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ABSTRACT
Answering connectivity queries is fundamental to fully dynamic

graphs where edges and vertices are inserted and deleted frequently.

Existing work proposes data structures and algorithms with worst

case guarantees. We propose a new data structure, the dynamic
tree (D-tree), together with algorithms to construct and maintain it.

The D-tree is the first data structure that scales to fully dynamic

graphs with millions of vertices and edges and, on average, answers

connectivity queries much faster than data structures with worst

case guarantees.

PVLDB Reference Format:
Qing Chen, Oded Lachish, Sven Helmer, and Michael H. Böhlen. Dynamic

Spanning Trees for Connectivity Queries on Fully-dynamic Undirected

Graphs. PVLDB, 15(11): 3263 - 3276, 2022.

doi:10.14778/3551793.3551868

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/qingchen3/D-tree.

1 INTRODUCTION
The efficient processing of large graphs is becoming ever more

important (see Hegeman and Iosup [18], Sahu et al. [36], and Sakr

et al. [37] for recent studies and surveys). A fundamental problem

is the connectivity problem, which checks if there is a connection

between two nodes in a graph. Answering connectivity queries

plays a crucial role in application areas such as communication and

transport networks, checking their reliability, as well as social net-

works, investigating the connections between users and the groups

they belong to. However, it does not stop there: since dynamic

connectivity is such a fundamental problem, we find applications

in areas as diverse as computational geometry [12], chemistry [15],

and biology [24].

Computing the connectivity between two nodes using search

strategies like breadth-first search (BFS) and depth-first search (DFS)

with a linear run-time is prohibitively expensive for large graphs

with millions of vertices and edges. For static graphs, the connected
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components can be precomputed and the results stored in an aux-

iliary data structure, allowing the efficient processing of queries.

Updating the auxiliary data structures in the fully dynamic case

with frequent graph edge insertions and deletions is challenging,

though. For instance, updating the well-known two-hop labeling

[5, 9, 33, 52] is expensive, since BFS or DFS must be run on the

graphs. Similarly, tree-based approaches [16, 22, 25, 27, 46, 49] have

focused on worst-case runtime guarantees and incur high update

costs for large graphs. They rely on multiple complex auxiliary data

structures, have often not been implemented and evaluated empiri-

cally [3, 50], and sacrifice average case performance to get an upper

bound for the worst-case complexity. In our work, we focus on

fully dynamic large real-world graphs with the goal of developing

a connectivity algorithm with a good average case performance for

queries and updates.

First, we define what optimizing the average case complexity for

connectivity queries over the spanning forest (i.e., sets of spanning

trees) of a graph means: the costs are minimized if Sd , the sum of

distances between the root nodes and all the other nodes in the

spanning trees, is minimized. Since maintaining a minimal Sd in

spanning trees in a fully dynamic setting is too expensive, we pro-

pose effective and practical heuristics to keep the value of Sd of the

spanning trees low. Our approach has a much better average run-

time than solutions with a guaranteed worst case complexity for a

broad range of real-word graphs (we demonstrate this empirically).

The most time-critical part is the search for a replacement edge

when deleting an edge in a spanning tree. We prove that the cost

for finding a replacement edge for an edge e is proportional to the

cut number of e , i.e., the number of nodes in the smaller tree after

removing e (deleting an edge splits a tree into two). Moreover, we

prove that the average cost of finding a replacement edge is optimal

for spanning trees that minimize Sc , the sum of the cut numbers

for all possible edges in the spanning tree. We show that Sd and Sc
are directly related to each other, i.e., optimizing one also optimizes

the other.

Our main technical contribution can be summarized as follows:

• We formally define the problem of evaluating connectivity

queries in fully dynamic graphs with an optimal average-

case complexity.

• We introduce Sd and Sc . Sd is the sum of distances between

roots and all other nodes; we show that the average cost

of connectivity queries is optimal for spanning forests min-

imizing Sd . Sc is the sum of cut numbers of all edges; we
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show that the average costs for finding replacement edges is

optimal if spanning trees minimize Sc .
• We prove that Sd = Sc for spanning trees in which the root is
a centroid, i.e., a node that minimizes the sum of the distances

to all other nodes, allowing us to optimize the average-case

costs.

• We propose a novel k-ary tree, called dynamic tree (D-tree),

to represent the connected components of a graph.We define

D-trees and provide efficient, heuristics-based algorithms

to answer connectivity queries and maintain D-trees when

inserting and deleting edges.

• We embed the graph in a set of D-trees that also maintain

edges not part of the spanning forest and the size of each sub-

tree. This information helps us to keep the average runtimes

of operations low.

• We conduct extensive experiments to compare D-trees with

existing approaches over ten real-world datasets. The experi-

ments confirm the efficiency of our approach and its superior

average-case runtime.

2 RELATEDWORK
The first efficient connectivity algorithms focused on updating span-

ning trees in incremental [42] and decremental [39] dynamic graphs,

i.e., graphs only allowing insertions or deletions, respectively. The

earliest algorithms for updating minimum spanning trees in fully

dynamic undirected (weighted) graphs were developed by Spira and

Pan [40], Chin and Houck [8], and Frederickson [16]. The algorithm

by Spira and Pan has a complexity ofO(n) for insertions andO(n3)
for deletions, with n being the number of vertices. Chin and Houck

improve the complexity for deletions to O(n2). Frederickson brings

the complexity of insertions and deletions down to O(
√
m), with

m being the number of edges. Using a technique called sparsifica-

tion, Eppstein et al. improve the complexity to O(
√
n) per update

operation [13, 14], but without providing an implementation.

Henzinger and King represent spanning trees via Euler tours

[44], resulting in elegant merging and splitting of spanning trees

[20–23]. Storing, searching, and maintaining Euler tours efficiently

is not trivial, though. Henzinger and King proposed the Euler Tour

Tree (ET-tree) [20, 22] that maps Euler tours to balanced binary

trees [3, 38] and requires several auxiliary data structures [20, 22]

to keep track of information for Euler tours.

The work by Henzinger and King [20, 22] sparked a whole line

of research based on hierarchical forests for dynamic connectivity.

We divide the algorithms into two groups: those that minimize the

worst-case costs and those that optimize the amortized costs. We

first look at worst-case costs for update operations. Interestingly

enough, for sparse graphs, the algorithm by Frederickson [16] (and

the improvement by Eppstein [14]) is still competitive. Kapron et

al. [31] proposed an algorithm with complexity O(log5 n), but it
turned out that it can produce false negatives. In 2016, Kejlberg-

Rasmussen et al. [32] improved the complexity toO(
√︁
n(log logn)2/logn).

Henzinger and King were the first to look at amortized costs and

achieve polynomial logarithmic amortized complexity. Holm at

al. [25] improved the bound by adding invariants to the hierarchical

forests. Orthogonal data structures, such as local trees, lazy local

trees, bitmaps, and a system of shortcuts [27, 46, 49], are introduced

to improve the amortized complexity. The combination of these

complicated data structures makes it difficult to implement (and

evaluate) these algorithms. In fact, only Henzinger-King’s algorithm

HK [20, 22] was fully implemented and evaluated [3, 28, 50] and is

therefore our main contender.

Most existing work on labeling schemes [5, 7, 29, 47, 52] requires

that input graphs are directed and/or DAGs, and consequently

are generally not applicable to undirected graphs. A recent data

structure for labeling, called DBL [33], works for undirected graphs.

