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ABSTRACT
“Bad” data has a direct impact on 88% of companies, with the average
company losing 12% of its revenue due to it. Duplicates – multi-
ple but different representations of the same real-world entities –
are among the main reasons for poor data quality, so finding and
configuring the right deduplication solution is essential. Existing
data matching benchmarks focus on the quality of matching results
and neglect other important factors, such as business requirements.
Additionally, they often do not support the exploration of data
matching results.

To address this gap between the mere counting of record pairs
vs. a comprehensive means to evaluate data matching solutions,
we present the Frost platform. It combines existing benchmarks,
established quality metrics, cost and effort metrics, and exploration
techniques, making it the first platform to allow systematic explo-
ration to understand matching results. Frost is implemented and
published in the open-source application Snowman, which includes
the visual exploration of matching results, as shown in Figure 1.
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Figure 1: Exploring data matching results in Snowman. This
figure shows the ground truth matches that Examplerun-1 found
and Examplerun-2 did not find.

1 DATA MATCHING
Businesses and organizations rely heavily on structured data in
databases. These databases often contain errors, such as outdated
values, typos, or missing information, leading to large costs and
non-monetary damage [16]. One prominent aspect of inaccurate
data is (fuzzy) duplicates – the presence of multiple but different
records representing the same real-world entity. Beyond sloppy
data entry, duplicates emerge in further situations, in particular
when integrating data from multiple sources. To address the issue
of duplicates, various commercial and research systems to detect
such duplicates have been developed [9, 12].

Systems detecting duplicates are generally referred to as (data)
matching solutions, deduplication solutions, or entity resolution
systems. They can be broadly categorized into two groups. Rule-
based solutions are configured by hand-crafted matching rules to
detect when a pair of records is a duplicate. An example rule in the
context of a customer dataset could state that a high similarity of
the surname is an indicator for duplicates, but a high similarity of
customer IDs is not. Supervised machine learning models, on the
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other hand, are trained by domain experts who label example pairs
from the dataset as duplicate or non-duplicate.

1.1 A Data Matching Benchmark Platform
To find the best matching solution for a specific use case and to help
configure it optimally, different benchmarks for comparing match-
ing results have been developed. Typical data matching benchmarks
consist of a dataset, a ground truth annotation, and sometimes in-
formation on how to evaluate the performance. To answer the ques-
tion of which matching solution is best, all competing matching
solutions are run against the dataset. Then, the results are com-
pared to the ground truth annotation. Finally, performance metrics
scores, such as precision, recall, and f1 score are determined for
each matching solution and contrasted.

While many such benchmarks exist (see Section 2), the com-
munity is lacking a platform to easily (and interactively) compare
the results of running against multiple such benchmarks, or to
easily compare multiple systems or multiple system configurations
against the same benchmark.

Almost all existing matching solution evaluation techniques
focus on the quality of matching solution results. However, other
aspects, such as business factors, also affect their usefulness in
real-world deployment scenarios. Traditional metrics often provide
only a quantitative overview over the performance of matching
solutions. Qualitative analyses, such as behavioral analytics for
matching solutions, are scarce in the matching context – despite
having a high relevance for common use cases, such as fine-tuning
a matching solution. To address these issues, we make the following
contributions to the field of data matching benchmarks, noting that
we do not propose yet another benchmark or further benchmark
datasets, but rather a platform to systematically explore and analyze
data matching results, thus enabling (business) users to more easily
assess and compare their results for any given dataset.

Our extensible data matching benchmarking platform Frost of-
fers both traditional quantitative quality metrics, but adds effort
measurements by aggregating relevant business factors, for exam-
ple purchase costs and deployment type. It includes techniques
to systematically explore and compare matching results, allowing
qualitative inter-system and intra-system inspection. The combina-
tion of traditional quality metrics, soft key-performance-indicators
(KPIs) and exploration techniques allows deep evaluations for the
industrial context. We implemented the majority of Frost in the
open-source application Snowman and prove its practical rele-
vance within the industrial context by demonstrating the usability
of the platform and efficacy of the resulting evaluation insights.

• To suit the enterprise context, Snowman is meant to operate in,
we chose and optimized evaluation algorithms for a completely
portable, self-bundled application stack, which does not require
privileged permissions for installation or execution that might
be difficult to acquire.

• The extensibility of Snowman with additional data import for-
mats as well as new evaluation techniques is an intrinsic part of
its modular architecture.

• Apart from traditional evaluation metrics, Snowman supports
exploration techniques that do not require a ground truth for
industry use cases with datasets lacking a ground truth.

• In a variety of projects at SAP, we were able to observe that
Snowman’s user interface fosters engagement with data match-
ing stakeholders beyond IT. Therefore, we consider it to be the
reference implementation of the ideas presented in Frost and a
starting point for open-source collaboration.

• Snowman does not execute the matching solutions itself, but
takes their results as input, which it then matches against the
ground truth. This allows Snowman to be used quickly in many
different environments with low resource requirements.

1.2 Formal Matching Process
In this section, we define the formal matching process, and intro-
duce abbreviations and variables that we use throughout the paper.

A dataset𝐷 is a collection of records that may contain duplicates.
A record pair is a set of two records {𝑟1, 𝑟2} ⊆ 𝐷 . We denote the set
of all record pairs in 𝐷 as [𝐷]2 = {𝐴 ⊆ 𝐷 | |𝐴| = 2 }. A matching
solution 𝑀 is a function which takes a dataset 𝐷 as input and
outputs a disjoint clustering {𝐶1,𝐶2, ...} of 𝐷 . We call the output of
a matching solution an experiment.

All pairs within a cluster𝐶i are predicted to be duplicates by the
matching solution and called matches. All other pairs in [𝐷]2 are
predicted to be no duplicates and called non-matches. Accordingly,
a different representation for the clustering is a set of all matches
𝐸 ⊆ [𝐷]2. 𝐸 can be seen as a graph with a node for every record
𝑟 ∈ 𝐷 and edges between all record pairs {𝑟1, 𝑟2} ∈ 𝐸 (also called
identity link network [34]). Because 𝐸 represents a clustering of
𝐷 , the graph is transitively closed, ensuring that if 𝑟1 and 𝑟2 are
matches and 𝑟2 and 𝑟3 are matches, 𝑟1 and 𝑟3 are considered to be
matches, too. Nevertheless, some real-world matching solutions
output subsets of [𝐷]2 that are not transitively closed. Although
the closure of such a result set could easily be created, this step
often introduces many false positives [20, 31]. Instead, a clustering
algorithm specific to the use case can be applied [20, 31].

While it is most common to evaluate the performance of match-
ing solutions only via their final results, typical matching solutions
consist of multiple steps [44]. Measuring the performance between
these steps, as supported by Frost, can provide useful insights for
tweaking specific parts of the matching solution and helps to find
bottlenecks of matching performance. A data matching pipeline
typically consists of the following steps:

(1) Data preparation: Segment, standardize, clean, and enrich the
original dataset [40].

(2) Candidate generation: Create subset of candidate pairs that
contains as many true duplicates as possible, for instance using
blocking or windowing [10, 47].

(3) Similarity-based attribute value matching: Compute simi-
larities between the records’ attribute values for each candidate
pair [9, 18].

(4) Decision model / classification: Given the similarities for
each candidate pair, decide which candidate pairs are probably
duplicates [9, 18]. Typically, this step produces a final similarity
or confidence score for each candidate pair. A pair is matched
if its score is higher than a specific threshold. We use the term
similarity to refer to both similarity and confidence.
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(5) Duplicate clustering: Given the set of high probability du-
plicate pairs, cluster the original dataset into disjoint sets of
duplicates [20, 31].

