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ABSTRACT
With the advent of cloud computing, where computational re-
sources are expensive and data movement needs to be secured and
minimized, database management systems need to reconsider their
architecture to accommodate such requirements. In this paper, we
present our analysis, design and evaluation of an FPGA-based hard-
ware accelerator for offloading compression and encryption for SAP
HANA, SAP’s Software-as-a-Service (SaaS) in-memory database.
Firstly, we identify expensive data-transformation operations in the
I/O path. Then we present the design details of a system consisting
of compression followed by different types of encryption to accom-
modate different security levels, and identify which combinations
maximize performance. We also analyze the performance benefits
of offloading decryption to the FPGA followed by decompression
on the CPU. The experimental evaluation using SAP HANA traces
shows that analytical engines can benefit from FPGA hardware
offloading. The results identify a number of important trade-offs
(e.g., the system can accommodate low-latency secured transac-
tions to high-performance use cases or offer lower storage cost by
also compressing payloads for less critical use cases), and provide
valuable information to researchers and practitioners exploring the
nascent space of hardware accelerators for database engines.
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1 INTRODUCTION
The transition from traditional in-house database deployments to
a Software-as-a-Service (SaaS) model has introduced architectural
challenges and opportunities for the database ecosystem. While
computing nodes can be time-shared by a much larger number of
client instances, multi-tenancy often raises concerns and requires
data to be secured at any given state. SaaS databases need to ensure
that data is encrypted while in transit or at rest, with cloud vendors
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providing this option as a key element of cloud databases [6, 7].
Similarly, to optimize cost, data is often compressed on the way
to storage [17], which also results in gains in the strict bandwidth
limits in cloud deployments. If data is compressed and encrypted
on the way out, it has to be decrypted and decompressed on the
way in, demanding even more resources to deal with I/O.

Computing resources in the cloud are a commodity affecting
the costs of the service. Even if compression and encryption are
external to the database system, they compete with the engine for
computing resources. Moreover, they occur on the latency-sensitive
I/O path. I/O has been a crucial aspect of the design of database
engines from their inception. While the reasons to optimize the I/O
path have varied over time, it remains a critical aspect of a well
functioning engine and plays a large role in its overall performance.
In the cloud, storage disaggregation makes the I/O path even more
critical due to the intervening network and the nature of cloud
storage, very different from conventional local disks.

While posing these and other challenges, the cloud also offers in-
teresting opportunities over conventional architectures. Hardware
accelerators and specialized architectures coexist with traditional
compute nodes. This rich environment allows different algorithms
to be processed at different points in the architecture, with an in-
creasing number of operations being offloaded away from the CPU.
Among the options available today, FPGAs are increasingly being
used to provide near-data and in-network processing capabilities
in a variety of settings. For instance, Huang et al. [26] developed a
write-optimized storage engine at Alibaba, X-Engine, that shows
the efficiency of offloading the log-structured merge (LSM) tree
compaction computation to an FPGA. Amazon provides a smart
caching service for RedShift implemented with SSDs connected to
an FPGA for SQL offloading [9]. Microsoft has used its Catapult
deployment [23] to speed up access to key-value stores (KVS) via a
Smart Network Interface Card (SmartNIC) implemented with an
FPGA [48], and there are several proposals to use FPGAs to im-
plement smart disks [40, 76], and smart storage [38]. Microsoft’s
Cipherbase project [6, 7] also analyzed the use of an FPGA as a
hardware trusted module to process data inside the database engine
in an encrypted form, such that parts of the data would remain
encrypted while in memory.

Taking advantage of their growing availability in the cloud, in
this paper we explore the use of an FPGA-based accelerator placed
on the I/O path of SAP HANA to speed up compression and en-
cryption in SAP HANA cloud deployments. The results we obtain
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demonstrate the advantages of the design: we can efficiently com-
press and encrypt data on its way to storage (at up to 4GB/s and
15GB/s, respectively, and at around 4GB/s when combined). We
can also decrypt data read back from the storage at up to 15GB/s.
In all cases, we can process data at a higher rate and more efficiently
than using the CPU, which can be one order of magnitude slower
when having to perform both compression and encryption.

2 BACKGROUND AND RELATEDWORK
In this section, we briefly describe SAP HANA, the compression
and encryption algorithms involved, as well as related work.

2.1 SAP HANA
SAP HANA [22] is a column-oriented in-memory database specifi-
cally built to integrate both analytical and transactional workloads
into a single engine. It can be deployed on-premise or as part of
SAP HANA Cloud1 as a SaaS. Together with SAP HANA, the cloud
platform also provides SAP IQ, a robust, traditional disk-based data-
base. This work is part of recent efforts from SAP to enhance their
on-premise products with the opportunities offered by cloud deploy-
ments. For instance, Abouzour et al. [2] detail the process of porting
a disk-based data management system to cloud object-storage. Com-
plimentary to these efforts, this work deals with compression and
encryption of data on the I/O path taking advantage of the new
hardware options available in the cloud.

2.2 Compression Algorithms
Like most column stores and analytical engines, SAP HANA uses
light-weight compression internally to optimize memory usage,
memory bandwidth, and cache efficiency. The light-weight compres-
sion scheme depends on the data type of the column, and several of
them are used: dictionary, N-bit, prefix, or run-length [46, 54, 64, 67].
These schemes have in common that they preserve both (i) efficient
sequential and random access for the scans and (ii) point queries of
analytical and transactional workloads; at the cost of a potentially
low or moderate compression rate.

Compressing data on its way to storage is typically done using
different methods. Being already in use in SAP HANA [70], we
focus on the DEFLATE [19] method for heavy-weight compression.
This algorithm is found at the core of gzip, zlib, or zip. The different
formats are obtained by adding a header and a checksum to the
raw compressed data to produce the corresponding file format.

The DEFLATE compression method was created to be indepen-
dent from the CPU architecture, operating system, or file system,
and offers a solution that accepts arbitrary-sized input data, making
it suitable not only for storage, but also for data communication
channels. The method consists of two parts: LZ77 compression and
Huffman encoding. LZ77 compression maintains a sliding window
over the uncompressed data and replaces repeated occurrences of
bits with references to the previously encountered same sequence
of bits [80]. Huffman encoding aims to reduce the size of the data
stream by encoding symbols with varied-length codes based on
their frequency [27]. These codes are created using a Huffman
tree as follows: the most frequently encountered symbols receive
a shorter code, whereas the rarely encountered symbols receive a
1https://www.sap.com/products/hana/cloud.html

longer code. The Huffman tree can be created dynamically, a new
Huffman tree is generated for each new input data block, or stati-
cally, the tree is generated based on statistical information over the
data and used for multiple input data blocks. The trade-off between
the two tree types comes down to compression ratio quality vs.
computing latency at the pre-processing phase of the compression.

These methods are extensively used by database engines; how-
ever, only as software implementations. For instance, MariaDB and
MySQL’s storage engine, InnoDB, support the zlib library with its
LZ77 compression algorithm and report a 50% reduction factor in
the data size [56]. Nevertheless, they also report a performance
hit for write-intensive applications such as OLTP due to the com-
pression algorithm’s high computing demands. The same compres-
sion library is used by PostgresSQL to enable compression of data
dumps [66]. NoSQL databases such as MongoDB or the WiredTiger
storage engine offer support for snappy2, zlib, and zstd. Snappy is
their default compression algorithm, whereas zlib requires more
computing power, but yields a better compression ratio [53].