However, DBL only supports insertions on graphs, and constructing

DBL is expensive since it needs to run BFS on connected compo-

nents.

3 PRELIMINARIES
We consider undirected unweighted simple graphsG(V , E) defined by
a set of verticesV and a set E of edges [17, 48]. A graph is simple iff
there is at most one edge (u,v) ∈ E that connects a pair of vertices

u,v ∈ V . We measure the size of a graph in the number of vertices

it contains, which we denote by |V |. Given a graph G(V , E), a path
P is a sequence of distinct vertices (v1,v2, . . . ,vn ), vi ∈ V , such
that each pair of adjacent vertices in P , vi and vi+1, are connected
via an edge (vi ,vi+1) ∈ E. The length |P | of a path P is defined

by the number of edges in the path, i.e., for P = (v1,v2, . . . ,vn ),
|P | = n − 1. If there is an additional edge between vn and v1, then
the sequence (v1,v2, . . . ,vn ) forms a cycle. The diameter of a graph
is the length of the longest shortest path between two vertices in

the graph. A connected component C(V ′, E ′) is a maximal subgraph

of a graphG(V , E), withV ′ ⊆ V , E ′ ⊆ E, in which all pairs of nodes

are connected via a path.

Example 3.1. Figure 1 shows a graph G1 with two connected

components C1 and C2.

n1

n2 n3 n4

n5 n6

(a) Component C1

n10 n11

n9

n12

(b) Component C2

Graph G1

Figure 1: G1 = {C1,C2} with components C1 and C2

A tree is an undirected graph in which any pair of vertices is

connected by exactly one path. Thus, the vertices in a tree are all

connected and the tree does not contain cycles. In a forest, any two

vertices are connected by at most one path, which means that its

connected components consist of trees. In a rooted tree, we designate
one vertex as the root r of the tree. By definition, r has depth 0. The

depth of any other vertex v is determined by its (tree) distance dT
to r , i.e., dT (r ,v) is equal to the length of the path from the root

to the vertex. The height of a tree is equal to the depth of the leaf

node with the maximum depth. Given a rooted tree with root r , the
ancestors, anc(v), of a nodev ≠ r (r does not have any ancestors) are
all the nodes on the path fromv to r exceptv . The parent ofv is the

node u on this path with depth(u)+ 1 = depth(v). The children of v
are the nodes that havev as a parent. The descendants, desc(v), ofv
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are all nodes u ≠ v for whichv appears in the path from u to r . The
subtree rooted at v consists of v and all its descendants. The size of
this subtree, denoted by size(v), is measured in the number of nodes

it includes. Given a connected componentC(V ′, E ′), a spanning tree
T = (V ′, ET ), with ET ⊆ E ′, is a rooted tree containing all vertices

of C . We use a spanning forest, consisting of a spanning tree for

each component, for graphs with more than one component.

Example 3.2. Figure 2 depicts spanning forest F1 for graph G1

from Figure 1. F1 is made up of spanning treesT1 andT2 for compo-

nentsC1 andC2, respectively. The path from n5 to n1 is (n5, n3, n1);
anc(n5) = {n1, n3}; desc(n3) = {n5}; depth(n3) = 1 and depth(n5) =
2. The subtree rooted at n3 consists of n3 and its descendant n5,
and the size of this subtree is 2.

n1

n2 n3 n4

n5 n6

(a) Spanning Tree T1 for C1

n10 n11

n9

n12

(b) Spanning Tree T2 forC2

Forest F1

Figure 2: Spanning forest F1 = {T1,T2} for G1 with spanning
trees T1 and T2 for components C1 and C2. The roots of the
spanning trees are colored red.

Definition 3.3 (Vertex deviation and centroid). Given a tree T =
(V ′, ET ), the vertex deviationm(v) of a vertex v ∈ V ′

is the average

distance of v to all other nodes: m(v) = 1/|V ′ |

∑︁
u ∈V ′ dT (v,u). A

centroid (or vertex median) of T is a vertex with minimalm(v) for
T [30, 51].

A tree with an even number of vertices can have two centroids.

In this case, the two centroids are adjacent to each other [51].

Example 3.4. The centroid of T1 in Figure 2(a) is n1 since the

vertex deviationm(n1) = (1 + 1 + 1 + 2 + 2)/6 = 7/6, which is minimal for

this tree.

4 PROBLEM DEFINITION
We now formally define connectivity queries on graphs and formu-

late the challenges posed by dynamic graphs.

Definition 4.1 (Connectivity query). Given a graph G(V , E) and
two verticesu,v ∈ V , the connectivity query conn(u,v) returns True
if there exists a path between u and v in G, and False otherwise.

Example 4.2. Consider graph G1 in Figure 1. The connectivity

query conn(n2, n6) returns True, as n2 and n6 are connected via n1
and n4 (and also via n5 and n3). The connectivity query conn(n6, n9)
returns False, because n6 and n9 are located in different components.

A naive approach for checking connectivity is to run a search

algorithm, such as breadth-first search (BFS) or depth-first search

(DFS), from one of the two vertices and test if the search finds the

other node, which is prohibitively expensive for large graphs (it has

complexity O(|V | + |E |)). For static graphs, we can determine all

connected components of a graph, using BFS or DFS (see, e.g., [26]),

and then label the nodes with the ID of the component they be-

long to. Given two nodes, we then directly decide in constant time

whether they are connected. Evaluating connectivity queries on

dynamic graphs is a much more challenging scenario. We first

formally define dynamic graphs:

Definition 4.3 (Fully dynamic graph). In a fully dynamic graph
Gd (V , E), edges are inserted and deleted one at a time. We ap-

ply a sequence of update operations to a graph, ((t1,o1), (t2,o2),
(t3,o3), . . . ), where ti is a timestamp and oi is either an insertion

(Et+1 = Et ∪ (vi ,vj )) or a deletion (Et+1 = Et \ (vi ,vj )) of an edge.

Since we only deal with dynamic graphs from here on, we drop

the subscript d and refer to dynamic graphs as G(V , E). Our im-

plementation allows the insertion and deletion of isolated, i.e., un-

connected vertices. However, since spanning trees consisting of a

single node are trivial to handle, we restrict our description to edge

insertions and deletions.

As we will see later, in the worst case the performance of deletion

operations is especially problematic. We argue that these cases

rarely occur in real-world graphs and that it is more important to

consider the average-case complexity.

Before going into the implementation details of our approach,

which is based on spanning trees, we explicitly define the problem

we are solving in Definition 4.4 and then investigate important

aspects of applying spanning trees to evaluate connectivity queries

in fully dynamic graphs and show how we exploit these properties

in the following section.

Definition 4.4 (Problem definition). Find a data structure that in

fully dynamic graphs, on average, allows us to (a) answer connec-

tivity queries and (b) maintain the data structure efficiently.

5 LEVERAGING SPANNING TREES
We first define the problem of evaluating connectivity queries with

an optimal average-case complexity. Next, we introduce Sd , which
optimizes average costs for connectivity queries, and Sc , which
optimizes average costs for searching for replacement edges. Finally,

we formally establish the relationship between Sc and Sd . All proofs
for the theorems and lemmas in this section are included in the

technical report [6].