(6) Duplicate merging / record fusion: Merge the clusters of
duplicates into single records [5, 17, 32]
In the following sections, we first discuss related work (Section 2).

Then, we discuss different means for benchmarking, including tra-
ditional quality measures and soft KPIs (Section 3). We introduce
different evaluation techniques that allow for qualitative insights
about matching solutions in Section 4. Finally, we showcase Snow-
man, our implementation of Frost, and present a short study on the
impact of effort measurements in Section 5. A long version of this
paper with further architectural details is available at [29].

2 RELATEDWORK
We outline existing work on benchmarking and exploring matching
solutions. First, we discuss existing benchmarks, then approaches
that yield insights similar to our exploration techniques, and lastly
other benchmark platforms. Please note that reviewing related work
on actual matching solutions, such as JedAI [46] or Magellan [19],
is beyond the scope of this paper, and we refer to corresponding
surveys [9, 45].

2.1 Data Matching Benchmarks
Benchmarks evaluate the performance ofmatching solutions, laying
the foundation for major parts of our benchmark platform Frost.
We discuss benchmark datasets in more detail in Section 3.1. A list
of prominent benchmarks, generators, and polluters is collected
in [44]. Below, we discuss two recent benchmarks that are especially
relevant to Frost.

The Semantic Publishing Instance Matching Benchmark (SPIM-
Bench) consists of a data generator capable of value, structural,
and logical transformations producing a weighted gold standard
and a set of metrics for evaluating matching performance [55]. The
weighted gold standard includes a history of which transformations
were applied to generated duplicates to allow a detailed error anal-
ysis. While SPIMBench is helpful to optimize duplicate detection
within RDF datasets, it cannot be used with relational data that is
common in our industrial context.

Crescenzi et al. propose the flexible schema matching and dedu-
plication benchmark Alaska [14]. The authors profiled their datasets
with traditional profiling metrics and three new metrics for mea-
suring heterogeneity, namely attribute sparsity, source similarity,
and vocabulary size. In work from 2020 Primpeli and Bizer focused
solely on profiling benchmark datasets and grouped 21 benchmarks
according to five profiling metrics, namely schema complexity, tex-
tuality, sparsity, development set size, and corner cases [49]. Such
profiling metrics allow for better comparability of quality metrics
from different benchmarks because the profiled factors can be con-
sidered. Moreover, profiling metrics that measure the difficulty or
heterogeneity of datasets are a crucial step towards finding repre-
sentative datasets for a given matching task when no ground truth
annotations exist.

Frost supports a wide range of profiling metrics for measuring
how similar a benchmark dataset and a real-world dataset are (see
Section 3.1.3). Additionally, we use the notion of attribute sparsity

proposed by Crescenzi et al. for classifying errors of matching
solutions (see Section 4.4).

2.2 Exploration Opportunities
There has been surprisingly little work on techniques to system-
atically explore and understand matching results. SIMG-VIZ in-
teractively visualizes large similarity graphs and entity resolution
clusters [52], helping users to detect errors in the duplicate cluster-
ing stage. This is useful for improving the clustering algorithm and
can give an overview on the matching result. Yet, only a limited
number of possible errors are highlighted and large graphs easily
overwhelm users. To counteract these problems, we propose tech-
niques that help users to detect errors within the decision model.
Specifically, we reduce the amount of information presented to the
user by filtering out irrelevant data, sorting it by interestingness
(Section 4), and enriching it with useful information about the error.

NADEEF/ER introduces additional investigation techniques for
the rule-based approach NADEEF [24]. NADEEF/ER offers users a
complete suite for rule-based entity matching, including an explo-
ration dashboard to analyze matching results, for example the influ-
ence of each individual rule on the result. Compared to NADEEF/ER,
Frost uses a more generic approach to evaluate matching results,
as it supports a broad variety of matching solutions.

Matching solutions utilizing active learning, such as proposed
by Sarawagi and Bhamidipaty [54], try to minimize review cost by
asking human annotators only about uncertain matching decision;
they are shown only uncertain matching decisions, and thus, they
can understand weaknesses of the matching solution. Qian et al.
introduced SystemER [50] as an active-learning-based entity res-
olution pipeline that uses solely rules comprehensible to humans,
thus explaining individual matching decisions.

2.3 Benchmark Platforms
In [59], the authors described an early benchmark platform for XML
data, measuring effectiveness (matching quality) and efficiency (run-
time). Frost integrates both effectiveness and efficiency measure-
ments, but is not limited to them.

A new measurement dimension, effort, was proposed in the
benchmark platform FEVER [38]. Next to quality metrics, such as
precision and recall, FEVER allowsmeasuring the effort to configure
a matching solution run by specifying labeling and parametriza-
tion effort. These KPIs can be compared in effort-metric diagrams,
answering questions such as “How much effort is needed to reach
80% precision?” Frost builds on this idea by integrating business
requirements to support the decision-making process of selecting a
matching solution. For instance, it allows the comparison of match-
ing solutions based on context-sensitive effort measurements, but
also on further KPIs, such as deployment type and costs.

In later work, the authors used FEVER to evaluate different
matching solutions. They found that “some challenging resolution
tasks such as matching product entities from online shops are
not sufficiently solved with conventional approaches based on the
similarity of attribute values” [39]. This insight emphasizes the
need for a comprehensive benchmark platform and the ability to
systematically explore matching results.
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Another benchmark platform, GERBIL, is based on the BAT
framework [13] and provides 46 datasets, 20 matching solutions
and eight tasks [51]. New matching solutions can be integrated by
conforming to a REST API. Afterwards, they can be evaluated with
the available datasets and tasks. The importance of such a platform
is outlined by the fact that the GERBIL community already carried
out more than 24,000 evaluations with GERBIL. While GERBIL is
useful for evaluating quality metrics in different scenarios, it does
not provide a way to compare soft KPIs or to explore matching
results. Thus, we see it as very useful for finding the best among a
selection of matching solutions. Frost also provides a selection of
these quality metrics. However, it integrates evaluations allowing
developers to gradually improve their matching solutions, such as
metric-metric diagrams (see section 4.5.1), as well.

Some data matching execution frameworks also work as (par-
tial) benchmark platforms. DuDe is a modular duplicate detection
toolkit [21], consisting of six components to facilitate the entire
matching process. One of those components, the postprocessor, can
evaluate the performance of the matching solution in each run. For
this purpose, metrics, such as precision and recall, are calculated.
This reduces the feedback loop between running a matching solu-
tion and interpreting performance results, and allows comparing
different experiments performed with DuDe. On the other hand,
DuDe does not support general comparability between matching
solutions, because many matching solutions use other matching
frameworks or do not use a framework at all. A newer approach to
this concept is the weakly supervised Panda platform [60], which
uses user-created labelling functions to solve a given matching task.
It allows for constant feedback on the performance of a certain
labeling function and also offers debugging tools. Nevertheless,
its use-cases are rather limited, as it also does not allow general
comparability between arbitrary matching solutions.

3 BENCHMARKING MATCHING SOLUTIONS
Frost is a platform that supports users in evaluating their match-
ing solutions using arbitrary data matching benchmarks. A data
matching benchmark typically consists of

• One or more dirty datasets containing duplicates. These dupli-
cates can be within, but also between, the individual datasets
(intra-source vs. inter-source duplicates).