Related Work. Given the penalties imposed on both memory
and communication bandwidth on the I/O path, there has been
extensive work to optimize compression algorithms. Not only DE-
FLATE, but also other alternatives, such as lz43 and snappy. They,
however, compromise compression ratio in benefit of performance,
so they are not an alternative to DEFLATE in all use cases. Some al-
gorithms try to optimize for both metrics by specializing to specific
data types, such as FSST [12], a compression scheme that supports
efficient random access to individual strings. In this paper, we aim
to support the full spectrum of DEFLATE compression, without
redefining the scope of data types. As we target block-based I/O
operations, support for random access is not required, and higher
compression ratios are preferred.

Being extremely computing expensive, and naturally placed in
the hot-path of data communication, considerable efforts have been
put on porting these software compression algorithms to hard-
ware [20, 42, 72]. Microsoft [24] presented an FPGA implementation
of DEFLATE where the resource utilization per compression ratio
is minimized thanks to their optimized matching engine, achieving
also the best public known compression throughput. Unfortunately,
their implementation is not open source to allow us a direct compar-
ison. Intel [1] proposed a very efficient open source implementation
of the DEFLATE algorithm. Intel’s version is the starting point for
our compression module that incorporates several important opti-
mizations (Section 3.1).

Some attempts to implement INFLATE — the decompression
side of DEFLATE — on hardware have been made [44], however
none of them solved the intrinsic complexity of LZ77 decompres-
sion and Huffman decoding without having to resort to a different
decompression algorithm [21, 62]. In this work, we rely on the CPU
implementation of the decompression.

More valuable than a comparison of compression efficiency and
throughput over artificial corpuses, in this work we introduce the
challenge of having to deal with real-world data. In fact, themajority
of the related work reports only the maximum throughput achieved
in the best conditions, where there is enough data to be processed

2https://google.github.io/snappy
3https://lz4.github.io/lz4
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Figure 1: Block diagramof oneAES-256module operating in
parallelizable and non-parallelizable modes while process-
ing a 512-bit cacheline (64 bytes).

by the hardware engine. In this paper, we explore the challenges
introduced by dealing with database I/O in terms of information
entropy, size variance, and irregular arrival rates.

2.3 Encryption Algorithms
The Advanced Encryption Standard (AES) [16] is the most widely
used block cipher encryption standard, having its own set of ded-
icated instructions in both standard CPU [28] and embedded [8]
architectures, and being generally adopted also by database engines.
AES is a symmetric key algorithm with three possible initial key
sizes: 128 bits, 192 bits, and 256 bits. We focus on the 256-bit imple-
mentation and define the process of encryption or decryption of a
cacheline (512 bits) as AES-256.

The algorithm’s design is based on a chain of substitutions and
permutations, known as transformation rounds, which makes it
suitable for both efficient software and hardware implementations.
However, its block cipher modes of operation cause significant
performance differences due to the resulting implementations. We
show these differences by implementing three AES block cipher
modes: Electronic Code Book (ECB), Counter (CTR), and Cipher
Block Chaining (CBC). The amount of data that has to be encrypted
or decrypted together represents the transformation granularity of
a block. For CTR and CBC modes it is given by the data block size,
whereas for the ECB mode, the granularity is the 128-bit data word.

Figure 1 illustrates the processing of a 512-bit cacheline, with
each AES module consuming one 128-bit data word at a time. We
differentiate between the parallelizable modes in Figure 1a (ECB
and CTR for both encryption and decryption and CBC only for
decryption), and the non-parallelizable mode in Figure 1b (CBC
for encryption). ECB is the simplest of the modes, requiring only
the transformation rounds for both encryption and decryption,
whereas CTR and CBC modes require pre- or post-transformations
of the data word before entering or after exiting the transformation
rounds. For its pre-transformation, CBC encryption needs the pre-
vious encrypted word, thereby creating a data dependency between
consecutive iterations. As a result, while the number of transfor-
mation rounds does not have an impact on the performance of the
parallelizable modes (ECB and CTR), the encryption performance
in CBC mode is significantly affected by it.

Many database systems have software implementations of en-
cryption as well. Oracle uses all three initial key sizes (128, 192 or

256 bits) of the AES algorithm for its Transparent Data Encryp-
tion (TDE) [60], employing the 256-bit initial key only for highly
sensitive data [61], and relies on Intel’s intrinsic instruction set to
boost encryption and decryption performance for ECB, CTR and
CBC modes. MySQL (v8.0) supports AES encryption in ECB and
CBCmodes using all three initial key sizes, with ECB and 128-bit ini-
tial key being the default block cipher mode encryption option [55].
The same encryption algorithm, AES and 256-bit initial key, is also
used by Azure’s TDE for its SQL Server, Azure SQL Database, and
Azure Synapse Analytics services [51]. SQL Server relies on the
AES modes supported by the Microsoft encryption library: ECB,
CBC, CFB (cipher feedback) and OFB (output feedback).

From data security point of view, out of the three modes, ECB is
the most prone to failures under attacks due to its simple architec-
ture that can map properties of the input word into the output word.
CBCmode is the most robust of them, but at the cost of reduced par-
allelism. CTR mode is the intermediate point between security and
performance, providing a possible solution for database encryption,
as suggested by HighGo for their PostgreSQL solution [75].

SAP HANA has the option to encrypt data at rest using CBC
mode on the CPU, with at most two threads allocated to the task.
The number of allocated threads is such that the encryption does
not interfere with query processing. This paper is part of an effort to
consider modes more amenable to parallelization than CBC mode.

Related Work. Much attention has been given to AES imple-
mentations on FPGAs. Xilinx [77] proposes their own proprietary
AES module focusing only on the parallelizable modes. Our open
source design4 achieves the same order of magnitude in terms of
throughput performance as Xilinx’s custom module. Other effi-
cient AES implementations focus mainly on enhancing the encryp-
tion/decryption of a single 128-bit word for FPGAs [14, 15, 39, 49],
or ASICs [3, 25], and put less consideration to the block cipher
modes, the non-parallelizable modes and the interaction of the
AES module with other computing modules. Kara et al. [41] show
that AES-256 CBC decryption placed prior to a stochastic coordi-
nate descent (SCD) computation increases the processing time by
x3.6, despite the existence of dedicated CPU instructions set for
decryption, and propose the offloading of AES-256 CBC decryption
transformation rounds to the FPGA, while keeping the key expan-
sion on the CPU. In contrast, in this paper we develop a complete
solution for AES-256 CBC encryption and decryption, while of-
floading the entire computation (key expansion and transformation
rounds) to the FPGA. Moreover, beside the CBC mode, we also
analyze the performances of two additional modes, ECB and CTR,
and we distinguish between the block sizes performance.

2.4 Hardware Acceleration for Databases
Field programmable gate arrays (FPGAs) have emerged as one type
of accelerator for data processing [73]. They consist of matrices
of logical elements whose behavior can be reconfigured over time.
Having a spatial architecture, FPGAs allow algorithms to be exe-
cuted with a great degree of parallelism at line-rate, for example
when attached to the network as SmartNICs. Cloud computing
made FPGAs not only affordable, but also convenient to deploy
close to traditional systems as they are migrated to the cloud [37].