5.1 Evaluating Queries
We use a spanning forest to answer connectivity queries conn(u,v)
by traversing the paths from u and v to the respective roots ru and

rv of their spanning trees. If we end up at the same root, then u and

v are located in the same component and are connected. If we reach

different roots, they are not connected. The costs for evaluating

a connectivity query conn(u,v) via spanning trees is equal to the

sum of distances of u and v to their roots: dT (ru ,u) + dT (rv ,v).

Definition 5.1 (Sum of distances between root and its descendants).
Given a (spanning) tree T = (V ′, ET ) with root r , the sum of dis-

tances between r and its descendants, Sd is defined as follows:

Sd (T ) =
∑︂
x ∈V ′

dT (r , x). (1)

Before analyzing the average-case costs, we give a formal defini-

tion of these costs:
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Definition 5.2 (Average-case complexity). Let I be the set of all
possible inputs for an algorithm A and let t(i), i ∈ I , be the cost
of running A on input i . The probability that input i occurs is
defined by p(i). The average cost of running A is the expected value

of the running times: E(t) =
∑︁
i ∈I t(i)p(i). If the probabilities p(i)

are not available, often a uniform distribution is assumed: E(t) =
1

|I |
∑︁
i ∈I t(i).

A workload-aware analysis utilizing the probability distribution

of the inputs is beyond the scope of this paper. In the following,

we assume a uniform distribution of the inputs. We illustrate with

an example what average-case versus worst-case costs mean for

connectivity queries.

Example 5.3. Consider the spanning tree T1 in Figure 3(a). Then

the worst case for evaluating a connectivity query occurs if we

selectT1.n19 andT1.n20 as parameters, leading to a cost of 3+ 3 = 6.

Assuming a uniform distribution of inputs for connectivity queries

onT1, we get 2 ∗ Sd (T1)/|T1 | = (2 ∗ 25)/20 = 2.5 for the average costs. If we

balance the tree by rerooting it, we get T ′
1
as shown in Figure 3(b).

For T ′
1
the costs are 4 in the worst case and 3.5 in the average case.

n1

n2 n3 ...
n15 n16
n17 n18

n19 n20

(a) Structure of T1, Sd = 25.

n16

n1

n2 n3 ...
n15

n17 n18

n19 n20

(b) Balanced trees T ′
1
, Sd = 35.

Figure 3: Unbalanced versus balanced spanning trees

In Example 5.3, by balancing the spanning trees (and optimizing

the worst case), we actually worsen the average costs. Looking at

T1 in Figure 3(a), we can see that the paths from n1 to n19 and from
n1 to n20 are outliers, all the other nodes are very close to n1. In
essence, balancing the tree punishes the performance of all other

queries not involving these outliers. For this reason, other (tree-like)

data structures, such as tries [41] and multilevel extendible hashing

schemes [19], do not strive for balance, but allow the outlier parts

to grow deeper than the rest of the tree.

We now investigate what spanning trees have to look like to

guarantee minimum average costs.

Theorem 5.4. The average costs of evaluating connectivity queries
with spanning trees is optimal if the trees in the spanning forest
minimize Sd .

Generally, a high fanout leads to shallow trees (B-trees are a

classical example), which in turn decreases the distances between

the root and other nodes. When it comes to spanning trees, using

breadth-first-search (BFS) trees provides excellent fanout, minimiz-

ing Sd for a given root.

Definition 5.5 (Breadth-first-search tree (BFS-tree)). For a con-

nected component C = (V ′, E ′) (or a connected graph), a BFS-tree

is a spanning tree constructed by a breadth first search, which tra-

verses the component level by level, starting from the root node r
of the BFS-tree, then visiting all the nodes at a distance of one, at a

distance of two, and so on.

Lemma 5.6. In a BFS-tree with root r the sum of distances Sd
between r and all other nodes is minimal.

So, we could compute the optimal BFS-tree for each component,

i.e., if P = {BFS-tree with root v |v ∈ V ′} is the the set of all BFS-

trees with different roots for componentC = (V ′, E ′), we select the
tree with Sd = minT ∈P Sd (T ) . This optimizes the average cost of

running connectivity queries via spanning trees. For fully dynamic

graphs, it is too expensive to update these spanning trees while

preserving them to be optimal BFS-trees. Instead, we switch to

efficient heuristics, e.g., by picking a root that is a centroid.

5.2 Updating Spanning Trees
We distinguish two different types of edges in a connected compo-

nent: those that belong to the current spanning tree representing

the component, which we call tree edges, and those that do not,

which we call non-tree edges.

Definition 5.7 (Tree and non-tree edges). Consider a connected
component C(V ′, E ′) and a spanning tree T = (V ′, ET ) for C . An
edge (u,v) ∈ E ′ is a tree edge for C if (u,v) ∈ ET , and a non-tree
edge for C if (u,v) ∈ E ′ \ ET .

Example 5.8. Consider component C1 = (V1, E1) in Figure 1(a)

and spanning tree T1 for C1 in Figure 2(a). In E1, edges (n2, n5),
(n3, n6) and (n4, n5) are non-tree edges while all other edges are
tree edges.

We first look at update operations that involve non-tree edges,

which is the simpler case, and then move on to updates of tree edges.

When we delete a non-tree edge (u,v) in a connected component

C(V ′, E ′), this does not affect the spanning tree and we do not have
to make any changes to it (we know that all vertices in C are still

connected via the tree edges). Even better, if the spanning tree is

an (optimal) BFS-tree, it will remain an (optimal) BFS-tree, since

taking away an edge from C does not add any shortcuts between

nodes that could lead to a better tree.

Inserting a new non-tree edge (u,v), i.e., both, u andv , are in the

same componentC , means that the current spanning forest forG is

still valid. So, if we are only interested inmaintaining spanning trees

for the components ofG, we would not have to modify anything.

However, inserting a non-tree edge can invalidate that a spanning

tree is a BFS-tree. Assume that depth(u) + 1 < depth(v), then v
(and possibly some of its ancestors) can be reached faster through u
than taking the existing path from v to the root of the tree. We can

fix this case. We define ∆ = depth(v) − depth(u). We disconnect

v and (∆ − 2) of its ancestors (v’s (∆ − 2)-nd ancestor and v have

a distance of (∆ − 2)) from the spanning tree, reroot this subtree

to make v the new root, and connect this subtree to u. The edge
(u,v) becomes a tree edge, while the edge previously connecting

the (∆ − 2)-nd ancestor to the tree becomes a non-tree edge. We

now have a spanning tree that is a BFS-tree again. Note that the

heuristic does not guarantee the optimality of the BFS-tree.

Example 5.9. Figure 4 shows an example of restoring a BFS-

tree after inserting a non-tree edge (n5, n8). n5 can reach root n1
faster through n8. Since depth(n8)+1 < depth(n5), ∆ = depth(n5) −
depth(n8) = 4− 1 = 3, and ∆− 2 = 1, the (∆− 2)-nd ancestor of n5 is
n4. We disconnect n4 from the tree, turning n5 into the root of the
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subtree and connecting this subtree to n8. The previous tree edge
(n3, n4) becomes a non-tree edge (not shown in Figure 4) and (n5,
n8) becomes a tree edge. While the tree in Figure 4(b) is a BFS-tree,

it is not the BFS-tree with the optimal Sd anymore. In Section 5.4

we show how to improve Sd .

n1

n2
n3

n4
n5

n6

n8

n9
n10
n11
n12

(a) Inserting the (dashed) non-
tree edge (n5, n8), Sd = 27.

n1

n2
n3

n8

n5
n9

n10
n11
n12

n4 n6

(b) After restoring the BFS-
tree, Sd = 23.