• A gold standard modeling the ground truth, i.e., the correct
duplicate relationships between the given data records.

• A set of quality metrics to evaluate the given matching solutions.
These can be metrics that compare these solutions’ results with
the gold standard, such as recall or precision [42], but also
metrics that measure some inherent properties of these results,
e.g., the number of pairs that are missing to transitively close
the set of discovered matches or some soft KPIs, such as the
effort that is needed to compute them.

3.1 Benchmark Datasets
A good benchmark should meet several conditions. (i) Most im-
portantly, its ground truth annotation should be as correct and
complete as possible (see Section 3.1.1). (ii) Second, to generalize
well, its data and error patterns should be real or at least realistic

(see Section 3.1.2). (iii) Third, the dataset should contain some so-
called corner cases [49] to push matching solutions to their limits
and reveal their quality differences. (iv) Finally, the dataset must
be compatible with the objectives of the evaluation. For example,
evaluating a matching solution focused on scalability requires a
large dataset with millions of records, while the evaluation of a
clustering algorithm requires a dataset with duplicate-clusters of
various sizes.

3.1.1 Gold Standards. To measure the correctness of an experi-
ment, we need a reference solution against which we can compare
the result of the experiment. This solution is also called gold stan-
dard or ground truth and should accurately reflect the true state of
the real-world scenario as defined by the use case (e.g., matching
by household vs. by person).

The truth about the correct duplicate relationships between the
records of a dataset 𝐷 can be captured in different ways. The most
common approach is to store a list of all pairs of duplicate records
(or their IDs respectively) in a separate file. The gold standard,
however, typically represents complete knowledge about the correct
duplicate relationships and thus corresponds to a final matching
solution [42], i.e., it is a clustering of 𝐷 where every record belongs
to exactly one cluster. Thus, the gold standard can also be modeled
within the actual dataset by adding an extra attribute that associates
each record with its corresponding cluster. Frost supports both
formats, making importing new gold standards as easy as possible.

3.1.2 Reference Datasets. Many users who need a benchmark plat-
form have their own use cases with their own datasets. Since the
true duplicate relationships within these datasets are usually un-
known (this is, after all, the reason matching solutions are applied),
the performance of a matching solution cannot be evaluated on
the whole dataset of the use case itself. Instead, the evaluation is
frequently performed on a small subset of the dataset or on a similar
reference dataset (see Section 3.1.3). Sometimes, as is also the case
within SAP, manually annotated datasets from previous cleaning
processes are available and can be reused.

Reference datasets can originate from the real world or can be
artificially created [44]. In real-world datasets, the true duplicate
relationships need to be labeled by domain experts. The data match-
ing community has compiled several such datasets over the past
few decades, which are publicly available via various sources, such
as the Magellan Data Repository [15]. The artificial creation of test
data can be automated. Examples of such test data generators are
TDGen [2], GeCo [11], LANCE [56], BART [1], or EMBench++ [35].

Our reference implementation Snowman already includes a num-
ber of popular benchmark datasets, such as Cora and CDDB [21].
However, to allow easy use of any dataset (whether real-world or
artificially created), it also supports an easy creation of custom
importers (see Section 5.1).

3.1.3 Finding a Representative Benchmark Dataset. Researchers
usually want to test their newly developed matching solutions
under different conditions, and therefore like to use benchmark
datasets that differ in their characteristics. To achieve this, they
either create these artificially with the help of generators or make
use of the numerous datasets provided by the community. In con-
trast, practitioners usually do not develop new matching solutions,
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but must use an existing one to detect all duplicates within their
use case-specific datasets. Thus, while researchers want to eval-
uate a particular solution on different datasets, practitioners aim
to evaluate different solutions on a particular dataset. Therefore,
practitioners cannot just take any benchmark dataset for their eval-
uation, but strive to find one that is similar to their use case dataset
so that they can estimate the performance of different matching
solutions on the latter by evaluating them on the first. Logically,
the performance estimated in this way is only meaningful if both
datasets pose similar challenges to the matching solutions. This
makes finding a suitable benchmark dataset difficult.

To assist users in this search process, Frost includes a list of
features impacting matching difficulty and provides decision ma-
trices to compare a given use case dataset with several benchmark
datasets based on these features. It remains to the experts to deter-
mine how important the individual features are for their use case,
and to select the benchmark dataset that they think is best suited
for their evaluation goals. In addition to the features proposed
by Crescenzi et al. [14] and Primpeli et al. [49], such as sparsity,
textuality, and schema complexity, additional useful features are:

• Domain: The domain of both datasets should match or be
closely related.

• Record count: Draisbach and Naumann showed that dataset
size has influence on the optimal similarity threshold [22]. Thus,
using a benchmark dataset with similar size compared to the
use case dataset may yield more representative results.

• Number and size of duplicate clusters: The amount and
size of duplicate clusters in the ground truth annotation of the
benchmark dataset should closely resemble that of the use case
dataset. Because the ground truth annotation for the use case
dataset is unknown, these numbers have to be estimated. Heise
et al. developed a method for this estimation [33].

• Matching solution: The matching solution itself may provide
valuable insights into how similar both datasets are. Relevant
features include (i) metrics for approximating quality without
requiring a ground truth annotation (see Section 3.2.3), (ii) the
similarity of the clusterings of the matching solution on use
case and benchmark dataset, and (iii) the number of pairs from
the transitive closure that are missing in the solution’s classifi-
cation results on both datasets. Note that some of these metrics
require normalization if certain properties of the datasets, such
as record count, do not match.

• Vocabulary similarity: Vocabulary similarity VS quantifies
the similarity of the vocabularies of two datasets. Similar vocab-
ularies might cause similar behavior of the matching solution.
We calculate this similarity using the Jaccard coefficient:

VS(𝐷1, 𝐷2) :=
|vocab(𝐷1) ∩ vocab(𝐷2) |
|vocab(𝐷1) ∪ vocab(𝐷2) |

where 𝐷1, 𝐷2 are datasets and vocab(𝐷𝑖 ) is the vocabulary-set
of 𝐷𝑖 , tokenized by whitespace.

3.2 Measuring Data Matching Quality
When ground truth annotations are available, a multitude of differ-
ent metrics can be calculated. While some are generally used and
considered essential, others suit specific needs. To be universally

Positive Negative
Predicted
Positive 𝐸 ∩𝐺 (TP) 𝐸 \𝐺 (FP)

Predicted
Negative 𝐺 \ 𝐸 (FN) ( [𝐷]2 \ 𝐸) \𝐺 (TN)

Figure 2: ConfusionMatrix.Comparison of experiment 𝐸 against
ground truth annotation 𝐺 on dataset 𝐷 as sets of pairs.

useful but highly adaptable, Frost focuses on many well-knownmet-
rics, but can be extended easily by any other metrics. We distinguish
between pair-based metrics and cluster-based metrics.

3.2.1 Pair-based Metrics. To compare an experiment 𝐸 against
a ground truth annotation 𝐺 of a dataset 𝐷 as sets of pairs, the
confusion matrix can be defined as shown in Figure 2.

This matrix allows the calculation of all metrics known from the
context of binary classification. Pair-based metrics do not require
the identity link network of experiment 𝐸 to be transitively closed.
Therefore, they can be used to calculate matching quality even at
intermediate stages of the matching pipeline. For example, pair-
based metrics allow measuring the performance of the candidate
generation phase. Additionally, they directly contrast the quality
of matching solutions that return clusters with matching solutions
that return pairs (and do not necessarily output transitively closed
identity link networks) [59]. Note that pair-based metrics implicitly
give more weight to larger clusters, as each pair of records within
a cluster is counted towards the result.

