Rate, and Memory Usage on production workload

0 10 20 30

25

50

75

100

Elapsed Time (minutes)

E
rr

or
R

at
e

(%
)

w/o TP w/ static TP w/ dynamic TP

1

0 10 20 30

600

1,200

1,800

2,400

Elapsed Time (minutes)

La
te

nc
y-

P
99

(m
s)

w/o TP w/ static TP w/ dynamic TP

1

0 10 20 30

250

500

750

1,000

Elapsed Time (minutes)

La
te

nc
y-

Av
g

(m
s)

w/o TP w/ static TP w/ dynamic TP

1

Figure 12: The error rate and latency without Thread Pools (TP), with static TP, and with dynamic TP

30 60 90 120 150 180

250
500
750

1,000

0
Elapsed Time (minutes)

La
te

nc
y(

m
s)

Latency-P99 Latency-Avg

1

30 60 90 120 150 180

25
50
75
100

0

25
50
75
100

Elapsed Time (minutes)

C
P

U
(%

)

C
ac

he
H

it
R

at
e(

%
)

CPU Cache HitRate

1

(a) w/ adaptive secondary edge-trees

30 60 90 120 150 180

250
500
750

1,000

0
Elapsed Time (minutes)

La
te

nc
y(

m
s)

Latency-P99 Latency-Avg

1

30 60 90 120 150 180

25
50
75
100

0

25
50
75
100

Elapsed Time (minutes)

C
P

U
(%

)

C
ac

he
H

it
R

at
e(

%
)CPU Cache HitRate

1

(b) w/o adaptive secondary edge-trees

Figure 13: The latency, CPU usage, and cache hit rate with
and without adaptive secondary edge-trees

130TB×87% =113TB memory is used, which indicates that not all
the graph data is required to process the workload at any time and
less data is loaded into memory with the use of edge-trees.

6.4 Handling Rapid Changes in the Workload
Next we evaluate the effects of two adaptive optimizations in Sec-
tion 4.3.

6.4.1 Dynamic Thread Pools. Weused anOLSPworkload by adding
more queries that require to scan adjacency lists. Figure 12 reports
the error rate and the (average and P99) latency without heavy
request thread pools, with static thread pools, and with dynamic
thread pools. The results show that, if there is no restriction on
heavy requests, the overall error rate can rapidly rise to more than
50% and the P99 latency goes higher than 1 second. If the thread pool
for heavy requests are statically set, the average and P99 latency

resume back to normal. However, the error rate is still unacceptable
since nearly all queries with heavy requests are timeout. Conse-
quently, dynamic thread pools increase the number of threads in
the heavy request thread pool to gain more resources. We observe
that the error rate of dynamic thread pools decrease to only 5% by
squeezing the resources of light requests, and the P99 latency is
higher than static thread pools as more heavy requests succeed.

6.4.2 Adaptive Secondary Edge-Trees. We used an OLSP workload
by adding filters on edge properties for which there is no matched
secondary edge-tree. Figure 13 reports the latency, CPU usage, and
cache hit rate with and without adaptive secondary edge-trees.
When adaptive secondary edge-trees are used, the latency first
significantly increases (767ms at maximum) and then drops back
to acceptable value (46ms on average) after several minutes. In this
period, building the secondary edge-trees is invoked and queued to
wait for the construction. And the CPU usage is not high, because
we restrict the available threads for building the secondary edge-
trees to reduce the affects to normal query execution. Moreover,
when more secondary edge-trees are constructed (i.e., after 120
minutes), the cache hit rate also increases as less data is required
to be kept in memory.

6.5 Availability
In this experiment, we demonstrate the availability of ByteGraph by
inducing machine failure in the cluster. We used an OLSP workload
as high availability is critical for OLSP services in ByteDance. Fig-
ure 14 reports the throughput and (average and P99) latency, where
the time for machine failure and recovery are marked with two
vertical dotted lines. We can observe that although the throughput
instantly drops after the machine failure, the P99 latency increases
for only a short period (i.e., 2 minutes) and the average latency
is insignificantly affected. This is because BGS and BGE are both
stateless and weighted consistent hashing can adjust the hash ring

3316



0 20 40 60
100

110

120

130

140

0

25

50

75

100

Elapsed Time (minutes)

T
hr

ou
gh

pu
t

(K
q/

s)

L
at

en
cy

(m
s)

Throughput Latency-P99 Latency-Avg

1

Figure 14: Throughput and latency during machine failure

to balance the workload. When the machine is recovered, we can
observe a slight throughput dropping due to the cold cache in the
new machine. Due to the adjustment of weighted concurrent hash-
ing, the recovery period lasts longer than the throughput dropping
of machine failure, so that the instant peak throughput would not
be ingested into the new machines and crash them, which provides
more reliability to our system.