Figure 4: Restoring the BFS-tree.

Let us now turn to updates involving tree edges. If we insert

a new edge (u,v) into G and discover that u and v are located in

different components, C1 and C2, respectively, then we need to

merge C1 and C2 into a single component C3. Consequently, the

spanning trees T1 and T2 currently representing C1 and C2 also

need to be merged into a single spanning tree T3. This involves
rerooting one of the trees and connecting it to the other. Assume

that we make v the new root of T2, which, w.l.o.g., is the smaller

tree, and then connect it via (u,v) to T1, making (u,v) a tree edge
in T3. If we start with trees that are BFS-trees, the part covered by

T1 will still be one and the edge (u,v) is on the shortest path to

connect to vertices in T2, which may not be a BFS-tree anymore

after the rerooting. Essentially, this limits the damage we do to

the smaller tree. Instead of rerooting T2, we could run BFS on T2
starting at node v (to recreate a BFS-tree) and then connect u to v .
This entails costs of O(|V2 | + |ET2 |), compared to O(depth(v)) for
rerooting the tree. The performance is the reason we opt for the

rerooting, even though it does not guarantee an optimal BFS-tree

(more details on the implementation in Section 6 and the impact

on the performance in Section 7).

When deleting a tree edge, the spanning tree T for C is split

into two trees T1 and T2. However, we do not know yet whether

this will also split component C . If we can find a replacement edge
(x,y) ∈ E ′ \ ET among the non-tree edges in C that reconnects T1
and T2, then we know that the vertices in C are still connected. In

this case, (x,y) becomes a tree edge in the new, rearranged spanning

tree forC and is handled like the insertion of a tree edge as described

above (i.e., we reroot the smaller tree and attach it to the other one).

However, we may have more than one replacement edge. In this

case, we choose the edge connecting to the node closest to the root

of the larger tree. This is the fastest way from the root of the larger

tree to the smaller tree. If we cannot find a replacement edge, we

know that C has been split into two connected components C1 and

C2 by the deletion of (u,v). The two parts of the original spanning

tree,T1 andT2, then representC1 andC2, respectively. If the original

tree T is a BFS-tree, then T1 and T2 will also be a BFS-tree (albeit

not necessarily an optimal one). Deleting a tree edge is the most

complex operation, we take a detailed look in the following section.

While a single edge always suffices to reconnect spanning trees

after a deletion, the problem is finding this edge efficiently without

searching through large parts of T1 and T2.

5.3 Searching for a Replacement Edge
A naive approach of searching for a replacement edge after a dele-

tion is to run DFS or BFS on the resulting trees T1(V1, ET1 ) and
T2(V2, ET2 ). This is costly for graphs containing large connected

components (O(|V1 | + |V2 | + |ET1 | + |ET2 |) if implemented naively.

There are some optimizations we can apply, though. We only need

to search the smaller of the two treesT1 andT2: a replacement edge

can be found from either direction. So, we could run the search on

T1 and T2 in an interleaved fashion and immediately stop once we

have completely traversed one of the trees (or have found a replace-

ment edge). Alternatively, keeping track of the size of subtrees in a

spanning tree, we could always run the search on the smaller tree.

In our approach, we create and maintain spanning trees in a

way to increase the likelihood of an uneven split. We define the cut
number of an edge e ∈ ET in a tree T (V ′, ET ), which is the size of

the smaller tree after splitting T along e .

Definition 5.10 (Cut number). Given a treeT (V ′, ET ) and an edge

e ∈ ET , we splitT into two subtrees,T1 andT2, by removing e (every
edge in a tree is a cut edge). We define the cut number of e as the size
of the smaller tree: c(e) = min(|T1 |, |T2 |). Let Sc (T ) =

∑︁
e ∈ET c(e)

be the sum of cut numbers for T .

The search for a replacement edge after deleting a tree edge is

proportional to the cut number of the edge we are deleting. Thus,

assuming a uniform distribution for selecting a cut edge, the average

costs of the search are equal to
Sc (T )/|ET |. These costs are minimized

for spanning trees that minimize Sc , as |ET | is constant for any
given spanning tree.

It is hard to analyze the cut number as defined in Definition 5.10,

as we are summing overminimums. However, there is an alternative

way to compute the cut number. We first formulate the following

theorem (taken from [11, 51]), which we use for computing the cut

number.

Theorem 5.11 (Centroid and size of subtrees). Letm be (one
of) the centroid(s) of a tree T (V ′, ET ). Removing this centroid from
the tree will create a forest consisting of treesT1,T2, . . . ,Tk . For every
tree Ti , 1 ≤ i ≤ k , |Ti | ≤ |T |/2, i.e., each tree Ti contains at most half
of the vertices of T .

Before computing the cut number of a tree, we move the root of

the tree to (one of) the centroid(s)m. This allows us to get rid of

the minimum in Sc , as we know that every subtree connected tom
contains at most half of the vertices. W.l.o.g. let pv be the parent of

v , we go through all the edges (pv ,v) ∈ ET . Due to Theorem 5.11,

we know that the cut number of (pv ,v) is equal to size(v), the size
of the subtree rooted at v . Therefore,

Sc (T ) =
∑︂

v ∈V ′\m

size(v) (2)

Lemma 5.12. For a tree T (V ′, ET ) whose root r is a centroid, the
sum of cut numbers, Sc (T ), is equal to the sum of distances, Sd (T ).

Thus, the sums Sc and Sd are directly related to each other. Even

better, utilizing Lemma 5.12 and Equation (2) (see Section 6 for de-

tails), we can maintain a low value for Sc and Sd using information

3267



about the size of subtrees, which is much easier to maintain in a

dynamic spanning tree than information about the depth of nodes.

With the next lemma we show that the BFS-spanning-tree Tm
with the minimal sum of distances Sd for a component will always

have a centroid as a root. For Tm , the average costs for evaluating

connectivity queries and searching for a replacement edge are

minimized.

Lemma 5.13. Let P = {BFS-tree with root v |v ∈ V ′} be the set of
BFS-trees for component C = (V ′, E ′). Let Tm (Vm, Em ) ∈ P with root
r being the BFS-tree in P with minimal overall Sd for all trees in P .
Then r is a centroid of Tm .

5.4 Fixing Spanning Trees
We have now identified what a spanning tree for a component

has to look like in the ideal case to minimize the average costs for

evaluating connectivity queries and searching for a replacement

edge: it is the BFS-tree with the minimal sum of distances. Next,

we have a closer look at how Sd is affected by updates. When we

delete a non-tree edge in a component, the value of Sd for BFS-trees

rooted at other nodes can never decrease, as we now have fewer

options to expand the search frontier during BFS. So, we are on the

safe side in this case.