Another weakness of pair-based metrics is the fact that in the
real-world there is almost always a large imbalance between true
positives and true negatives (called class imbalance) [9]. While a
dataset of𝑛 tuples usually contains only𝑂 (𝑛) duplicate pairs, it may
consist of up to𝑂 (𝑛2) non-duplicate pairs. Metrics that judge upon
correctly classified non-duplicates (true negatives) are therefore
considered unreliable. For example, the accuracy ofmatching results
compared to a ground truthmight be close to 1, evenwhen all record
pairs were classified as non-duplicates.

Frost supports a wide selection of pair-based metrics considering
the above observations including the common precision, recall and
f1 score [42], but also more special ones, such as the Reduction
Ratio [37], the f* score [30], the Fowlkes-Mallows index [26], and
the Matthews correlation coefficient [8].

3.2.2 Cluster-based Metrics. Cluster-based metrics are most of-
ten computed using similarities between clusters of the ground
truth and the experiment [3, 42, 43]. An advantage of cluster-based
metrics is that they are immune to the class imbalance described
above. On the other hand, they cannot be used to directly evaluate
matching solutions that produce non-transitively closed sets of
matches [59]. For example, the output of intermediate stages of a
matching pipeline is usually not clustered.

Frost utilizes several prominent cluster-based metrics including
the closest-cluster-f1 score [4], the Variation of information [41]
and the Generalized merge distance [42].

3.2.3 Evaluating Quality Without Ground Truth. In many real-
world use cases, labeled data is not available. Frost also supports
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metrics and evaluation strategies that try to estimate matching
quality on real-world datasets without ground truth annotations:
• Idrissou et al. show that redundancy in identity link networks
correlates with high matching quality [34]. Interestingly, their
experiments show a “very strong predictive power of [. . . their]
𝑒Q metric for the quality of [. . . identity link networks] when
compared to human judgement” [34].

• Theminimumnumber of pairs thatmust be added to or removed
from the set of detected matches for it to be transitively closed
is another relevant metric. The larger this number, the more
inconsistent the proposed matches.

• Duplicate records are typically closer to each other than to
other records. Thus, the compactness of the individual clusters
and the sparsity of their local neighborhoods as proposed by
Chaudhuri et al. [7] can estimate the quality of the whole match-
ing result. To calculate compactness and sparsity, however, we
need similarity scores between the individual records provided
by the matching solution for both matches (compactness) and
close non-matches (sparsity).

• If the set of detected matches is not transitively closed, we
can achieve this closeness by applying several clustering algo-
rithms [20, 31], such as maximum clique clustering or Markov
clustering. Here we can assume that the more similar the re-
sulting clusterings are, the more consistent are the initially
discovered matches. Again, many clustering algorithms (e.g.,
Markov clustering) require similarity scores for the matches.

• We can compare the matching result with those of other match-
ing solutions applied to the same dataset. The consensus on an
individual matching decision (match or non-match) is a good
indicator on its correctness [58]. Thus, the total number of de-
viations from the majority votes can be used to estimate the
quality of the whole matching result.
Many of these aspects can be used not only to calculate a met-

ric, but are predestined to guide users in the exploration of their
matching results, e.g., by presenting record pairs that are likely
misclassified by their solution (false positive or false negative). We
describe these exploration techniques in Section 4.

3.3 Soft KPIs: Effort and Cost
Every matching solution has different advantages and disadvan-
tages and requires a different type of configuration. As an exam-
ple, supervised machine learning approaches need training data,
whereas rule-based approaches need a set of rules. When decid-
ing which matching solution to use for a specific use case, these
properties are of importance, as they influence how expensive and
time-consuming it is to employ the solution. To assist the deci-
sion process, Frost includes a benchmark dimension for soft key
performance indicators (KPIs), which models such business aspects.

The main goal of these soft KPIs is to provide users a compara-
ble overview of relevant, non-performance properties of matching
solutions and experiments. Most of these KPIs model the human
effort (i.e., the amount and complexity of work) necessary to per-
form a specific task. While many non-effort KPIs are objective and
therefore easily comparable, effort is subjective and has to be esti-
mated. People with varying skills often have different opinions on
how long it takes to configure a matching solution. Therefore, we

measure such effort using two variables: (i) The amount of time an
expert needs to finish the task (HR-amount), and (ii) the expert’s
skill level from 0 (untrained) to 100 (highly skilled). HR-amount and
expertise are interdependent. When comparing two persons with
different expertise, usually, the person with more expertise is faster.
Chatzoglou and Macaulay state that low experience is an indicator
for increased time and cost, and that experience is considered an
important factor for productivity [6]. Expertise is typically related
to pay level. Therefore, combining HR-amount and expertise yields
a rough estimation of the monetary cost of performing the task.

The soft KPIs supported by Frost can be categorized into three
classes:

• Lifecycle Expenditures: One important business aspect is
the expenditure for integrating and operating a matching solu-
tion over its entire life-cycle. Based on life-cycle cost analysis
(LCCA) [23], Frost supports several soft KPIs to represent the
different product phases, such as the general costs of the life-
cycle or the effort required to get the matching solution ready
for production within a company’s ecosystem and configure the
matching solution for its particular use case, where we distin-
guish between domain-specific configurations (e.g., the manual
labeling of training data) and technique-specific configurations
(e.g., the selection of algorithms).

• Categorical Soft KPIs: Apart from lifecycle expenditures,
there are a few more aspects relevant for businesses: These
include the (i) development types (e.g., on-premise or cloud-
based), (ii) interfaces (e.g., GUI, API, CLI), and (iii) techniques
(e.g., rule-based, clustering, or probabilistic decision models)
supported by the given matching solution.

• Soft KPIs of Experiments: Frost supports measuring and
evaluating soft KPIs on a per experiment basis. This includes
the effort needed to set up the experiment (e.g., acquisition of
suitable test data) and the runtime that the matching solution
required to complete the experiment.

The underlying effort and cost values need to be provided by the
users. However, Frost helps manage these numbers beyond single
experiments and supports calculating, comparing and evaluating
all the aforementioned soft KPIs that are based on these numbers.
Frost supports two different evaluation techniques for soft KPIs.
On the one hand, it provides a decision matrix including all above
metrics side by side. Importantly, this decision matrix also includes
quality metrics to provide a holistic view of the attractiveness of
the compared solutions. On the other hand, Frost provides users
the ability to aggregate metrics. For example, to estimate costs, the
effort-based metrics can be converted into costs as described above
and added to general costs. Because this aggregation depends on
the use case, Frost does not pre-define aggregation strategies, but
provides a framework for aggregating soft KPIs and quality metrics
into use case specific KPIs.

As proposed and used by Köpcke et al. [38, 39], Frost aids users
in analyzing soft KPIs for experiments with a diagram-based ap-
proach. This helps answer questions, such as how much effort is
needed to achieve a specific metric threshold (e.g., 80% precision),
whether increased runtime yields better results, or how good a
matching solution is out-of-the-box versus how much effort it takes
to improve the results. The diagram is especially interesting when
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experiments frommultiple matching solutions are compared. Evalu-
ations thereby become competitive and allow discovering different
characteristics of the matching solutions.