7 RELATEDWORK
The fast growth of graph data in recent years has attracted major
cloud vendors to provide their own graph databases, e.g., AWS
Neptune [8], Alibaba GDB [6], and Azure CosmosDB [9]. Alibaba
GDB is a single machine system but provides availability with repli-
cations. It only allows writes on the master replication while other
replications only accept read queries. AWS Neptune distributes read
operators to multiple instances for execution, but write operations
are executed on a single instance. Both systems cannot handle large
scale workloads with high concurrent writes. Azure CosmosDB is
a geographically distributed multi-model database, which provides
multi-master capability by resolving conflicts with last-write-win
policy. However, since CosmosDB stores graph data in a document
store, super-vertices will result in large sized documents causing
high latency during accessing. Facebook’s TAO [14, 19] is a dis-
tributed graph store with horizontal scalability and also provides a
cache layer in memory to achieve low latency. However, TAO stores
vertices and edges in a logical MySQL database with relational ta-
bles and thus requires expensive joins in processing multi-hop
traversal queries.

There are many open source graph databases [3–5, 10]. Agens-
Graph [3] uses a relational DBMS (i.e., PostgreSQL [11]), where
each row represents an edge. ArangoDB [4] stores a graph in a
document store where each vertex/edge is modeled as a document.
Neo4j [10] stores vertices, edges, and vertex/edge properties with
separate records and link them with pointers. Thus, an edge exists
in two double linked-lists that represent the adjacency lists of the
two end vertices, which can incur a large number of disk I/Os and
random access during adjacency list accessing. JanusGraph [5] (suc-
cessor of Titan [2]) uses a wide-column store where each vertex
is represented by a row containing its properties and neighboring
edges. Each property and edge are stored in a cell as key-value
pairs. Edges are sorted with a customized sort key constructed with
the edge label and sortable edge properties, which results in com-
plicated and space-consuming key-value pairs. Among the above
open source graph databases, only JanusGraph is distributed.

A1 [15] and TigerGraph [20] are distributed graph databases that
fully utilize main memory. A1 is an RDMA-based in-memory graph

database built upon FaRM [21, 22], which achieves serializable
graph transaction with Opacity and multi-versioning. Each vertex
contains two edge lists whose elements record the address of the
real edge data (e.g., edge property). A1 requires RDMA atomic
operator to remotely read edge properties if the edge data is not co-
located with the vertex. ByteGraph does not consider remote read
and locally executes read/write in a single instance. TigerGraph
supports massively parallel computation of analytical queries and
achieves low disk consumption with data compression. When the
server of TigerGraph is created, it tries to load the whole graph
into memory, which can achieve low latency and high memory
utilization. If the graph cannot fit into the available memory, the
excess is spilled to disk. Consequently, users should always reserve
memory for the graph data even if the data is not required in query
processing. In contrast, ByteGraph passively loads the required
graph into memory and actively flushes and swaps data out of
memory based on the cluster load.

There are also many impressive research prototypes proposed in
recent years [16–18, 23, 26, 33]. GraphflowDB [26] is an in-memory
graph database targeting primarily analytical subgraph query work-
loads equivalent to select-project-join (SPJ) queries over graph data.
GraphflowDB proposes list-based processor to avoid expensive
data copies on the columnar storage [24], and it also optimizes the
worst-case optimal join by mixing traditional binary joins [30]. As
our workloads include OLSP with high concurrent updating, pure
columnar storage with read-optimized designs are not suitable to
handle such workloads. LiveGraph [33] proposes a graph-aware
data structure, called Transactional Edge Log (TEL), which achieves
sequential scanning on the adjacency lists while supporting trans-
actional updating. However, LiveGraph is not a distributed system,
which has limited scalability to handle large graphs in industry.
Grasper [16] proposes an executionmodel, ExpertModel, with adap-
tive parallelism and tailored optimizations on primitive operators to
accelerate query processing and achieve high resource utilization.
GTran [17] extends Grasper to support distributed transaction with
serializable isolation level and in-memory storage design. How-
ever, these systems generally do not provide fault tolerance and
availability guarantee required at the industry level.