While inserting a non-tree edge and rearranging subtrees as

described in Section 5.2 keeps them BFS-trees, there might now

be a BFS-spanning-tree rooted at another vertex with a smaller

Sd . For example, assume that a connected component C(V ′, E ′)
only contains the (solid) edges of tree T (V ′, ET ) in Figure 4(a), i.e.,

E ′ = ET . Then we insert the (dashed) non-tree edge (n5,n8) and
restructure the tree to look as depicted in Figure 4(b). Clearly, this

is a BFS-tree. However, if we construct a spanning tree by running

a BFS starting from node n8, we would get the tree T ′(V ′, ET ′)

shown in Figure 5, with Sd (T
′) = 18 < 25 = Sd (T ). Running a BFS

on (all) vertices of a connected component after an insertion to find

a BFS-tree with a better value for Sd is too expensive. Nevertheless,

we can at least restore the centroid property, i.e., if we notice that

the root r of the current spanning tree is not a centroid, we reroot

it. As we have seen in Theorem 5.11, if we ever find a child c j of
the root with size greater than half of the vertices in the tree, we

make r a child of c j and get a tree with a smaller sum of distances

Sd . While this does not guarantee the best overall spanning tree for

a component, it guarantees a tree that minimizes Sd for all trees

with root c j (see also Definition 3.3).

n8

n1 n5
n9

n10
n2

n3 n4n6
n11
n12

Figure 5: Restoring centroid property, Sd = 18.

Ending up with a subtree that contains more than half of the

vertices can also happen during the insertion of a tree edge when

we attach the smaller to the larger tree. Even splitting a spanning

tree (in case we do not find a replacement edge) can lead to this

situation. For example, if we delete edge (n2,n3) in the tree shown

in Figure 4(a) (before inserting (n5,n8)), we end up with two BFS-

spanning-trees, rooted at n3 and n1, respectively, with a suboptimal

Sd . Since the spanning trees we create tend to be flat with a high fan-
out, going through all the children of the root can take considerable

time. Instead, we piggyback the centroid restoration onto other

operators.

Before we insert a tree or non-tree edge (u,v), we have to go

to the root of the tree(s) containing u and v , to find out whether

(u,v) is a tree or non-tree edge. Thus, once we have reached the

root, we check whether the child we came through on our way

to the root has a size greater than one half of the size of the root

after the insertion. If this is the case, we make this child the new

root. Unfortunately, this does not work in the case of a deletion

that splits a connected component, as we do not necessarily pass

through the child at the root of the subtree containing more than

half of the nodes. Therefore, we also check the size of the child we

navigate through when we reach the root during the evaluation

of a connectivity query. This defers the restoration of the centroid.

However, as long as we do not have any connectivity query passing

through this child, this has no influence on the query costs.

6 IMPLEMENTING SPANNING TREES
The implementation must be able to distinguish and handle tree

and non-tree edges (as defined in Definition 5.7) in spanning trees.

We start out by defining the neighborhood of a vertex.

Definition 6.1 (Neighborhoods). Given a connected component

C = (V ′, E ′), let ΓC (v) (with v ∈ V ′
) denote the neighborhood of

nodev , i.e., ΓC (v) = {u ∈ V ′ |(u,v) ∈ E ′} contains all nodes inV ′
to

which v is directly connected. Given a spanning tree T = (V ′, ET )
for component C , the tree-edge neighborhood ΓteC ,T (v) = {u ∈

V ′ |(u,v) ∈ ET } of node v is the set of nodes in ΓC (v) that are
directly connected to v via edges in ET . The non-tree-edge neigh-
borhood ΓnteC ,T (v) = {u ∈ V ′ |(u,v) ∈ E ′ \ ET } of node v contains all

other edges in ΓC (v). Thus, ΓC (v) = ΓteC ,T (v) ∪ ΓnteC ,T (v).

Example 6.2. Consider component C1 in Figure 1(a), the neigh-

borhood of vertex n5, ΓC1
(n5) = {n2, n3, n4}. Given the correspond-

ing spanning tree T1 in Figure 2(a), the tree-edge neighborhood of

node n5, ΓteC1,T1
(n5) is {n3}, while its non-tree-edge neighborhood

ΓnteC1,T1
(n5) is {n2, n4}.

6.1 Dynamic Trees
A dynamic tree or D-tree is a spanning tree with additional infor-

mation to facilitate its maintenance.

Definition 6.3 (Dynamic tree (D-tree)). A dynamic tree (D-tree)
for a spanning tree T = (V ′, ET ) is a k-ary tree (with arbitrarily

large k) in which each tree node has an attribute

• key, which acts as a unique identifier of a node

• parent , which is a pointer that links a node to its parent

• children, which is a set of pointers that connects a node to

all its children

The attribute key identifies each node. We store both, parent and
children, as we need to navigate both ways, e.g. traversing via

parents for connectivity queries and via children searching for a

replacement edge. We write p(v) to denote a pointer to node v .
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We add two more attributes for efficiency reasons:

• attribute size denoting the number of nodes found in the

subtree rooted at a node.

• attribute nte storing the non-tree edge neighborhood ΓnteC ,T
of a node (as pointers to neighboring nodes).

Attribute size plays a crucial role when minimizing Sd and Sc (cf.
Section 5), while nte allows us to embed the complete graphG(V , E)
into a D-tree forest. Not having to compute these attribute values

on the fly speeds up the maintenance considerably. Adding an

additional attribute to each node to indicate which root it belongs

to would speed up queries, but at the price of slowing down updates.

Every time we merge, split, or reroot a spanning tree, we would

have to update this attribute: when merging or splitting we would

need to update all the nodes in the smaller tree and when rerooting

all the nodes in the whole tree.

n1
s=6

nte={}

n2
s=1

nte={n5}

n3
s=2

nte={n6}

n5
s=1

nte={n2, n4}

n4
s=2

nte={n5}

n6
s=1

nte={n3}

(a) D-tree D1

n9
s=4

nte={}

n10
s=2

nte={n11}

n12
s=1

nte={}

n11
s=1

nte={n10}

(b) D-tree D2

Figure 6: D-treesD1 andD2 for the spanning treesT1 andT2 of
Figure 2, respectively. We show key, size (abbreviated with s),
and nte as attributes, while parent and children are visualized
using lines.

Example 6.4. Figure 6 shows D-tree D1 for the spanning tree T1
in Figure 2. Tree node n1 is the root (so n1.parent = Null ), has three
children (n1.children = {p(n2), p(n3), p(n4)}) and no non-tree-edge

neighbors (n1.nte = ΓnteC1,T1
(n1) = {}. The total number of nodes in

the tree rooted at n1 is 6 (so, n1.size = 6). The edge (n2, n5) is an
example of a non-tree edge and is stored in the nte-attributes of
nodes n2 and n5 (n2.nte = {n5} and n5.nte = {n2}).

The attributes parent and children capture the tree-edge neigh-

borhood of a node: ΓteC ,T (v) = {v .parent ∪v .children} (we use the

dot notation to access attributes) while the non-tree-edge neighbor-

hood of a node is stored in attribute nte . Embedding the complete

graph G(V , E) in a D-tree forest means that every vertex v ∈ V
appears as a node nv in a D-tree (in the following, we use v and

nv interchangeably) and every edge (u,v) ∈ E appears in the set:

{(u, x)|x ∈ (u .parent ∪ u .children ∪ u .nte)}.