4 EXPLORING DATA MATCHING RESULTS
The general workflow for improving matching solutions and arriv-
ing at a sufficient configuration is usually iterative. Thus, after one
run has finished, its results need to be analyzed to gain insights
about the solution’s behavior. Afterwards, the matching solution
can be refined accordingly and re-run. As motivated in Section 1.2,
we present structured approaches to explore data matching results.
Specifically, we reduce the amount of information presented to the
user by filtering out irrelevant data, sorting it by interestingness,
and enriching it with useful information about the type of error.
Finally, we introduce diagram-based evaluations.

4.1 Set-based Comparisons
Manual inspection of experimental results can be a poor experience.
As an example, some output formats consist solely of identifiers
and thus require to be joined with the dataset to be helpful. Addi-
tionally, only limited information can be extracted by looking at
results side-by-side; in practice usually more than two result sets are
compared. A common use-case is to contrast multiple runs of the
same matching solution with each other, or to evaluate differences
between two distinct solutions and a ground truth.

Frost supports a generic set-based approach to result evaluation
that enriches identifiers with the actual dataset record. The set op-
erations intersection and difference can describe all partitions of the
confusion matrix, as introduced in Section 3.2.1. As an exemplary
evaluation, consider two result sets 𝐸1, 𝐸2 ⊆ [𝐷]2, where 𝐸2 serves
as ground truth. The subset of false positives is defined as the set of
elements in 𝐸1 that are not part of the ground truth 𝐸2, or simply
𝐸1 \ 𝐸2. While the confusion matrix is limited to evaluating binary
classification tasks with two result sets, the generic approach can
compare multiple result sets.

As an intuitive visualization technique, Frost makes use of Venn
diagrams. When 𝑛 experiments are compared, these diagrams de-
scribe all

(︁𝑛
2
)︁
possible subsets visually. A disadvantage with Venn

diagrams is that they get very complex for larger numbers of sets.
Venn diagrams of more than three sets need to use geometric shapes
more advanced than circles [53]. Set-based comparisons and Venn
diagrams in particular can help to answer a variety of evaluation
goals, such as:
• Compare two matching solutions’ result sets against a ground
truth to discover common pairs. This evaluation can easily be
visualized with circle-based Venn diagrams.

• Find shortcomings or improvements of a newmatching solution
compared to a list of proven solutions by selecting all duplicate
pairs only the new solution detected.

• Create an experimental ground truth [58] from the intersection
of multiple experiments.
Because exploration is supposed to be interactive, an implemen-

tation should provide vivid Venn diagrams. Clicking on regions
should allow selecting the corresponding set intersection. Thereby,
the desired configuration can be composed easily according to its
visual representation.

4.2 Pair Selection Strategies
While set-based comparisons are useful on their own, real-world
datasets can contain millions of records, making it unfeasible to
examine all pairs in a set. Therefore, strategies to reduce the number
of pairs shown are crucial. Frost supports a wide range of selection
techniques to highlight relevant pairs which can be used separately
or as a composition according to the current use case.

4.2.1 Pairs around the Threshold. For matching solutions that pro-
vide a meaningful similarity threshold, an easy section of the result
to further investigate is located close to the similarity threshold,
as it includes information on border cases. Pairs in this section are
usually considered uncertain, as a slight shift of the threshold may
change their state. Nevertheless, they still yield helpful insights
about what is especially difficult for the matching solution. To se-
lect 𝑘 pairs, one can either choose 𝑘

2 pairs above and below the
threshold or based on a certain proportion. For instance, one inter-
esting proportion is the ratio of incorrectly classified pairs above
the threshold to below the threshold.

4.2.2 Incorrectly Labeled Outliers. Another group of interesting
pairs lies further away from the threshold. For example, one could
evaluate why the matching solution failed by searching for a com-
mon “misleading” feature among the selected pairs. Therefore, we
allow selecting incorrectly labeled pairs that are the furthest away
from the threshold.

4.2.3 Percentiles with Representatives. Sometimes, the goal is to get
an overview over the matching quality before diving into details.
For this, we support finding representative pairs from all parts
of the result set. Conceptually, this strategy sorts result sets by a
similarity score and then splits them into smaller partitions. Each
of these partitions is then reduced to a few representative pairs that
represent the matching solution’s behavior within this partition.

Let 𝐸 be a result (sub)set with𝑚 pairs that is split into 𝑘 equally-
sized partitions. To sample 𝑏 representative pairs for each partition,
different choices exist:

• Random sampling: 𝑏 pairs are sampled randomly from each
partition. While this technique is unbiased, it may also only
yield uninteresting pairs and thereby no helpful insights.

• Class-based sampling: For a partition with 𝑘T correctly and
𝑘F incorrectly classified pairs, we randomly sample 𝑏 ·𝑘T /(𝑘T +
𝑘F ) correctly and 𝑏 · 𝑘F/(𝑘T + 𝑘F ) incorrectly labeled pairs.
Thereby, we make sure to weigh the numbers of pairs according
to the algorithms performance.

• Quantile sampling: Alternatively, 𝑏 pairs can be sampled by
selecting 𝑏 quantiles, again based on the similarity score. For
𝑏 = 5, this would mean to select quantiles 0, 0.25, 0.5, 0.75, and
1. This technique has the advantage of unbiasedly representing
the different parts of the partition.

Additionally, we can label each partition with its confusion ma-
trix and metrics. Thus, users can focus on those partitions with high
error levels. A partition with few to no incorrectly labeled pairs
is considered to be a confident section. In contrast, a section with
many false positives and/or false negatives is very unconfident, and
therefore deserves more attention.
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4.2.4 Plain Result Pairs. As outlined in Section 1.2, Frost requires
result sets to be transitively closed. On the one hand, this can
lead to more realistic metrics. But on the other hand, it can also
enlarge small result sets to a very large number of pairs and thereby
possibly introduces a substantial number of false positives. Thus,
Frost includes a selection strategy that will hide all pairs that were
added by a clustering algorithm from a given result subset. What
remains are all pairs that were originally labeled by a matching
solution. To enable this, Frost requires information on which pairs
were added during the clustering process and which were labelled
by the matching solution itself.

4.3 Sorting Strategies
Besides reducing the result sets to smaller subsets, Frost also sup-
ports to sort pairs by their interestingness within a given subset.
When relevant pairs are shown first, developers can gain insights
more quickly to improve the matching solution’s performance on
a given dataset. The usefulness of the sorting procedure varies be-
tween strategies and use case. Below, we discuss several measures
of interestingness of record pairs.

4.3.1 Similarity Score. A common score to rank any set of pairs is
the similarity of a pair’s records. Whenever similarity values are
available for all pairs, this technique offers a view on the data from
the matching solution’s perspective.

4.3.2 Column Entropy. We also define independent scores that
were not part of a matching solution’s output. For each token 𝑡

within a given cell, let prob𝑡 be its occurrence probability within
the cell and columnProb𝑡 the probability within the column. The
cell entropy is calculated by:∑︂

token 𝑡
prob𝑡 · −𝑙𝑜𝑔(columnProb𝑡 )

where the second factor describes a token’s information content
within its column. This formula is close to the original definition of
entropy by Shannon [57], but is applied column-wise. For a given
pair 𝑝 = {𝑟1, 𝑟2}, we can calculate its entropy as the sum of all cell
entropies of both records. Pairs with a particularly high entropy
score contain many rare tokens and are therefore expected to be
easier to correctly classify. Depending on dataset and matching
solution, wemay observe a divergence in the distribution of entropy
among the confusion matrix. If not, we can still use entropy as a
score to sort pairs within a subset of the result set(s).