8 CONCLUSIONS
We present ByteGraph, a high-performance distributed graph data-
base that is designed to process OLAP, OLSP and OLTP work-
loads on large scale graphs at ByteDance. We show that ByteGraph
achieves competitive performance compared with Amazon Nep-
tune, Alibaba GDB, and TigerGraph thanks to its high parallelism
for query execution and data accessing. We also demonstrate the
high performance of ByteGraph in terms of scalable throughput,
low latency and low error rate on a massive production graph. In ad-
dition, ByteGraph achieves stable performance under rapid changes
in the workload with its two adaptive optimizations. ByteGraph
also provides good fault tolerance under machine failure.

ACKNOWLEDGMENTS
We thank the reviewers for their constructive comments and sug-
gestions that have helped improve the quality of the paper.

3317



REFERENCES
[1] 2007. Online serving. https://cloud.google.com/vertex-ai/docs/featurestore/

serving-online.
[2] 2015. Titan. https://titan.thinkaurelius.com/.
[3] 2021. AgensGraph. https://bitnine.net/.
[4] 2021. ArangoDB. https://www.arangodb.com/.
[5] 2021. JanusGraph. https://janusgraph.org/.
[6] 2022. Alibaba GDB. https://www.aliyun.com/product/gdb/.
[7] 2022. Apache TinkerPop: Gremlin Query Language. https://tinkerpop.apache.org/

gremlin.html.
[8] 2022. AWS Neptune. https://aws.amazon.com/neptune/.
[9] 2022. Azure Cosmos DB. https://docs.microsoft.com/en-us/azure/cosmos-db/

graph/graph-introduction.
[10] 2022. Neo4j. https://neo4j.com/.
[11] 2022. PostgreSQL. https://www.postgresql.org/.
[12] 2022. RocksDB. http://rocksdb.org/.
[13] Charles Bell, Mats Kindahl, and Lars Thalmann. 2014. MySQL High Availability -

Tools for Building Robust Data Centers, 2nd Edition. O’Reilly. http://shop.oreilly.
com/product/0636920026907.do

[14] Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Dimov,
Hui Ding, Jack Ferris, Anthony Giardullo, Sachin Kulkarni, Harry C. Li, Mark
Marchukov, Dmitri Petrov, Lovro Puzar, Yee Jiun Song, and Venkateshwaran
Venkataramani. 2013. TAO: Facebook’s Distributed Data Store for the Social
Graph. In 2013 USENIX Annual Technical Conference, San Jose, CA, USA, June
26-28, 2013. USENIX Association, 49–60. https://www.usenix.org/conference/
atc13/technical-sessions/presentation/bronson

[15] Chiranjeeb Buragohain, Knut Magne Risvik, Paul Brett, Miguel Castro, Wonhee
Cho, Joshua Cowhig, Nikolas Gloy, Karthik Kalyanaraman, Richendra Khanna,
John Pao, Matthew Renzelmann, Alex Shamis, Timothy Tan, and Shuheng Zheng.
2020. A1: A Distributed In-Memory Graph Database. In Proceedings of the 2020
International Conference on Management of Data, SIGMOD Conference 2020, online
conference [Portland, OR, USA], June 14-19, 2020. ACM, 329–344. https://doi.org/
10.1145/3318464.3386135

[16] Hongzhi Chen, Changji Li, Juncheng Fang, Chenghuan Huang, James Cheng, Jian
Zhang, Yifan Hou, and Xiao Yan. 2019. Grasper: A High Performance Distributed
System for OLAP on Property Graphs. In Proceedings of the ACM Symposium on
Cloud Computing, SoCC 2019, Santa Cruz, CA, USA, November 20-23, 2019. ACM,
87–100. https://doi.org/10.1145/3357223.3362715

[17] Hongzhi Chen, Changji Li, Chenguang Zheng, Chenghuan Huang, Juncheng
Fang, James Cheng, and Jian Zhang. 2022. G-Tran: A High Performance Dis-
tributed Graph Database with a Decentralized Architecture. Proc. VLDB Endow.
15 (2022).