6.2 Auxiliary Operations
Before going into the details of the D-tree operations, we introduce

auxiliary operations to modify D-trees. These are needed, for ex-

ample, to prepare the merging of D-trees or to restore BFS-trees

or the centroid property. The first auxiliary operation, shown in

Algorithm 1, is reroot. The reroot operation makes nw the new root,

which results in a new D-tree. It follows the path from the new root

nw to the previous root, swaps the parent/child relationship of two

neighboring nodes, and updates the size-attributes of the visited
nodes.

Algorithm 1: reroot(nw )

input : tree node nw of D-tree with the root r
output :nw , new root of the rerooted D-tree

1 ch = nw ; cur = nw .parent ; nw .parent = NU LL;
2 while cur ≠ NU LL do
3 д = cur .parent
4 cur .parent = ch
5 remove ch from cur .children
6 add cur to ch .children
7 ch = cur ; cur = д;

8 while ch .parent ≠ NU LL do
9 ch .size = ch .size - ch .parent .size

10 ch .parent .size = ch .parent .size + ch .size
11 ch = ch .parent

12 return uw

Example 6.5. In Figure 7, we employ reroot(n1) on a D-tree and

show the D-tree after the reroot operation.
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Figure 7: Example of reroot operation. Thente-attributes are
not shown since they remain the same.
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Figure 8: Example of link(n4, n1, n10). The nte-attributes are
not shown since they remain the same.

The link operation (see technical report [6] for pseudocode) takes

two D-trees that are currently not connected and connects them

via a new tree edge between nu (an arbitrary node in one of the D-

trees) and nv (the root of the other D-tree).
1
During the linking, the

1
This means, that we may have to call a reroot operation on one of the trees before

linking them.
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size-attributes of the nodes on the path from nu to ru are increased

by nv .size . If we encounter a node on the path from nu to the root

that contains more than half of the nodes in the merged tree, we

restore the centroid property (cf. Section 5.4).

Example 6.6. Figure 8 shows the operation link(n4, n1, n10) that
attaches D2 (see Figure 6(b)) to D1 (see Figure 6(a)). Values of size-
attributes of nodes on the path from n4 to n1 are increased by

n10.size = 4. Since n4 contains more than half of the nodes of

the merged tree, n4 becomes the new centroid and we perform a

reroot(n4) operation.

The unlink operation (see technical report [6] for pseudocode)

splits a D-tree D into two parts, by removing the tree edge between

node nv , which is a non-root node in D, and its parent node. The

size-attributes of all (former) ancestors of nv are decreased by

nv .size . After unlinking, nv becomes the root of a separate D-

tree, no adjustments are necessary in this tree. For example, in

Figure 9(a), the unlink(n4) operation on D1 of Figure 6 results in

two D-trees.

6.3 Connectivity Queries
Algorithm 2 shows the pseudocode for running a connectivity query

conn(nu ,nv ). As discussed in Section 5.4, this includes restoring

the centroid property (line 3 and line 6).

Algorithm 2: conn(nu , nv )
input :Tree nodes nu and nv
output :True if nu and nv are connected, False otherwise

1 du = Null
2 while nu .parent ≠ Null do du = nu ; nu = nu .parent
3 if du ≠ Null and du .size > nu .size/2 then nu = reroot(du )
4 dv = Null
5 while nv .parent ≠ Null do dv = nv ; nv = nv .parent
6 if dv ≠ Null and dv .size > nv .size/2 then nv = reroot(dv )
7 return nu .key == nv .key

6.4 Operations on Non-tree Edges
First, we determine if we are deleting a tree edge or a non-tree

edge. Consider an edge (u,v) ∈ E ′ in a connected component

C = (V ′, E ′). If u and v are in a parent/child relationship in the

D-tree representing C , (u,v) is a tree edge (which we cover in

Section 6.5.2), otherwise it is a non-tree edge (and, thus, u ∈ v .nte
and v ∈ u .nte).

6.4.1 Deleting Non-tree Edges. Deleting a non-tree edge is the

simplest update operation, as it does not affect the structure of

the spanning tree, we merely need to update the nte-attributes of
the corresponding nodes. The pseudocode for the deletion of a

non-tree edge is available in the technical report [6].

6.4.2 Inserting Non-tree Edges. When inserting a new edge (u,v)
(u,v ∈ V ) into a graph G(V , E), we first run a connectivity query

conn(u,v). If it returns ’True’, then u and v are in the same compo-

nent C and we are inserting a non-tree edge. Algorithm 3 shows

the pseudocode of inserting a new non-tree edge (for details, see

Section 5.2). The algorithm first determines the depths of nu and

nv and the root of D. If the difference of the depths is less than two,

we just add (nu ,nv ) as a non-tree edge to D. Otherwise, (w.l.o.g,
assume that depth(nu ) < depth(nv )), we select the (∆ − 2)nd an-

cestor of nv and unlink this ancestor from D (line 14); we make

h = nv the root of the resulting subtree and link this subtree to D
(line 15).

Algorithm 3: insertnte (nu , nv , r )
input :Tree nodes nu and nv (in the same D-tree D), r is root of D
output :Updated D-tree after insertion of non-tree edge (nu , nv )

1 determine depth(nu ), depth(nv ), and root r of D
2 if depth(nu ) ≤ depth(nv ) then l = nu ; h = nv ;

3 else l = nv ; h = nu ;

4 ∆ = depth(h) − depth(l )
5 if ∆ < 2 then
6 add nv to nu .nte
7 add nu to nv .nte
8 return r

9 else
10 i = h
11 for x = 1 to ∆ − 2 do i = i .parent ;
12 add i to i .parent .nte
13 add i .parent to i .nte
14 unlink(i )
15 return link(l , r , reroot(h))

6.5 Operations on Tree Edges
6.5.1 Inserting Tree Edges. We first discuss insertions of tree edges,

which connect two previously unconnected D-trees. This means,

that the connectivity query conn(nu ,nv ) came back with the result

’False’. We also know the roots of the trees containing nu and

nv now: they are ru and rv , respectively. Algorithm 4 shows the

pseudocode for inserting the tree edge (nu ,nv ) (details in Section

5.2). Basically, we take the smaller tree (w.l.o.g. assume that this

is the tree containing nu ), reroot it to nu , and connect it to nv . If
necessary, the link operation also restores the centroid property.

Algorithm 4: insertte (nu , nv , ru , rv )
input :Tree nodes nu and nv and the roots ru and rv of the D-trees

containing them

output :Merged D-tree after insertion of tree edge (nu , nv )
1 if ru .size < rv .size then return link(nv , rv , reroot(nu )) ;
2 else return link(nu , ru , reroot(nv )) ;

Example 6.7. Example for an insertion, insertte (n4, n10, n1, n10),
can be seen in Example 6.6. When inserting the tree edge (n4, n10),
merging D1 and D2, we find that D2 containing n10 has a smaller

number of nodes. We conduct directly link(n4, n1, n10) operation
since n10 is already the root of the smaller tree, resulting the D-tree

with n4 as the centroid.
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6.5.2 Deleting Tree Edges. Algorithm 5 shows the pseudocode for

deleting tree edges. We first unlink the tree along the parent/child

edge (nu ,nv ) and determine the root of the tree of the parent node

(the child node is the root of the unlinked subtree). Next, we conduct

a BFS on the tree edges in the smaller tree (the one rooted at rs )
to search for a replacement edge among the non-tree edges (line

4). If we do not find a replacement edge (line 5), we return the two

unlinked D-trees. We fix the centroid property of the smaller tree

if it is violated (line 6). If there are multiple replacement edges, we

pick one as described in Section 5.2. In a replacement edge (nrs ,nrl ),
nrs is located in the smaller tree created by unlinking the input tree,

while nrl is located in the larger tree (the one rooted at rl ).