4.4 Error Analysis
To better understand why a pair was misclassified by a certain
matching solution, one could analyze why a similar pair was la-
belled correctly. Thereby, one can gain insights on why the match-
ing solution came to a false conclusion and find errors within the
decision model. Frost allows enriching a misclassified pair 𝑝f =

{𝑒f ,1, 𝑒f ,2} with a correctly classified pair 𝑝t = {𝑒t,1, 𝑒t,2}. We search
for 𝑝t by considering only correctly classified pairs and selecting
the one which is most similar to 𝑝f . We describe the similarity
between the pairs 𝑝f and 𝑝t with vectors

v𝑑𝑖𝑟𝑒𝑐𝑡 =
(︃
𝑠𝑖𝑚(𝑒f ,1, 𝑒t,1)
𝑠𝑖𝑚(𝑒f ,2, 𝑒t,2)

)︃
and v𝑐𝑟𝑜𝑠𝑠 =

(︃
𝑠𝑖𝑚(𝑒f ,1, 𝑒t,2)
𝑠𝑖𝑚(𝑒f ,2, 𝑒t,1)

)︃

Figure 3: Precision-Recall Curve. This diagram, taken from our
implementation of Frost (Snowman, Section 5), plots recall against
precision for a given set of similarity thresholds.

To compare these vectors with each other, we convert each one
into a scalar distance measure. For this, the Minkowski metric with
𝑞 ∈ [1, 2] is used against 0⃗ as the reference point:

distance(v) = 𝐷 (v, 0⃗) = ( |v1 − 0|𝑞 + |v2 − 0|𝑞)
1
𝑞

For 𝑞 = 1, this equals the Manhattan distance and for 𝑞 = 2 the
Euclidean distance. It depends on the user to choose 𝑞 ∈ [1, 2]
depending on the use-case. Finally, we define the distance score of
𝑝t against 𝑝f as

score = max{distance(v𝑑𝑖𝑟𝑒𝑐𝑡 ), 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (v𝑐𝑟𝑜𝑠𝑠 )}

Whichever candidate pair 𝑝t scores highest is then selected.
To receive best results, all possible pairs should include a sim-

ilarity score. Since this would require the matching solution to
compare 𝑂 (𝑛4) values for a dataset of size 𝑛, a possible extension
to Frost could be to calculate a simple distance measure for a set of
promising pairs internally.

4.5 Diagram-based Exploration
All strategies so far are for set-based comparisons and either limit
the number of pairs shown (Section 4.2), sort them (Section 4.3) or
add additional information (Section 4.4). Here, we introduce a set of
diagrams that aid in understanding a matching solution’s behavior.

4.5.1 Metric/Metric Diagrams. For matching solutions that return
similarity scores, one objective is to find a good similarity thresh-
old. Frost utilizes metric/metric diagrams for this objective. Those
diagrams compare two quality metrics against each other for a
given set of similarity thresholds, and each data point is based on a
different similarity threshold. A commonly known diagram is the
precision/recall curve (see Figure 3). With it, one can visually ob-
serve which point (and thereby similarity score) yields the best ratio
between both metrics. Another well-known diagram is the ROC
curve [28] plotting sensitivity (also: recall) and specificity against
each other. This may not be suitable for every use case, though,
as specificity depends on the count of true negatives. However,
depending on the shape of the curve, these diagrams may yield
insights upon both a good similarity threshold and the reliability
of the matching solution. Next to using metric/metric diagrams in
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isolation, multiple diagrams between multiple matching solutions
can be compared for competitive insights.

A limitation of this technique is that it heavily depends on how
many pairs have a similarity score assigned. In practice, metrics
sampled at similarity scores significantly lower than the similarity
threshold of the matching solution may not be representative be-
cause pairs with such low similarity scores are often excluded from
the result set.

4.5.2 Attribute Sparsity. As missing attribute values are known to
influence and complicate matching tasks [14, 48, 49], we want to
further investigate which attributes precisely affected a matching
solution’s performance most. Attribute Sparsity as introduced by
Crescenzi et al. measures how often attributes are, in fact, populated
within a given dataset [14]. Thereby, the authors profile a given
dataset’s difficulty together with additional profiling dimensions.
Since we aim to profile a matching solution’s result set instead, we
define a metric that measures the influence of null-valued attributes
by the count of incorrectly assigned labels as follows: Let 𝐷 be a
dataset and 𝑎 be an attribute of 𝐷 . We define nullCount(𝑎) as the
count of pairs in [𝐷]2 where at least one record of the pair is null in
attribute 𝑎. Additionally, we define falseNullCount(𝑎) as the count
of incorrectly classified pairs in nullCount(𝑎) and nullRatio(𝑎) as:

nullRatio(𝑎) = falseNullCount(𝑎)
nullCount(𝑎)

In contrast to the raw 𝑛𝑢𝑙𝑙𝐶𝑜𝑢𝑛𝑡 , immoderate amounts of null
occurrences within an attribute do not bias the 𝑛𝑢𝑙𝑙𝑅𝑎𝑡𝑖𝑜 . Calculat-
ing the metric for all attributes 𝑎 in𝐷 yields a statistical distribution.
Graphical representations that show scores for discrete buckets,
such as bar charts, support comparing measured scores. Thereby
we can observe the following: attributes with high nullRatio scores
are statistically highly relevant for the matching decision as their
absence could be related to many incorrectly assigned labels [49].
For instance, we observed that the ratio reveals a high significance
for the attributes author and title in the Cora dataset [21] for the
Magellan matching solution [36].

If the revealed significant attributes do not match the expectation,
this likely comes down to one of two reasons:
• Semanticmismatch: A semanticmismatch exists if thematch-
ing solution weighs attributes heavily that are semantically
irrelevant for a matching decision. For instance, a matching
solution learned to weigh attributes 𝑏 and 𝑐 more significantly
while 𝑎 and 𝑏 are more important in reality. A semantic mis-
match is an indication that the provided rule set or the learned
network’s weights are not consistent with the domain of the
given dataset.

• Material mismatch: A material mismatch exists if the statis-
tically assumed significance of attributes is not adequate for the
underlying dataset. For instance, a matching solution weighs
attributes 𝑎 and 𝑏 while the underlying dataset is often null
in these attributes. This mismatch might occur when a match-
ing solution is used on another dataset than it was initially
optimized for (for example due to transfer learning).
A downside is that nullRatio relies on interspersed null values

within the dataset 𝐷 and a meaningful and sophisticated schema.
Such a schema contains several attributes that provide meaningful

information, for example street and city split instead of combined
in a single address field. For instance, the Cora dataset fulfills the re-
quirements with an average attribute sparsity of 0.58 and a schema
with 17 attributes [21].

In conclusion, the exploration of nullRatio allows insights into
the matching solution’s handling of null values.

4.5.3 Attribute Equality. Similar to attribute sparsity, Frost allows
investigating the influence of equal attribute values on the match-
ing process, too. Equal attribute values can indicate a duplicate
pair, although equality in one attribute is usually not a sufficient
criterion. For instance, while attributes, such as the person’s name,
may be sufficient for a match, others, such as post code, may not.
Therefore, Frost includes attribute equality as a dimension to sta-
tistically analyze which equal attributes are related to incorrectly
assigned labels significantly often.