4https://github.com/fpgasystems/hw-acceleration-of-compression-and-crypto
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Related Work. Ringlein et al. [68] show the advantages (cost
reduction, tail-latency minimization, execution efficiency) of us-
ing FPGA-based Function-as-a-Service into disaggregated cloud
infrastructures, and Zha and Li [78] build an abstraction frame-
work for virtualizing heterogeneous cloud FPGAs. Key-value stores
also benefit from FPGAs with new memcached architectures [11],
native computational storage [74], and hardware-managed transac-
tions [36]. Kara et al. [41] show how FPGAs can be used for coupling
column-store ML algorithms with on-the-fly data transformation,
such as decryption and delta-encoding decompression, while Lasch
et al. [43] accelerate Re-Pair compression algorithm using FPGAs.

Zheng et al. [79] propose that by offloading the physical storage
utilization efficiency to the modern SSDs (with built-in transparent
compression), a DBMS can obtain higher performance and simpler
data structures and algorithm complexity. Zuck et al. [81] study
various approaches of implementing transparent compression in the
firmware of SSD devices, either in the context of database systems
or in that of filesystems. Complementary to them, we show how
encryption can be added on top of compression, and offloaded to
an intermediate device that can be positioned between compute
and storage, leading to a more modular and flexible system.

Lee et al. [45] show how offloading online analytical process-
ing (OLAP) operations to a near-memory accelerator (an FPGA
board with attached DIMMs) that sits between CPU and main mem-
ory eliminates the performance degradation of online transactional
processing (OLTP) workloads when co-existing with OLAP work-
loads. While Lepers et al. [47] show that the CPU is the bottleneck
and not the storage device for tree compaction in an LSM KVS on
NVMs SSDs, Huang et al. [26] address this issue by accelerating
compaction computation on the FPGA.

In the cloud, Microsoft Azure uses FPGAs to offload network
management functionality [23] and accelerate key-value store appli-
cations [48], and Amazon Aqua offloads parts of SQL to a network-
attached FPGA-based caching layer [9]. Intel’s QuickAssist Technol-
ogy [34] offer acceleration solutions for lossless data compression
and symmetric and asymmetric data encryption, but they do not
give details about design, implementation, or performance.

3 DESIGN
In this section, we describe the implementation of compression
and encryption on an FPGA, as well as the architectural strategies
needed to achieve an efficient and compact pipeline that combines
both designs. Since we are interested in exploring the effects of ac-
celeration, we focus on the compression and encryption operations
per se and explore the throughput they can achieve regardless of
the type of storage used (local disk or network-attached storage).

3.1 Compression/Decompression
We took the design proposed by Abdelfattah et al. [1] as our starting
point given its high-level language implementation and the best
compression throughput of all open source solutions. Then we
modified the design to adapt it to a database context and combine
it with the encryption module.

The base implementation decomposes the DEFLATE execution
into five OpenCL kernels (Figure 2). FPGA external memory ac-
cesses are handled by dedicated kernels (Read data, Load Huffman

FPGA External DDR4 Memory

Read data

LZ77
compression

Load Huffman tree

Huffman
encoding

Send to DDR4

Figure 2: Compression block diagram.

tree, Send to DDR4), so FPGA resource allocation can be optimized
for those specific read and write kernels, and a high operating
frequency can be achieved [35]. The communication and synchro-
nization between kernels are done through low-latency channels
acting as blocking FIFOs.

The compression of a client payload, i.e., a database page, is sliced
into several transactions. Different kernels can process different
transactions from the same client payload in parallel. The payload
is sent to the FPGA external memory, and all kernels receive several
control parameters, notably the memory pointers and the input
size to be processed. To maximize memory read bandwidth, the
execution is carried out by transactions of 256 bits. Each computing
kernel (LZ77 compression, Huffman encoding) receives a transaction
from the input FIFO, processes it, and sends the resulting transaction
to the next kernel via the output FIFO. The execution finishes as
soon as the storage kernel (Send to DDR4) finishes writing the last
piece of compressed transaction into the main memory.

From this base implementation, we enhanced a few aspects of
the design. Firstly, we introduced a stateless control flow to differ-
ent kernels. In this way, each kernel processes each transaction
individually, acting as a steady stream processor. Note that, by
the nature of compression, both the LZ77 compression and Huff-
mann encoding kernels output less data than they receive as input.
Secondly, to achieve a stream dataflow architecture, we make the
execution independent of the client payload size by augmenting
the transaction data with a control signal that indicates the end of
the payload processing. As long as the new transaction does not
carry the last flag, the kernel executes it as being part of the same
payload as the previous one.

The original and traditional method to invoke FPGA kernels
requires synchronization and communication overheads between
the host and the FPGA observes the following pattern: (i) the host
sets the control parameters of all kernels; (ii) the host sends the data
payload to the FPGA external memory; (iii) the host invokes the
kernels; (iv) kernels execute; (v) the host polls the FPGA to detect the
end of the execution; (vi) the host reads back the output payload.

By having stateless control flow in the FPGA, introduced by
the last flag, the intermediate computing kernels can run contin-
uously and process any transaction of data they receive without
the need of synchronization with the host. These are called autorun
kernels [30]. Here, the utilization of a high-level language such as
OpenCL creates a common challenge to this type of modification:
the actual hardware implementation generated by the compiler
is far away from the high-level abstraction modeled by the lan-
guage, and programmers lose all the control of the final hardware
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round
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ECB - En/Dec CTR - En/Dec CBC - Encryption CBC - Decryption

Figure 3: AES block cipher modes for Encryption (En) and
Decryption (Dec).

topology [18]. By simply transforming a traditional kernel into
an autorun kernel, the compiler can introduce drastic changes to
the topology and ruin any optimization attempt. We succeed to
transform two kernels (LZ77 compression, Huffman encoding) as
autorun kernels by re-designing the memory initialization to a
static section of the autorun module.

With these two modifications, a stateless control flow of autorun
kernels allows us to reduce the overhead of calling the FPGA by
batching calls: the CPU does not need to send individual I/O re-
quests to the FPGA; it can buffer a variable amount of them and
invoke the FPGA only once (Section 4.6). SAP HANA already does
this to a certain extent and the mechanism described makes the
implementation of compression suitable for such batching.

3.2 Encryption/Decryption
Through our encryption/decryption implementation, we present
a comparison between three different AES block cipher modes,
parallelizable and non-parallelizable, and analyze how they interact
with a compression module inside an FPGA processing pipeline.

Our encryption/decryption FPGA design aims to achieve the
following properties: (i) Reusability and modularity of the code, ir-
respective of the AES block cipher mode and initial key size, thereby
making the code base less error-prone and more tractable; (ii) Con-
trol over the operations happening at each pipeline stage of the
design to maximize the overall throughput; (iii) Flexibility regard-
ing the initial key size and the number of 128-bit input data words
that can be processed in a transaction to ensure wider applicability.