Algorithm 5: deletete (nu , nv )
input :Nodes of nu and nv of deleted tree edge

output :Either reconnected D-tree if replacement edge is found or two

separate D-trees otherwise

1 if nu = nv .parent then ch = nv else ch = nu
2 (ch, r ) = unlink(ch)
3 if ch .size < r .size then rs = ch; rl = r else rs = r ; rl = ch
4 R = {(nrs , nrl ) | nrs ∈BFS (rs ) ∧ nrl ∈nrs .nte ∧ rl ∈anc(nrl )}
5 if R = ∅ then
6 if exists non-rootm withm .size > rs .size

2
then rs = reroot(m)

7 return (rs , rl )

8 else
9 choose edge (nrs , nrl ) ∈ R with minimal depth(nrl )

10 deletente (nrs , nrl )
11 return (insertte (nrs , nrl , rs , rl ))

Example 6.8. Figure 9 illustrates deletete (n1, n4) on D1. First, we

remove the subtree rooted at n4 via unlink(n4), creating two D-trees.
The D-tree with n4 as root is smaller in size, i.e., rs = n4 and rl = n1.
We conduct a BFS starting at n4 to find replacement edges for the

deleted tree edge (n1, n4) and get back R = {(n4, n5), (n6, n3)} (line
4). We select the non-tree edge (n6, n3) as the replacement edge

since the depth of n3 (= 1) is smaller than the depth of n5 (= 2). We

delete the non-tree edge (n6, n3), and run insertte (n6, n3, n4, n1).
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n1
s=4

nte={}

n2
s=1

nte={n5}

n3
s=3

nte={n6}

n5
s=1

nte={n2, n4}

n6
s=2

nte={n3}

n4
s=1

nte={n5}

(b) After reroot(n6)

n3
s=6

nte={}

n1
s=2

nte={}

n2
s=1

nte={n5}

n5
s=1

nte={n2, n4}

n6
s=2

nte={}

n4
s=1

nte={n5}

(c) After link(n3, n1, n6)

Figure 9: Illustrations of deletete (n1, n4) on D-tree D1.

Finally, we analyze the average case time complexity of the op-

erators. Deleting a non-tree edge (u,v) is the simplest operation:

we just need to remove u and v from v .nte and u .nte , respectively,
which takes constant time. The average cost for all auxiliary op-

erations, connectivity queries, and insertions of tree and non-tree

edges is proportional to the average distance between roots and

all the other nodes, that is
Sd
|V |

, since all these operations involve

traversing a spanning tree from a node to a root. Deleting a tree

edge requires the traversal of the smaller tree and, potentially, the

selection of a replacement edge. On average, the cost for traversing

the smaller tree is equal to the average cut number, i.e.,
Sc
|V |

. When

determining whether a non-tree edge is a replacement edge or not,

we check if the node on the other side of the edge belongs to the

other tree, which has costs similar to a query.

7 EXPERIMENTAL EVALUATION
7.1 Setup
Hardware and environment. All algorithms were implemented

in Python 3. The experiments were conducted on a single machine

with 500GB RAM, running Debian 10. All experiments were run 10

times on the same machine, showing very similar results.

Inserting and deleting edges.We start with empty graphs and

insert (and delete) edges one at a time. When inserting a new edge

e into the graph at time te , we assign a survival time ted to e , i.e.,

the edge is deleted at time te + ted . If e is re-inserted while still in

the graph, e.g., at time ter (with te < ter < te + ted ), the survival

of e is extended, i.e., the deletion is rescheduled to ter + ted . The
deletion of edges models that connections in graphs such as social

or collaborative networks become inactive after some time. Due

to the different granularity of time frames in the different graphs,

we set ted to five years for the Semantic Scholar (SC) dataset and to

fourteen days for all other datasets.

Setup of measurements. Let ts and te be the starting time and

ending time for all updates we run on the graph, respectively. We

examine test_num snapshots, or testing points, of the spanning

trees, which are uniformly distributed in the period from ts to te .
We use test_frequency = (te − ts )/test_num to define how frequently

we evaluate connectivity queries. For all graphs except SC, we set

test_num = 100, which means that every
(te − ts )/100 steps, we run

and evaluate connectivity queries. In the SC dataset, the edges are

inserted on a yearly basis, so we introduce a testing point every year.

For the timespan ts to te , we accumulate the run time of all update

operations and show the average run time. There are variations in

the size of the snapshots depending on the datasets. For example,

the size of the snapshots of the Tech and YT datasets are close to

the size of the actual dataset, while the snapshots for the SC dataset

reach the same order of magnitude as the actual dataset toward the

end of an experimental run.

Evaluating connectivity queries. At each testing point, we

run connectivity queries for all pairs of vertices in small graphs

and for 50 million uniformly distributed pairs in large graphs (as

the total number of pairs in large graphs becomes impractical). We

consider graphs with fewer than 10K vertices small graphs.

7.2 Datasets
Every graph in our datasets is represented by a set of edges with

timestamps (the insertion time). All edges are undirected and we

use |V | and |E | to denote the number of vertices and edges for a

graph, respectively. We use the following ten real-world graphs for

our experimental studies.
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Table 1: Characteristics of datasets.

Name |V | |E | # updates

email-dnc (DNC) [35] 1.9 ×103 3.74 ×104 3.2 ×104

Call (CA) [35] 7 ×103 5.1 ×104 2.3 ×104

messages (MS) [35] 2 ×103 6 ×104 6.3 ×104

FB-FORUM (FB) [35] 8.99 ×102 3.4 ×104 3.8 ×104

Wiki-elec (WI) [35] 7.1 ×103 1.07 ×105 2.1 ×105

tech-as-topology (Tech) [35] 3.4 ×104 1.71 ×105 2.7 ×105

Enron (EN) [35] 8.7 ×104 1.1×106 1.28 ×106

youtube-growth (YT) [34] 3.2 ×106 1.44×107 2.47 ×107

Stackoverflow (ST) [1] 2.6 ×106 6.3×107 7×107

Semantic Scholar (SC) [4] 6.5 ×107 8.27×109 9.36×109

7.3 Evaluated Methods
We evaluate the performance of connectivity queries and mainte-

nance operations for the following methods:

• our D-tree.

• nD-tree, a naive version of Dtree, that neither maintains the

BFS-tree nor the centroid property, which makes it easier

(and faster) to update. A performance gap between nD-trees

and D-trees shows the effectiveness of the heuristics utilized

in the D-tree.

• opt , optimal BFS tree: after each update, we run BFS over all

vertices in the connected components affected by the update

to determine the BFS-tree with minimal Sd . This shows how
much our D-tree deviates from the optimal case.

• ET-tree: maintains an Euler tour (ET) [45] of a spanning

tree. To guarantee the worst-case behavior for connectivity

queries, the ET is mapped to a balanced binary tree [3, 22],

which means that an ET-tree is not a spanning tree anymore.

As a consequence, update operations becomemore expensive

(for details, see [22]). Many of the algorithms mentioned in

Section 2 are based on ET-trees, adding various optimizations

to them [22, 25, 46, 49].