Let 𝐷 be a dataset and 𝑎 be an attribute of 𝐷 . First, we define
equalCount(𝑎) as the count of pairs in [𝐷]2 where both records of
the pair are equal in 𝑎. Second, we define falseEqualCount(𝑎) as the
count of incorrectly classified pairs in equalCount(𝑎). We set:

equalRatio(𝑎) = falseEqualCount(𝑎)
equalCount(𝑎)

A high equalRatio(𝑎) for a given attribute 𝑎 indicates that the
matching solution did not weigh the matching sufficiency of 𝑎
correctly (either too high or too low). Again, calculating the metric
for all attributes 𝑎 in 𝐷 yields a statistical distribution which, if
compared across all attributes, can yield helpful insights. Similarly,
bar charts can be used as an evaluation tool.

5 REFERENCE IMPLEMENTATION
In this section, we present our reference implementation of Frost
called Snowman and perform two example evaluations with it.
Figure 4 shows a screenshot that highlights the fact that Snowman
addresses both data stewards (domain experts) and developers.

5.1 Snowman’s Features
Snowman provides many features enabling developers to explore
and evaluate data matching results. Next to evaluation techniques
that require a ground truth, Snowman also supports those that
operate solely on the matching results.

Besides traditional metric evaluation pages, Snowman has full
support for our soft KPI dimensions from Section 3.3 and supports
the main exploration concepts from Section 4. Below, we present a
selection of evaluations that are already part of Snowman. A full
list can be found in Snowman’s online documentation1.
• Data matching expenditures: Snowman implements both
the decision matrix and the diagram for evaluating experiment
level expenditures as described in Section 3.3.

• Set-based comparisons: Snowman supports intersecting and
subtracting experiments and ground truths with the help of
an interactive Venn-diagram as described in Section 4.1 (see
Figure 1). To enhance the evaluation process, Snowman shows
complete records instead of only entity IDs; if only intersection
operators are used, clusters are grouped.

1https://hpi-information-systems.github.io/snowman
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Figure 4: Snowman. The start screen of the reference implemen-
tation of Frost: Snowman. From here, the individual benchmark
actions are available.

• Evaluating similarity scores: Snowman helps users find the
best similarity threshold by plotting the metric/metric diagrams
discussed in Section 4.5.1 (see Figure 3). It also allows to compare
similarity functions of multiple matching solutions andmultiple
similarity functions of one matching solution.
Snowman provides a range of preinstalled benchmark datasets

(including ground truth annotations) giving users the ability to eas-
ily evaluate and compare matching solutions in multiple domains
without further imports. Besides, it supports a range of different
dataset and experiment formats and provides a convenient interface
for additional custom CSV-based formats as well as other file-based
experiment or dataset formats through customized importers. Ex-
isting importers for experiments are 30-60 lines long and in the
case of a CSV-based format as simple as defining the separator,
quote, escape symbols and a mapping for rows to duplicate pairs
or clusters. Snowman only requires the output that a matching
solution provides. Further integration is not necessary.

5.2 Snowman’s Architecture
Our application stack (see Figure 5) makes use of ElectronJS and
splits Snowman into a NodeJS back-end and a ReactJS front-end.
Both are built using TypeScript, increasing maintainability and
simplifying the onboarding process of new contributors. More im-
portantly, experiments show that many workloads are not signif-
icantly slower than for similar implementations in Java [27]. A
more detailed architectural overview can be found in [29].

All communication between front-end and back-end occurs
through a REST API specified according to the OpenAPI 3 stan-
dard. This allows third-party applications to integrate easily with
Snowman, for example to ingest matching results directly from
within a matching solution or to automatically retrieve evaluation
results, for example directly within Python3 code. Furthermore, it
means that Snowman can be deployed both locally and in a shared
environment among multiple users. To be easily usable in corporate
environments where administrative privileges are rare and device

Figure 5: Architectural overview. Snowman’s architecture is
bundled into a single portable executable, but still offers a vari-
ety of extension points.

settings might be restrictive, Snowman is portable and requires
no installation or external dependencies. All major operating sys-
tems are supported, including recent versions of Windows, macOS,
Ubuntu, and Debian.

5.3 Snowman’s User Experience
To be useful to enterprise data stewards, it is crucial for Snowman
to provide results quickly for even the most demanding evaluations.
Most developers only have limited access to huge data centers,
and gold standards containing multiple billion records are rare.
Therefore, we instead optimized Snowman so that it can run well
on a typical enterprise laptop, but still provide results for medium-
sized datasets in hundreds of milliseconds to a few seconds.2

To achieve this, Snowman optimizes every step of the evaluation
process, beginning with optimizing matching results while they
are imported into the tool: During import, a unique numerical ID is
assigned to each record, allowing constant time access to records.
Additionally, a clustering of the experiment is constructed. We
do this because currently, nearly all calculations in Snowman are
performed using transitively closed clusters instead of pairs, which
leads to much faster runtimes (up to linear to the dataset length) in
practice, compared to the quadratic number of pairs to be evaluated
otherwise. Let 𝐷 be the dataset that the matching solution was
executed on, and let Matches be a set of matches predicted by the
matching solution. The pre-calculations during the import of an
experiment take 𝑂 ( |Matches | · 𝑙𝑜𝑔( |D |) (to map the dataset’s native
IDs to numeric persistent IDs).

Even when using clusterings instead of pairs to calculate results,
in some cases, the run-time of evaluations on datasets with tens
of thousands of records takes too long. As an example, one of the
most demanding evaluations of Snowman is calculating pair-based
metric/metric diagrams (see Section 4.5.1). A naïve approach to
calculate these diagrams using clusterings is to sample metrics at
different similarity thresholds without re-using insights from other
thresholds. Running this algorithm on a dataset with 100 000 records
and roughly 45 000 matches produced by an industry-grade match-
ing solution on an enterprise laptop led to a runtime of roughly
2In case more compute power is required than available to the user on his local machine,
Snowman can also be set up as a shared environment with its back-end hosted in the
cloud.
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Table 1: Runtime of Metric/Metric Diagrams. The table shows a comparison of the runtime of Snowman’s optimized algorithm for
pair-based metric/metric diagrams against a naïve approach. For each diagram, 100 different similarity thresholds were calculated.

Metric diagram Approximate
speedup factorDataset Record count Matched pairs Custom Naïve

Altosight X4 835 4 005 184ms 1.7s 9
HPI Cora 1 879 5 067 245ms 7.4s 30
FreeDB CDs 9 763 147 293ms 16.4s 56
Songs 100k 100 000 45 801 1.6s 43.9s 28
Magellan Songs 1 000 000 144 349 6.1s 6min 43s 66

44 seconds (see Table 1), which is longer than most people com-
fortably wait for results. To address this, we developed an efficient
algorithm to compute metric/metric diagrams, which reuses inter-
mediate results and dynamically builds a clustering while tracking
relevant metrics. An analysis of the algorithm shows that the worst-
case runtime (excluding the time of the optimization during import)
is in 𝑂 ( |D | + |Matches | · s) where s is the amount of data points
on the diagram. Additionally, the algorithm runs the faster, the
more similar ground truth and experiment clusterings are. Table 1
confirms that, for real-world datasets, the algorithm is consider-
ably faster compared to the naïve approach. As an example, for
the above-mentioned dataset with 100 000 records and experiment
with 45 000 matches, it took only a little under two seconds.

In summary, Snowman enables users to run most evaluations
directly on their laptops without the need for special hardware or
a compute cluster while still enabling fast and easy iterations.