AES processing involves a sequence of transformations: substitu-
tion, shift, bitwise operation, and polynomial multiplication (known
as a transformation round), that are consecutively applied to each
128-bit input data word. The initial key size determines the number
of transformation rounds needed to encrypt or decrypt an input
data word. For a 256-bit initial key size, 14 transformation rounds
are needed, and each transformation round requires a dedicated
128-bit round key for its internal bitwise XOR operations. All the re-
quired round keys are obtained from the initial 256-bit key through
a key expansion process that is independent of the 14 transforma-
tion rounds. Together with the pre- or post- data transformation
operations, the 14 transformation rounds represent the processing
datapath of encryption/decryption.

On the FPGA, we implement each AES module shown in Figure 1
in a pipeline fashion, with each stage of the pipeline applying a
transformation round to the 128-bit data word. Therefore, the depth

of the pipeline equals the total number of transformation rounds,
namely 14 stages. In Figure 3 we illustrate the block diagrams for the
three AES block cipher modes we implement (ECB, CTR, CBC) and
emphasis their common points: (i) transformation rounds (grouped
under the AES name) and (ii) round keys (generated by the key
expansion); and differences (presence or absence of the pre- or
post-processing data transformation operations - XOR operations).

We offload the entire encryption and decryption computation to
the FPGA, namely both transformation rounds and key expansion,
and design their corresponding modules as parameterizable mod-
ules in RTL (Register Transfer Level). We use VHDL as modeling
language to maximize the throughput [52] for the transformation
rounds. All the modules, transformation rounds for encryption
and/or decryption and the key expansion for encryption and/or de-
cryption, are part of an OpenCL library and can be instantiated into
OpenCL FPGA kernels as function calls, abstracting away the VHDL
implementation from the user. The user can set at FPGA compila-
tion time the following programmable parameters: 𝑂𝑃𝐸𝑅𝐴𝑇𝐼𝑂𝑁
(0-encryption, 1-decryption); 𝑁_𝑊𝑂𝑅𝐷𝑆 (number of 128-bit words
processed in parallel), four 128-bit words (512-bits) represent our
default choice and the granularity for FPGA external memory read
and write operation; 𝐾𝐸𝑌_𝑊𝐼𝐷𝑇𝐻 (128, 192, or 256), for the pur-
pose of this work we use only the 256-bit initial key size; and𝑀𝑂𝐷𝐸
(0-ECB, 1-CTR, 2-CBC), for choosing the block cipher mode.

Listing 1: Connection betweenOpenCL function call and the
corresponding VHDL module.
<RTL_SPEC >

<FUNCTION name="aes_256" module="aes_user_intel">

...

<PARAMETER name="OPERATION" value="0" />

<PARAMETER name="MODE" value="2" />

</FUNCTION >

<FUNCTION name="aes_key_256" module="key_user_intel">

...

<PARAMETER name="OPERATION" value="0" />

</FUNCTION >

<FUNCTION name="aes_256_decrypt" module="aes_user_intel">

...

<PARAMETER name="OPERATION" value="1" />

<PARAMETER name="MODE" value="2" />

</FUNCTION >

<FUNCTION name="aes_key_256_decrypt" module="key_user_intel">

...

<PARAMETER name="OPERATION" value="1" />

</FUNCTION >

</RTL_SPEC >

Listing 1 illustrates how the connection between the OpenCL
function call and the VHDL module is done through an XML kernel
description file.The <FUNCTION>...</FUNCTION> element defines
the scope of each function, transformation rounds or key expan-
sion for encryption or decryption. Within the opening tag, the
𝑛𝑎𝑚𝑒 attribute identifies the function call used in the OpenCL ker-
nel and the𝑚𝑜𝑑𝑢𝑙𝑒 attribute identifies the VHDL module that de-
scribes the function implementation (e.g., 𝑛𝑎𝑚𝑒 = 𝑎𝑒𝑠_256 and
𝑚𝑜𝑑𝑢𝑙𝑒 = 𝑎𝑒𝑠_𝑢𝑠𝑒𝑟_𝑖𝑛𝑡𝑒𝑙 represent the transformation rounds
function call and the VHDL module, respectively, for encryption).
Through Listing 1 we want to emphasize the programmability of
the FPGA design. Note that for different OpenCL function call
names we use the same VHDL module name with different set-
tings for the programmable parameters, e.g., for decryption we use
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the same 𝑚𝑜𝑑𝑢𝑙𝑒 = 𝑎𝑒𝑠_𝑢𝑠𝑒𝑟_𝑖𝑛𝑡𝑒𝑙 and a different function call
𝑛𝑎𝑚𝑒 = 𝑎𝑒𝑠_256_𝑑𝑒𝑐𝑟𝑦𝑝𝑡 .

Beside the programmable parameters that can be set using the
PARAMETER element, the XML file also exposes the characteristics
of each VHDL module: expected latency, stall free or not, stateful or
stateless, the communication interface between the VHDL module
itself and the other operations inside the OpenCL kernel [33], and
the list of all RTL files that are describing the module’s behavior.
Since the OpenCL kernel is implemented into hardware as a pipeline
similar to the instruction pipeline of processors, all these VHDL
module details are necessary such that the module’s pipeline itself
is integrated into the OpenCL kernel pipeline.

The datapath for AES-256 is stateless, input data being streamed
through the encryption or decryption pipelines. For each stage
of the pipeline, two stateful objects are needed: an 8-bit substi-
tution box for adding randomness to the transformation round,
and a round key from the key expansion. The information for the
round keys is stored in registers, whereas the 8-bit substitution box
preserves its state using look-up tables.

The latency of the AES-256 FPGA module is mainly determined
by whether a parallelizable or a non-parallelizable block cipher
mode is used. ECB and CTR modes have 15 clock cycles of latency
for processing one cacheline (4x128-bit input data words), for both
encryption and decryption. For the same cacheline, the CBC mode
needs 15 clock cycles for decryption, which is parallelizable, and
57 clock cycles for encryption, which is non-parallelizable. The
latency for one AES module can be manually computed, one clock
cycle for each transformation round plus one extra clock cycle
for delivering the results. The key expansion computation takes 11
clock cycles on hardware, but since it is independent of the datapath,
it can be ignored when computing the latency of the results. Seen
from the host, the key expansion latency is 62.90 µs and includes
beside the 11 clock cycles of hardware latency, also the invocation
of the kernel from the CPU when an I/O request is made.

3.3 Compression and Encryption
We take advantage of the OpenCL environment versatility to com-
bine modules written in different languages. Compression is built
as an OpenCL kernel and encryption is built in VHDL, but inte-
grated in OpenCL as a library and exposed to the system kernels as
a function call. The result is a combined operator that compresses
data and then encrypts it when invoked by the database (Figure 4).

When used in isolation, the compression module sends the re-
sults directly to the FPGA external memory. When plugged up-
stream the encryption module, the compressed transaction is for-
warded via FIFO buffers to the AES-256 module(s). The encryption
module uses the last flag that goes along with the compressed
transactions to determine the granularity of the operation, i.e., a
compressed payload is encrypted as a single unit until the last flag
is met. When the last flag is met, the encryption module resets its
nounce and counter for CTR mode, and restarts from the initializa-
tion vector for CBC mode. The last flag has no reset effects on ECB
mode, since its granularity is always 128-bit word size.