[18] Hongzhi Chen, BowenWu, Shiyuan Deng, Chenghuan Huang, Changji Li, Yichao
Li, and James Cheng. 2020. High Performance Distributed OLAP on Property
Graphs with Grasper. In Proceedings of the 2020 International Conference on
Management of Data, SIGMOD Conference 2020, online conference [Portland, OR,
USA], June 14-19, 2020. ACM, 2705–2708. https://doi.org/10.1145/3318464.3384685

[19] Audrey Cheng, Xiao Shi, Lu Pan, Anthony Simpson, Neil Wheaton, Shilpa
Lawande, Nathan Bronson, Peter Bailis, Natacha Crooks, and Ion Stoica. 2021.
RAMP-TAO: Layering Atomic Transactions on Facebook’s Online TAO Data
Store. Proc. VLDB Endow. 14, 12 (2021), 3014–3027. http://www.vldb.org/pvldb/
vol14/p3014-cheng.pdf

[20] Alin Deutsch, Yu Xu, Mingxi Wu, and Victor E. Lee. 2019. TigerGraph: A Native
MPP Graph Database. CoRR abs/1901.08248 (2019). arXiv:1901.08248 http:
//arxiv.org/abs/1901.08248

[21] Aleksandar Dragojevic, Dushyanth Narayanan, Miguel Castro, and OrionHodson.
2014. FaRM: Fast Remote Memory. In Proceedings of the 11th USENIX Sympo-
sium on Networked Systems Design and Implementation, NSDI 2014, Seattle, WA,
USA, April 2-4, 2014. USENIX Association, 401–414. https://www.usenix.org/

conference/nsdi14/technical-sessions/dragojevi%C4%87
[22] Aleksandar Dragojevic, Dushyanth Narayanan, Edmund B. Nightingale, Matthew

Renzelmann, Alex Shamis, Anirudh Badam, and Miguel Castro. 2015. No
compromises: distributed transactions with consistency, availability, and per-
formance. In Proceedings of the 25th Symposium on Operating Systems Princi-
ples, SOSP 2015, Monterey, CA, USA, October 4-7, 2015. ACM, 54–70. https:
//doi.org/10.1145/2815400.2815425

[23] Ayush Dubey, Greg D. Hill, Robert Escriva, and Emin Gün Sirer. 2016. Weaver:
A High-Performance, Transactional Graph Database Based on Refinable Times-
tamps. Proc. VLDB Endow. 9, 11 (2016), 852–863. https://doi.org/10.14778/2983200.
2983202

[24] Pranjal Gupta, Amine Mhedhbi, and Semih Salihoglu. 2021. Columnar Storage
and List-based Processing for Graph Database Management Systems. Proc. VLDB
Endow. 14, 11 (2021), 2491–2504. http://www.vldb.org/pvldb/vol14/p2491-gupta.
pdf

[25] Xiaowei Jiang, Yuejun Hu, Yu Xiang, Guangran Jiang, Xiaojun Jin, Chen Xia,
Weihua Jiang, Jun Yu, Haitao Wang, Yuan Jiang, Jihong Ma, Li Su, and Kai Zeng.
2020. Alibaba Hologres: A Cloud-Native Service for Hybrid Serving/Analytical
Processing. Proc. VLDB Endow. 13, 12 (2020), 3272–3284. https://doi.org/10.14778/
3415478.3415550

[26] Chathura Kankanamge, Siddhartha Sahu, Amine Mhedhbi, Jeremy Chen, and
Semih Salihoglu. 2017. Graphflow: An Active Graph Database. In Proceedings
of the 2017 ACM International Conference on Management of Data, SIGMOD
Conference 2017, Chicago, IL, USA, May 14-19, 2017. ACM, 1695–1698. https:
//doi.org/10.1145/3035918.3056445

[27] David R. Karger, Eric Lehman, Frank Thomson Leighton, Rina Panigrahy,
Matthew S. Levine, and Daniel Lewin. 1997. Consistent Hashing and Random
Trees: Distributed Caching Protocols for Relieving Hot Spots on the World
Wide Web. In Proceedings of the Twenty-Ninth Annual ACM Symposium on
the Theory of Computing, El Paso, Texas, USA, May 4-6, 1997. ACM, 654–663.
https://doi.org/10.1145/258533.258660

[28] Sandeep S. Kulkarni, Murat Demirbas, Deepak Madappa, Bharadwaj Avva, and
Marcelo Leone. 2014. Logical Physical Clocks. In Principles of Distributed Systems
- 18th International Conference, OPODIS 2014, Cortina d’Ampezzo, Italy, December
16-19, 2014. Proceedings (Lecture Notes in Computer Science), Vol. 8878. Springer,
17–32. https://doi.org/10.1007/978-3-319-14472-6_2

[29] Jianchuan Li, Peiquan Jin, Yuanjin Lin, Ming Zhao, Yi Wang, and Kuankuan Guo.
2021. Elastic and Stable Compaction for LSM-tree: A FaaS-Based Approach on
TerarkDB. In CIKM ’21: The 30th ACM International Conference on Information
and Knowledge Management, Virtual Event, Queensland, Australia, November 1 -
5, 2021. ACM, 3906–3915. https://doi.org/10.1145/3459637.3481913