5.4 SIGMOD Programming Contest
The ACM SIGMOD programming contest 2021 presented the par-
ticipants with an entity resolution task [25]. The goal was to dedu-
plicate three datasets and achieve the highest average f1 score. All
participants were given the opportunity to use Snowman as a pre-
configured evaluation tool to investigate matching results. After
the contest finished, we analyzed five high performing matching so-
lutions with our benchmark platform on the evaluation dataset 𝑍4.
Three of the matching solutions used a machine learning approach,
one used a rule-based approach, and one used a combination of rules
and machine learning. In the following, we present key insights
uncovered by application of Snowman:

For an initial overview, we used Snowman’s N-Metrics Viewer to
compare quality metrics, such as precision, recall, and f1 score. On
average, the top-5 contest teams achieved an f1 score of 90.34%with
87.4% as the minimum and 92.7% as the maximum. These results are
impressive, as the dataset constitutes a quite difficult matching task:
most of the matching has to be based on unstructured, cluttered
information in the attribute name.

As the performance of a matching solution is often strongly re-
lated to the selected similarity threshold, metric/metric diagrams as
introduced in Section 4.5.1 can be used to find the optimal threshold.
Using Snowman, we ascertained that two matching solutions had,
in fact, not selected the optimal similarity threshold for their results.
Selecting a higher similarity threshold would have increased their

f1 score by 8% and 6%, respectively. Surprisingly, these observations
are also true for the training dataset.

With Snowman, we identified three true duplicate pairs that
were not detected by at least four solutions. This evaluation can
be accomplished with the N-Intersection Viewer (see Figure 1) by
subtracting all result sets from the ground truth. Interestingly, all
three pairs include the record with ID altosight.com//1420. This
is an indicator that this record is especially difficult to match, or
all considered matching solutions make equal assumptions about
related information representations.

These findings confirm that useful insights can be gained by
coherently applying structured evaluation techniques and result
exploration, emphasizing the need for a benchmark platform. In
summary, Snowman can help to better understand a matching task
as well as result sets and thereby accelerates the development of
successful matching solutions.

5.5 Experimental Evaluation of Soft KPIs
We conducted a study to show the relevance of effort measurements
when benchmarking data matching solutions, and to examine what
impact spent effort, as discussed in Section 3.3, has on matching
performance. We expected that matching solutions improve with
additional effort invested into their configuration, and that the
curve of a target metric (e.g., f1 score) asymptotically approaches
an optimum – specific to each matching solution and dataset. To
validate this expectation, we manually optimized three different
matching solutions, ranging from rule-based to machine learning
approaches, for a given dataset. Specifically, we deduplicated the
SIGMOD contest’s D4 dataset with the goal to optimize the f1 score
achieved on the test dataset Z4 by using the training dataset X4
as well as its ground truth annotation. Throughout the process,
we tracked the effort spent. Figure 6 illustrates how the f1 score
evolved against the effort.

Each solution had a breakthrough point-in-time at which the per-
formance increased significantly. Afterwards, all solutions reached
a barrier at around 14 hours, above which onlyminor improvements
were achieved. This could either mean that a major configuration
change is required or that the maximum achievable performance
for this matching solution on dataset D4 is reached.

Additionally, we analyzed the f1 score of the submissions from
five top teams of the SIGMOD contest over time (see Figure 7).
The matching quality of the different teams generally increased
over time, but sometimes faced significant declines in matching
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Figure 6: Maximum f1 score against effort spent (in hours).
We optimized three solutions for the SIGMOD D4 dataset from
scratch and tracked the effort spent throughout the process.

Figure 7: f1 score over time at the SIGMOD contest. The evo-
lution of the f1 score on dataset D4 of three of the top five teams at
the SIGMOD contest.

performance. Thus, the matching task had an overall trial-and-error
character, which indicates that dataset D4 seems to be challeng-
ing even for matching specialists. Furthermore, Frost’sexploration
features might reveal starting points for identifying the error of
reasoning in taking new assumption for changing configuration.
Thereby, Frost essentially foster business efficiency in configuring
matching solutions. In conclusion, effort diagrams are beneficial in a
variety of ways: They help users track the cost spent for optimizing
matching solutions, to detect time points when larger configuration
changes are necessary or additional effort might be wasted, prefig-
ure when result exploration should be applied, and give insights
about the difficulty of a dataset.

6 INDUSTRY USE CASES
Today’s technologies offer a variety of approaches for data match-
ing, targeted at a variety of use-cases. Finding a well-performing
matching solution is both crucial and difficult for companies fac-
ing poor data quality, resulting in non-transparent and suboptimal
decisions. Therefore, there is an industry-wide need for more trans-
parency for data matching solutions. In response, within SAP Frost
has the goal to standardize the comparison and evaluation pro-
cess for its various data matching solutions across departments.
Throughout this project, we received constant feedback from sev-
eral teams within SAP working on future matching solutions.

In practice, matching solutions must be precisely adapted and
optimized for a given use case. For SAP customers and also for inter-
nal teams, this process is crucial to achieve maximum performance
for their matching needs. With the help of Frost’s implementation
Snowman, they were able to further optimize their workflow and
receive helpful insights more quickly than with traditional, use-case
specific evaluation tools. Especially Snowman’s ability to contrast
multiple runs of a given matching solution against a ground truth
allowed the teams to more quickly identify blind spots.

Beyond SAP, we were able to work with a global company on
improving their in-house data matching solutions for business part-
ner data. With the help of Snowman, the company was able to
evaluate alternative solutions to replace their current system in
an interactive way. Thereby, information that would otherwise be
only available to IT became directly accessible to data-matching
stakeholders and domain experts:
• Snowman simplifies this process by providing a standardized
way to compare matching solutions using hard- and soft KPIs.

• Additionally, revealing strengths and weaknesses became eas-
ier as Snowman conveniently displayed tuples found by both
matching solutions, only one of them, or neither.

• Snowman’s support for a variety of output formats makes this
process easy and enables even persons with limited tech skills
to gain meaningful insights.

7 CONCLUSION AND OUTLOOK
We introduced Frost, a benchmark platform for data matching so-
lutions. Besides the traditional benchmark evaluation for result
quality, it offers a dimension for expenditures as well as techniques
to systematically explore and understand data matching results. We
examined how Frost can benefit both organizations in their buying
decision and developers in improving their matching solutions. Fi-
nally, we presented Snowman as a reference implementation for
Frost and evaluated the results of this year’s top teams from the
SIGMOD programming contest with it. Although we consider Frost
and Snowman a significant step in the direction of a standardized
and comprehensive benchmark platform for entity resolution sys-
tems, our long-term goal is to advance Frost even further along
several lines of research:
• Compatibility with non-relational data: Data matching is
relevant beyond tabular data. Thus, Frost needs support for
non-relational data models, such as XML or JSON.

• Selecting benchmark datasets: As discussed in Section 3.1.3,
it is difficult to find representative benchmark datasets for a
real-world matching task. A suitability score based on profiling
metrics would be an important contribution towards the search
for suitable benchmark datasets.

• Categorizing errors: The ability to categorize the errors of
a matching solution helps to more easily find structural defi-
ciencies. For example, a matching solution could be especially
weak in the handling of typos.

• Recommendingmatching solutions: A long-term goalmight
be to gather matching solutions, benchmark datasets, and evalu-
ation results in a central repository. To assist organizations with
real-world matching tasks, Frost could use this information to
automatically determine promising matching solutions.
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