For the two parallelizable encryption modes, ECB and CTR, a sin-
gle AES-256 module suffice to consume data coming from the com-
pression module without putting back-pressure on the upstream

FPGA External DDR4 Memory

Read data

LZ77
compression

Huffman
encoding

Load Huffman tree

Send to AES

Buffer

Buffer

Buffer

Buffer

AES-256

AES-256

AES-256

AES-256

Load Balancer
Only for CBC mode

Figure 4: Compression and encryption pipeline block dia-
gram for the three block cipher modes.

module, as it is later shown in Section 4.5. The sequential nature
of the encryption in CBC mode creates back-pressure on the com-
pression module, that is, the encryption — the second stage in the
pipeline — is slower than the compression — the first stage in the
pipeline.Weminimize this back-pressure by usingmultiple AES-256
modules and a load balancer that round-robins the input between
them. The goal is to eliminate the back-pressure by matching the
compression throughput with several AES-256 modules. However,
as a spatial architecture, we can only put several of them into a
given FPGA. For the FPGA we use, we are able to deploy up to four
parallel AES-256 modules in CBC mode.

3.4 FPGA resource consumption
We implement our designs on an Intel FPGA PAC D5005 Accel-
eration Card. Table 1 summarizes the FPGA resource utilization,
including the resources allocated for the static part of the FPGA,
called Board Support Package (BSP), and the dynamic part of the
FPGA, called User Kernel System (where our designs reside). The
interaction between these two parts is illustrated in Figure 5.

The BSP represents the FPGA logic dedicated to the FPGA inter-
action with external elements, host processor and DDR4 memory,
and consists of the host interface, the external memory controller,
and the global memory interconnect. The User Kernel System part
contains the logic dedicated to the compute kernels, e.g., AES-256,
LZ77 compression or Huffman encoding, and to the kernel commu-
nication with the on-chip FPGA memory.

We report the working frequency for each standalone and com-
bined implementations. Unlike the CPU that operates in a GHz fre-
quency range, the FPGA operates in theMHz frequency range. Our
designs have a working clock frequency around 240MHz. Despite
this enormous frequency range gap, the FPGA is able to achieve

Table 1: FPGA Resource Consumption.

FPGA Design ALUT Logic Utilization RAM Op. Freq.

CBC AES-256 259,353 256,438 (27%) 667 (6%) 248 MHz
CTR AES-256 236,211 252,822 (27%) 899 (8%) 248 MHz
ECB AES-256 252,587 258,754 (28%) 899 (8%) 232 MHz
DEFLATE 282,464 263,087 (28%) 2,161 (11%) 287 MHz

DEFLATE + 1 CBC 458,061 428,244 (46%) 2,298 (20%) 243 MHz
DEFLATE + 4 CBC 712,081 678,698 (73%) 2,460 (21%) 243 MHz
DEFLATE + CTR 435,919 409,742 (44%) 2,298 (20%) 244 MHz
DEFLATE + ECB 451,274 415,508 (45%) 2,298 (20%) 236 MHz
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Figure 5: OpenCL FPGA framework overview.

better performance than the CPU when the FPGA is implementing
algorithms that can benefit from its spatial, parallel architecture
and low-latency on-chip memory accesses, providing a MIMD (Mul-
tiple Instructions, Multiple Data) analogy. The CPU, however, must
operate at a much higher frequency to overcome several overheads
imposed by its architecture [10], and the best parallelism it can
achieve is restricted to SIMD (Single Instruction, Multiple Data).

The OpenCL compiler determines the highest possible operat-
ing frequency based on (i) the design characteristics, and (ii) the
placement as physical components (a non-deterministic operation
called place and route). For example, even if different block cipher
modes of the AES-256 modules have similar designs, their final
resource allocation, and therefore placing and routing, is unlikely
to be equivalent, leading to different working frequencies. The
highest working frequency is obtained by the compression module,
287MHz. The logic utilization in Table 1 represents the number of
adaptive logic modules the design needs, with each adaptive logic
module being used either as a 2-combinational Adaptive Look-Up
Table (ALUT), as a 2-bits full adder or as four registers [29]. In all
cases, the resources used leave enough room for additional logic
(e.g., a network stack [69] to send the data to cloud storage through
the network), even when using 4 AES-256 CBC encryption modules.

4 EVALUATION
We evaluate the performance of each module in isolation and when
combined. As baseline, we run their equivalent software implemen-
tations using typical configurations currently used in SAP HANA.
For the modules on the write path of the I/O request, we focus
on the compression and the encryption on blocks ranging from
4 KiB to 16MiB. For the modules placed on the read path of the
I/O request, we conduct the decryption and the decompression on
blocks ranging from 4 KiB to 64MiB.

Our observations represent an evolution towards larger logical
pages compared to a study of Chen et al. [13] from 2010, who
observe that “a commercial DBMS” accesses almost exclusively
logical pages of size 8 KiB for both reads and writes, or MySQL’s
default page size of 16 KiB [57]. The same direction towards larger
logical pages is also reported by Umbra [58], with the smallest page
size being 64 KiB, by Snowflake [71], with 100MB to 250MB page
sizes, or by Vertica, with Hadoop FS Block Size being set to 64MB.
Antonopoulos et al. [5] report initial log sizes between 3GB-38GB
as they attempt to reach constant time recovery in Azure SQL
Databases by truncating the initial log sizes to 200MB.

1

100

10k

da
ta

 (r
ea

d)

#I/Os

0%

50%

100%CDF

1

100

10k

da
ta

 (w
rit

e) #I/Os

0%

50%

100%CDF

1

100

10k

lo
g 

(re
ad

) #I/Os

0%

50%

100%CDF

4KiB 16KiB 64KiB 256KiB 1MiB 4MiB 16MiB 64MiB
Block size

1

100

10k

lo
g 

(w
rit

e)

#I/Os

0%

50%

100%CDF

Figure 6: Cumulative distribution function (CDF) and his-
togram of I/O sizes in I/O trace.

4.1 Real-world I/O Trace
SAP HANA supports a wide variety of workloads. We focus on a
concrete use case that generates significant I/O traffic and which is
especially common in the cloud: loading data into the system. Dur-
ing this and other write-intensive workloads, SAP HANA initially
applies updates to the write-optimized store of each table residing
in memory. For durability, changes are also persisted in the transac-
tion log on storage. Depending on the configuration of the system,
the write-optimized store is merged into the read-optimized store in
order to maintain high read performance. When this process com-
pletes, the new read-optimized store (i.e., the snapshot of the table at
the point of the merge) is persisted on disk and outdated snapshots
are deleted [4]. The snapshots and the log entries caused by data
import, which is typically committed in batches of a few thousand
rows, result in a regular stream of relatively large writes to storage,
and are thus potentially well-suited for block-based compression.

The payload of our compression and encryption modules con-
cerns data from (i) the transaction log, and (ii) from current snap-
shots of the read-optimized partition of tables. Since such snapshots
are only read at column granularity, block-based schemes are suit-
able for this use case.

To understand the granularity of the I/O transfers in a real sys-
tem, we analyzed an I/O trace using SAP HANA 2.0 SPS 04 Data-
base Revision 045. This version has a similar I/O behavior as the
newer SAP HANA releases, e.g., SAP HANA 2.0 SPS 06 Database
Revision 061. SAP HANA uses Linux asynchronous I/O subsys-
tem for logs and data files, so we intercept calls to that subsystem

3283



(io_submit and io_getevents) by attaching a small tracing library
using LD_PRELOAD and trace the content and metadata of all I/O
blocks read and written by the database.