[30] Amine Mhedhbi and Semih Salihoglu. 2019. Optimizing Subgraph Queries by
Combining Binary and Worst-Case Optimal Joins. Proc. VLDB Endow. 12, 11
(2019), 1692–1704. https://doi.org/10.14778/3342263.3342643

[31] Vahab S. Mirrokni, Mikkel Thorup, and Morteza Zadimoghaddam. 2018. Consis-
tent Hashing with Bounded Loads. In Proceedings of the Twenty-Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA,
January 7-10, 2018. SIAM, 587–604. https://doi.org/10.1137/1.9781611975031.39

[32] Rebecca Taft, Irfan Sharif, Andrei Matei, Nathan VanBenschoten, Jordan Lewis,
Tobias Grieger, Kai Niemi, Andy Woods, Anne Birzin, Raphael Poss, Paul Bardea,
Amruta Ranade, Ben Darnell, Bram Gruneir, Justin Jaffray, Lucy Zhang, and Peter
Mattis. 2020. CockroachDB: The Resilient Geo-Distributed SQL Database. In
Proceedings of the 2020 International Conference on Management of Data, SIGMOD
Conference 2020, online conference [Portland, OR, USA], June 14-19, 2020. ACM,
1493–1509. https://doi.org/10.1145/3318464.3386134

[33] Xiaowei Zhu, Marco Serafini, Xiaosong Ma, Ashraf Aboulnaga, Wenguang Chen,
and Guanyu Feng. 2020. LiveGraph: A Transactional Graph Storage System
with Purely Sequential Adjacency List Scans. Proc. VLDB Endow. 13, 7 (2020),
1020–1034. https://doi.org/10.14778/3384345.3384351

3318

https://cloud.google.com/vertex-ai/docs/featurestore/serving-online
https://cloud.google.com/vertex-ai/docs/featurestore/serving-online
https://titan.thinkaurelius.com/
https://bitnine.net/
https://www.arangodb.com/
https://janusgraph.org/
https://www.aliyun.com/product/gdb/
https://tinkerpop.apache.org/gremlin.html
https://tinkerpop.apache.org/gremlin.html
https://aws.amazon.com/neptune/
https://docs.microsoft.com/en-us/azure/cosmos-db/graph/graph-introduction
https://docs.microsoft.com/en-us/azure/cosmos-db/graph/graph-introduction
https://neo4j.com/
https://www.postgresql.org/
http://rocksdb.org/
http://shop.oreilly.com/product/0636920026907.do
http://shop.oreilly.com/product/0636920026907.do
https://www.usenix.org/conference/atc13/technical-sessions/presentation/bronson
https://www.usenix.org/conference/atc13/technical-sessions/presentation/bronson
https://doi.org/10.1145/3318464.3386135
https://doi.org/10.1145/3318464.3386135
https://doi.org/10.1145/3357223.3362715
https://doi.org/10.1145/3318464.3384685
http://www.vldb.org/pvldb/vol14/p3014-cheng.pdf
http://www.vldb.org/pvldb/vol14/p3014-cheng.pdf
http://arxiv.org/abs/1901.08248
http://arxiv.org/abs/1901.08248
https://www.usenix.org/conference/nsdi14/technical-sessions/dragojevi%C4%87
https://www.usenix.org/conference/nsdi14/technical-sessions/dragojevi%C4%87
https://doi.org/10.1145/2815400.2815425
https://doi.org/10.1145/2815400.2815425
https://doi.org/10.14778/2983200.2983202
https://doi.org/10.14778/2983200.2983202
http://www.vldb.org/pvldb/vol14/p2491-gupta.pdf
http://www.vldb.org/pvldb/vol14/p2491-gupta.pdf
https://doi.org/10.14778/3415478.3415550
https://doi.org/10.14778/3415478.3415550
https://doi.org/10.1145/3035918.3056445
https://doi.org/10.1145/3035918.3056445
https://doi.org/10.1145/258533.258660
https://doi.org/10.1007/978-3-319-14472-6_2
https://doi.org/10.1145/3459637.3481913
https://doi.org/10.14778/3342263.3342643
https://doi.org/10.1137/1.9781611975031.39
https://doi.org/10.1145/3318464.3386134
https://doi.org/10.14778/3384345.3384351