We use a representative workload that captures common op-
erations in cloud deployments to generate the trace. We import
the CSV files from the TPC-H data generator for Scale Factor 10,
which take about 5.5GB on disk. For each table in the schema, we
run a sequence of five operations: (i) import the file from CSV;
(ii) unload the table from main memory; (iii) load the table again;
(iv) run COUNT(*); and (v) finally unload again the table. Such a
workload emphasizes data loading, a critical operation in replication
tasks, e.g., regularly replicating data from an Enterprise Resource
Planning (ERP) system into an analytical warehouse. SAP BWH
benchmark5, as well as the TPC-H and TPC-DI benchmarks, report
this type of workload as being a crucial element in performance.
In the cloud, it captures the constant ETL and loading of data into
an analytical system from transactional engines and other sources.
Such a workload stresses the I/O subsystemwith writes to the write-
ahead log, and reads from and writes to data files when tables are
loaded into main memory. The same pattern is observed when the
read-optimized storage is snapshot to storage after being merged
with the newly loaded records from the write-optimized store.

As part of the workload, which includes the startup of the system,
SAP HANA reads and writes a total of 7.0GB and 21.7GB from and
to the storage. Most of these reads are caused by loading the tables
in step (iii), while most of the writes are caused by the repeating
merges during the import in step (i). At the same time, the system
reads and writes a total of 64.0MiB and 10.1GB from and to the
log, respectively. The reading happens in a single access directly
after start-up. Presumably, the system batch-loads the tail of the log
and simply determines that the previous shutdown was clean. Most
of the data written to the log is caused by the import in step (i).

Figure 6 shows the distribution of the block sizes and Table 2
summarizes the percentage occurrence of relevant block sizes for
each page access type. The plot shows that the system accesses
most data in blocks larger than the traditional 4 KiB page size. On
the data file, most accesses are 64 KiB and some up to 64MiB. This
is not surprising since the snapshots stored in the data file consist
of large column vectors and dictionaries that are always accessed in
their entirety (namely when flushed after a merge or when loaded
back to main memory). The reads from the data file always access
blocks whose size is an even power of two and the writes mostly
do the same. However, interestingly, the system occasionally also
writes blocks with a non-power-of-two size (but still multiples
of 4 KiB). The workload only contains a single read from the log
(64MiB at system start-up) while writes occur with a large number
of different block sizes. A few of the write block sizes are much
more frequent than others. Most notably, about 60 % of all writes
are of 118 784 B, precisely 116 KiB (i.e., 29 physical disk pages).

4.2 Evaluation Setup
Software. For the software baseline we use an Intel® Xeon® Gold
6234 Processor 3.3GHz machine with 8 cores and 16 threads fea-
turing: 512 kB (L1 cache), 8MB (L2 cache), and 24.75MB (L3 cache).
The level of parallelism set for our compression/decompression and

5https://www.sap.com/dmc/exp/2018-benchmark-directory/#/bwh

Table 2: Page type accesses [%].

Block size [B] 4Ki 16Ki 64Ki 116Ki 256Ki 1Mi 4Mi 16Mi 64Mi

data read 42.87 12.01 39.13 - 3.24 1.41 0.64 0.70 0.01

data write 1.08 0.92 45.38 - 32.33 12.28 3.44 1.82 -

log read - - - - - - - 100

log write 3.46 0.05 0.01 64.64 0.01 0.11 - - -

encryption/decryption baselines is consistent with the number of
threads SAP HANA allocates for these background tasks, namely
1-2 threads. These threads process the blocks in their entirety.
Hardware. Our target platform consists of the Intel Programmable
Accelerator Card (PAC) for data centers, Intel FPGA PACD5005 [31],
connected to the CPU via a PCIe Gen3x16 link. The card features a
Stratix 10 SX FPGA, two QSFP+ connectors with up to 100 Gbps
support, and 32GB of on-board DDR4-2400 memory, with a peak
transfer rate of 19.2GB/s. We use OpenCL for Intel FPGA SDK
(OpenCL RTE version 19.2.0.57) [32] to implement and instantiate
the FPGA compute kernels that are interfacing with the on-board
DDR4 memory at 64 B cacheline granularity for both read and
write operations. The CPU (host processor) allocates memory for
the FPGA computing kernels, and a memory management library
handles the address translation between CPU main memory and
FPGA external memory.

Figure 5 illustrates the OpenCL FPGA framework diagram and
differentiates between three memory types in the OpenCL memory
model: (i) the device global memory, FPGA external DDR4 mem-
ory; (ii) the local memory, FPGA on-chip memory like Block RAM
(BRAM); and (iii) the private memory, FPGA on-chip registers.

Global memory represents a major component of the OpenCL
compute model, being used to transfer data between the host pro-
cessor and the FPGA via input/output buffers mapped inside the
global memory. The host writes the data to be processed into the
input buffer from where the computing kernel reads it, processes it,
and writes the obtained results into the output buffer. The results
are then transferred back by a memory access generated by the
host. This OpenCL computation model is supported by the Board
Support Package (BSP) for our Intel FPGA PAC D5005 board, and
we use it to evaluate our standalone and pipelined kernels.

For our performance evaluation, we assume data to be already
in the global memory, and the computing kernel reads it from
there at cacheline granularity (64 B). At this granularity, the global
memory latency is higher than the computation time, which affects
the performance measured for small block sizes (e.g., 4 KiB ). To
partly mask this overhead, we use prefetching inside the compute
kernel. Note that, in the cloud, the CPU needs to move the data
after compression and encryption to a NIC, thereby also paying a
data transfer overhead. Our design is intended to be deployed on
an FPGA with direct network access, so no further data transfer
overhead occurs. Thus, we focus on the performance inside the
FPGA compared to that of the CPU, since transfer overheads will be
either similar in both cases or much less on the FPGA by skipping
a transfer to the NIC. Also note that the FPGA board we use has
conventional DDR memory. Many FPGA boards are starting to
include High Bandwidth Memory (HBM), which would completely
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Figure 7: Compression - with 1 and 2 threads on CPU vs.
FPGA design. Note the logarithmic scale of the y axis.
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Figure 8: Decompression on CPU.

eliminate this overhead for small data transfers and, in fact, make
the overall design faster for all block sizes.

4.3 Compression/Decompression
For the compression and decompression software baselines, we en-
hance the rawdeflater and rawinflater methods of the zlibcomplete
library (version 1.0.5) so that they can independently compress
a sequence of different I/O requests (i.e., different blocks are not
compressed together). In addition to this, for each block that is
processed, we prepend an informative header (64 B) that stores the
compressed size of the original block. This header informs the raw-
inflater method about the exact amount of data it needs to process.
Later on, the same header can be used to store information about
the type of encryption used after compression. For our evaluation,
we use a sliding window of 32 kB with level 1 compression, and we
obtain the same range of compression ratios as for the hardware
implementation, both using the traces extracted from SAP HANA.

Figure 7 presents the performance comparison of both software
baselines and our standalone compression kernel on the FPGA.
The algorithms behind LZ77 compression and Huffmann encoding
are memory-intensive. First, the search operation of LZ77 com-
pression imposes a variable number of cycles and comparisons to
each operand depending on the input data. Second, the Huffman
encoding requires handling of the Huffman tree, a data structure
that is 1 KiB in our experiments. Hence, for small block sizes, the
data overhead is not negligible. Luckily, these two steps can be
parallelized and put on a stream dataflow path, minimizing pipeline
stalls and global memory accesses.

Compared to the CPU baselines, the FPGA achieves over an order
of magnitude speed-up for block sizes larger than 64 KiB. While the
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Figure 9: Compression ratios on real-world database traces
determined as the ratio of uncompressed size to compressed
size; the higher the better.

overhead costs for small block sizes for the FPGA come from both
the memory movement overhead and the Huffman tree; on the CPU,
the bottleneck of the cache size cannot be avoided. Therefore, the
throughput gain obtained on the FPGA by increasing the block size
is not seen on the CPU, where the fastest implementation saturates
at less than 0.2GB/s.

Altogether, Figure 7 and Figure 8 show that both compression
and decompression are computationally expensive when carried out
on the CPU, as similarly identified by several works in literature [1,
63, 65] and in industry [50, 59, 62].

The compression ratio of one block is computed as the ratio
between the input data size (uncompressed, or light-weight com-
pressed as it is for SAP HANA) and its compressed size (e.g., a block
of 4 KiB yields a compression ratio of 2.4 for a 1.67 KiB compressed
file). In Figure 9, we present the compression ratio range that is
obtained for different block sizes when compressing the traces in
Section 4.1. Even if the compression ratio range varies broadly from
less than 1 to more than 6, its average is around 2. If the compression
ratio is less than 1, it means that the compressed block size is larger
than the original file size. We have rarely observed such cases.

It is important to notice that, for SAP HANA, the input is usually
already compressed using light-weight compression, as described in
Section 2.1. This means that the benefits obtained from compression
can be even larger for a system which does not perform any light-
weight compression on the raw data.

4.4 Encryption/Decryption
As a baseline, we build a library on top of Intel AES intrinsic in-
struction set for the three AES-256 modes (ECB, CTR, CBC) [28].
Each block cipher mode receives for encryption/decryption the
same block sizes as the ones traced in SAP HANA (Section 4.1).

Our results yield performance for a peak clock frequency of
3.3GHz consistent with the results reported by Intel [28] for sin-
gle threaded implementations: 1.76 cycles/byte for ECB encryp-
tion/decryption; 1.88 cycles/byte for CTR encryption/decryption;
1.78 cycles/byte for CBC decryption, and 5.65 cycles/byte for CBC
encryption. Both AES-256 software operations, encryption (Fig-
ure 10) and decryption (Figure 11) are compute-bound, with the
individual performance of each mode scaling proportionally with
the doubling of allocated threads.

The difference in the software performance of the three modes
comes from their compute complexities. ECB mode is the simplest
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Figure 10: AES Encryption - with 1 and 2 threads on CPU vs. FPGA design. Note the logarithmic scale of the y axis for (b) & (c).
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Figure 11: AES Decryption - with 1 and 2 threads on CPU vs. FPGA design. Note the logarithmic scale of the y axis.

of them with only 14 transformation rounds on the datapath, result-
ing in the best software performance of a maximum of 4GB/s for
both encryption and decryption. CTR mode adds-in complexity by
requiring a 128-bit XOR operation on the datapath after the trans-
formation rounds are performed. Its software performance gets
penalized, reaching a maximum throughput of 2.5GB/s. Figure 11a
shows that the software performance of decryption in CBC mode
is similar to the one in CTR mode due to the required 128-bit XOR
operation. Encryption in CBC mode requires each 128-bit input
data word to be XOR-ed with the previously obtained 128-bit output
data word (the first one is XOR-ed with an initialization vector),
before entering the transformation rounds. The cost of the data
dependency adds to the cost of the XOR operation, leading to a
maximum throughput of 1.2GB/s.

In Figure 10a, we show the limitations of the MHz operational
clock range of the FPGA. Even if for the FPGA the XOR operation
comes at no performance cost, the data dependency translated into
the sequential nature of the CBC mode implementation limits the
FPGA CBC encryption throughput performance to 0.27GB/s. At
block size granularity, CBC encryption cannot take advantage of
the parallelization potential of the FPGA, whereas the CTR and
ECB modes benefit from it, reaching a maximum throughput per-
formance of 15GB/s. By exploiting the spatial parallelism available
on the FPGA, CTR and ECB encryption modes exceed by up to
seven times their corresponding CPU performance.

Irrespective of the mode used for encryption, the transfer latency
from the global memory is visible for small block sizes (up to 16 KiB).
Figure 10 (a-c) shows that this overhead has a larger impact on

performance than the algorithm’s complexity itself, making all
three FPGA encryption modes perform similarly when compared
to their corresponding CPU implementations.

Figure 11 (a-c) illustrates the parallelization potential of the
FPGA since decryption is parallelizable for all three modes. While
the CPU performance saturates at around 2.5GB/s for the CBC
and CTR modes and at around 4.5GB/s for the ECB mode, the
FPGA implementation can reach up to 15GB/s, irrespective of the
mode employed for decryption. The transfer latency from the global
memory for small block sizes (up to 16 KiB) impacts decryption
throughput performance as it did for encryption. For small block
sizes, the CPU and the FPGA have comparable performance.

4.5 Compression and Encryption
There are several points to pay attention when porting both com-
pression and encryption modules together into a single pipeline.
Notably, as observed in Figure 7 and Figure 10, the modules have a
very different maximum throughput. The choice of which AES-256
block cipher mode to use plays a big role in determining the over-
all throughput performance. Compared to the 4GB/s saturation
throughput delivered by the compression module, the CBC mode
(0.27GB/s) would impose back-pressure and limit the overall per-
formance, whereas both CTR and ECB modes (15GB/s) would
turn compression into the bottleneck. The block diagram of the
full pipeline consisting of compression and encryption working
together has been firstly introduced in Figure 4. In Figure 12 we
analyze its throughput performance. The pipeline with encryp-
tion in CBC mode reaches a maximum throughput of 1.72GB/s,
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Figure 12: Full pipeline - with 1 and 2 threads on CPU vs. FPGA design. Note the logarithmic scale of the y axis.

while for encryption in CTR or ECB mode, we achieve a compa-
rable throughput as imposed by the compression module alone,
namely 4GB/s.

For the software baseline, we extend compression with encryp-
tion functionality for the three encryption block cipher modes. Each
compressed block is encrypted using Intel’s AES intrinsic instruc-
tion set and placed at a contiguous memory location from where it
can be read. The performance of the software pipeline is limited by
compression, and even if its performance is better or marginally
comparable to the FPGA (for block sizes of 4 KiB and up to 16 KiB,
respectively), the full pipeline is accelerated on the FPGA for block
sizes bigger than 16 KiB in all three cases, as shown in Figure 12.

When considering the performance of the combined design, it
is important to understand the effects of compressing the data be-
fore encrypting it. The compression module reads (i.e., consumes)
an amount 𝑋 of data and produces an amount 𝑌 of data, where
𝑋 ≫ 𝑌 . The write throughput, i.e., the rate at which the compres-
sion module produces data, is therefore, by definition, equal or
smaller than the read throughput. Additionally, the better the com-
pression ratio, the smaller the write throughput. In other words,
while our goal is to maximize the read throughput and also aim a
high compression efficiency, the write throughput (as a measure,
not as a capacity) decreases. While this observation does not play
a role when evaluating the compression module in isolation, it
becomes a key factor when the compression module is combined
with the encryption one. Notably, the maximum read throughput
observed for AES-256 in CBC mode (Figure 10a) does not match
the maximum read throughput when the module is placed after
compression (Figure 12a). Since AES-256 CBC encryption works on
compressed data, the overall throughput of the combined design is
higher than that of the AES-256 module in CBC mode alone.

4.6 Batch Processing
For our use case, an analytical workload using asynchronous I/O,
it is natural to consider the possibility of batching I/O requests to
process larger data sizes. Most database engines do this already in
one way or another. When using an accelerator, batching has the
advantage of reducing the number of calls (which add overhead) to
the FPGA, in addition to the advantages related to better network
and storage utilization. In the experiments so far, we see a large per-
formance gap depending on the amount of data processed in each

request (notably, 0.27GB/s and 15GB/s in Figure 12). Therefore, the
question is whether we can improve performance for smaller data
sizes by batching them into a larger transfer sizes where the acceler-
ator has a clear advantage. In order to find the answer, we perform
an experiment where small blocks of a given size are combined
into larger batches. We repeat the experiment for different sizes of
the small blocks and for different batch sizes (64 KiB, 128 KiB and
256 KiB). As a baseline for this experiment, we compare the results
of batching to the ones obtained for a single block call (Figure 12).
Since the performance of combined compression and encryption
module for the three AES modes is very similar for block sizes up
to 256 KiB, we report the numbers of CBC mode only.

Figure 13 plots the throughput for each one of these experiments,
grouped by batch sizes (i.e., a 64 KiB batch is composed of 16 blocks
of 4 KiB, or 8 blocks of 8 KiB, etc.). The two key takeaways from
the figure are that (i) batching does not improve performance sig-
nificantly, and (ii) the reason is the way compression works. While
batching improves the throughput to a certain extent, it is not a
significant improvement and it actually requires to batch a lot of
requests to get some gains. The explanation for this behavior is that,
for each block, the compression module has to create the dictionary,
search the matching bits, and erase or modify the data. In the case
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Figure 13: Full pipeline throughput, Compression + AES-
CBC, processing multiple blocks from the same request.
Batch sizes of 64KiB, 128KiB and 256KiB for blocks from
4KiB to 256KiB.
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of batch processing of small blocks, this process has to be repeated
several times since each block could come from different tables
and cannot be compressed together. As a result, the compression
overhead dominates even when batching. In some extreme cases of
batching, e.g., when batching a very small block with a large block,
the throughput for the small block might improve but we do not
consider such situations common enough to enforce more sophisti-
cated batching beyond what the database engine does by itself.

5 DISCUSSION
Based on the results in Section 4, we can now put into perspective
the potential of using an accelerator on the data path of SAP HANA.
We focus on the intrinsic overheads of the explored methods since
some of the hardware limitations will disappear over time (e.g.,
FPGAs with HBMs and with larger capacities for parallel modules).

5.1 General Discussion
The results indicate that, for larger data transfers, offloading com-
pression and encryption to an FPGA instead of performing them on
the CPU has significant advantages. On the one hand, the process
is significantly faster on the FPGA, which makes the option of both
compressing and encrypting data on the I/O path for cloud deploy-
ments feasible. This has many advantages: data is secured while
at rest and in transit, the encryption keys remain in control of the
database engine and not of the cloud provider (i.e., it is the database
the one compressing and encrypting, not the storage layer), the
space needed on storage is reduced and also makes the network,
a scarce resource in the cloud, more efficient. On the other hand,
doing so frees up valuable CPU cycles that can be either used for
other purposes or not used at all, with the engine requiring less
virtual CPUs to run on the cloud for a similar performance.

The results also show that while there are gains when compress-
ing and encrypting, the potential gains when encrypting alone
would be much bigger. Encryption for large block sizes operates at
several GB/s, a rate that matches or surpasses the available network
bandwidth in conventional cloud deployments and, thus, making
the encryption free in terms of I/O latency. From a business perspec-
tive, several commercial strategies could be envisaged. First, for
users prioritizing storage price over performance, the engine could
compress and encrypt to reduce storage cost. Second, for high-end
users who prioritize performance, encryption can be provided with-
out compression, thus maximizing throughput and freeing up CPU
resources for query processing. Third, the engine can accommodate
different security levels. Finally, with compression placed before en-
cryption, the security gap between different AES encryption block
cipher modes is minimized since compression aims to eliminate
redundancies within a given data block.

Introducing an accelerator like the one proposed on the I/O path
also opens up several interesting possibilities for cloud database
engines. Databases are full of design decisions driven by the as-
sumption of a slow I/O path and the overhead associated with
compressing and encrypting the data. Such design decisions would
change with an accelerator. In fact, cloud native databases already
use block sizes that are typically larger than those of conventional
databases [17]. The accelerator would benefit from these larger
transfer sizes and motivate such change even further.

5.2 Discussion on I/O Transfer Sizes
The experimental results indicate that offloading compression and
encryption to an accelerator becomes attractive for block sizes
larger than 64 KiB. Compression and encryption are relevant when
writing data or the log to storage. As the traces show, this size range
corresponds to more than 95 % of the I/O requests observed in the
traces (observe the jump in the CDF in Figure 6 at 64 KiB for data
and at slightly larger sizes for the log). The same observation can be
made for decryption: there are many requests of sizes large enough
for the accelerator to be a better choice overall. From this analysis
we conclude that the disadvantage of processing small block sizes
on the FPGA is mitigated by the small frequency of such requests.
Even if for some small sizes the accelerator is slightly slower, for
the entire workload it brings a clear advantage. This compromise
across a workload is very common in database engines and the
data-write path of SAP HANA can afford such a compromise, as is
probably the case for most analytical databases.

Note that the analysis of the traces also seem to indicate that, if
the data is going to be compressed before being written to cloud
storage, it is better to do this on the FPGA than on the CPU, even
if compression creates a bottleneck with respect to encryption on
the FPGA. Compression on the FPGA wins for block sizes larger
than 32 KiB, a range representing over 96 % of all write requests.

6 CONCLUSION
In this paper we have explored the implementation of compression
and encryption on the I/O path of a relational, analytics engine (SAP
HANA). These two operations play a key role in cloud deployments:
in the case of compression, to reduce the cost of storage as well
as to maximize the available network bandwidth; in the case of
encryption, to protect the data both while at rest and while it is be-
ing transmitted over the network. Our results show that offloading
these operations to an FPGA accelerator offer significant advan-
tages both in terms of performance as well as freeing up valuable
CPU resources in cloud settings as long as there is enough data be-
ing transferred. As we demonstrate with SAP HANA as an example,
in analytical engines the data transfer sizes are large enough for
the accelerator to offer a clear advantage. Conversely, the approach
we have explored does not seem to be suitable for transactional
engines, as the amount of data involved in every transfer tends to be
too small and the synchronous I/O precludes batching. Future work
includes exploring other forms of compression and decompression
that provide a better trade-off performance vs. compression ratio,
integration of the proposed approach with a SmartNIC to perform
these operations on the fly as data is sent to storage, and consid-
ering data formats other than relational as they are increasingly
being used in modern engines and pose challenges different from
those of relational data.
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