• HK , the algorithm by Henzinger and King [20, 22], is also

based on ET-trees, adding information – in the form of a

weight attribute – about the number of non-tree edges in a

subtree. This allows the algorithm to terminate the search

for a replacement edge early (if weight = 0 for a subtree).

The early termination and a sampling scheme employed in

the search achieves the reported amortized complexity. We

implement HK with one edge level, as Alberts et al. have

shown that this version consistently outperforms the version

with multiple levels [3]. HK is the state-of-the-art algorithm,

since this is the best algorithm among those with a worst-

case guarantee mentioned in Section 2 that has been fully

implemented and evaluated empirically.

• online BFS and DFS.

• Insertion-only algorithms: union-find algorithm [42, 43] and

DBL [33].

7.4 Diameters of Real-world Graphs
Before comparing the different algorithmic approaches, we take a

look at an important property of graphs and its impact on the per-

formance of our D-tree, namely the diameter of graphs. Algorithms

guaranteeingworst-case performance for connectivity queries, such

as HK , focus on graphs with large diameters where the benefits

of their approach are most pronounced. Dealing with worst-case

scenarios adds considerable overhead to those algorithms. However,

among 1324 real-world graphs we investigated [2] (see Figure 10a),

1185, or 89.5%, had a diameter not larger than sixteen. For graphs

with small diameters, we can easily build and maintain D-trees with

a high fanout and low depth (which is bounded by the diameter of

the graph), thus achieving very good average-case performance for

those graphs. This gives us an edge over HK in most real-world

scenarios, as D-trees have a much higher fanout than the balanced

binary trees employed by HK .

1-5 6-10 11-16 17-20 20+

0

20

40

60

5

25

58

3
6

Diameter D

%
o
f
1
3
2
4
g
ra
p
h
s
w
it
h
D

Distribution of diameters

(a) Distribution of diame-
ters (89.5% ≤ 16).

5 10 15 20

0.1

0.15

0.2

avдsp

Q
u
e
r
y
ti
m
e
,
s

Connectivity queries for different avдsp

D-tree

HK

(b) D-tree outperforms HK
when avдsp ≤ 16.6.

Figure 10: Diameters for real-world graphs and avдsp .

We quantify the difference between D-trees and HK by compar-

ing their connectivity query performance for different values of

avдsp , the average sum of lengths of the shortest paths over all

pairs of vertices in a graph (avдsp is upper-bounded by the diame-

ter). LetC = (V ′, E ′) be a connected component and distC (u,v) the
length of the shortest path between u ∈ V ′

and v ∈ V ′
,

avдsp (C) = (
∑︂
u<v

distC (u,v))/

(︃
|V ′ |

2

)︃
.

As avдsp (and the diameter) is expensive to compute for a given

graph, we generated synthetic graphs with a central node and

N = 480 other nodes arranged around this node. We connect k
line graphs, each containing

N/k vertices, to the central node: this

regular structure allows us to compute avдsp (and the diameter)

more efficiently. Figure 10b shows the connectivity query perfor-

mance of D-trees and HK for different values of avдsp . D-trees
outperformHK for graphs with avдsp ≤ 16.6, so we expect D-trees

to outperform HK for at least 89.5% of the real-world graphs from

Figure 10a, due to the diameter being an upper bound for avдsp .

7.5 Comparison with BFS/DFS
We compared the runtime of connectivity queries for D-trees with

that of BFS/DFS, which acts as a baseline. The worst-case runtime

complexity of BFS/DFS is O(|V | + |E |)[10] and our experiments

confirm that the runtime of this approach is too high for practi-

cal purposes: on average, BFS/DFS is several orders of magnitude

slower than D-trees. For example, for one of the smaller graphs,

WI, running connectivity queries for all pairs of vertices, which

amounts to around 25 million queries, takes BFS/DFS more than
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eight days to complete. In contrast, D-trees run this set of queries

in 23 seconds. We ran the queries on the complete graph, i.e., we

inserted all the edges without deleting any. Clearly, BFS/DFS does

not have any maintenance costs, but it only took us 200ms to build

the D-trees for the WI-graph from scratch.

7.6 Insertion-only Algorithms
Next, we compare D-trees with DBL and union-find [42, 43], which

is still considered the state-of-the-art algorithm for insertion-only

graphs [49]. We measured the average query and insertion perfor-

mance per operator for D-trees, DBL, and union-find on the large

graphs (excluding SC, as DBL took too long to construct the 2-hop

labeling). The left-hand side of Figure 11 shows the time for insert-

ing all the edges. Clearly, DBL is the slowest algorithm (even though

we ran the insertions in a batch, which adds the smallest overhead)

and D-trees are slightly slower than union-find. The right-hand

side of Figure 11 shows the average runtime of running 50 million

random connectivity queries (after inserting all the edges in a first

step). Unsurprisingly, union-find is the fastest algorithm, followed

by D-trees, and DBL comes in last again. DBL is slow, because it

needs to run BFS for the insertions and from time to time also

for queries. Although, union-find is the fastest algorithm, it is not

applicable to fully dynamic graphs. It does not support deletions, as

it only maintains compressed paths from nodes to roots and does

not preserve connections among non-root vertices.
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Figure 11: Average run time for insertions and queries.

7.7 Distances between Roots and Nodes
Here we confirm that the techniques we use for maintaining span-

ning trees, namely preserving BFS-trees (if possible to do so ef-

ficiently), considering short-cuts when inserting non-tree edges,

and re-establishing the centroid property, lead to small values for

Sd . In Figure 12, we show the value of Sd for the current span-

ning forest for every snapshot. The upper row depicts the results

for small graphs, for which we include the expensive methods opt
and ET-tree. The best possible spanning forest is created by opt ,
which computes the optimal BFS-tree. We observe that our D-tree

is very close to opt and much better than nDtree, demonstrating

the effectiveness of the heuristics for maintaining the spanning

forest. Our D-tree also has better values for Sd than the ET-tree

and HK . The difference between the ET-tree and HK is minimal

since both employ a treap [38] to balance the tree. The lower row of

Figure 12 shows the results for large graphs and, again, our D-tree

creates trees with small Sd values and is able to maintain the lead

over time. We do not show results for opt and ET-trees for large

graphs, as these methods are very inefficient: opt spends about 10

seconds per update on the ST-graph (in contrast to less than one

millisecond for D-trees) and we do around 20 million updates in

total per experiment; after a couple of updates on the ST-graph,

deletions on ET-trees are three orders of magnitude slower than

those on D-trees. We do not show results for HK on the SC graph

because HK ran for fourteen days and was not able to finish in that

time.

Figure 16 in the technical report [6] gives a detailed insight into

the distribution of node depths in the various trees. On average,

the nodes in our D-trees are much closer to the roots. For small

graphs (upper row of Figure 16), we are very close to opt . For large
graphs (lower row of Figure 16), D-trees also outperform the other

methods.

7.8 Performance for Connectivity Queries
As we have shown in Theorem 5.4, the average query costs are

directly related to Sd . This is confirmed by our experiments on query

performance in Figure 13. The results are strongly correlated to

those for Sd in Figure 12. The average Pearson correlation between

Sd and query time over all datasets is 0.904842. The upper row of

Figure 13 for small graphs demonstrates that the performance of D-

trees is very close to that of opt . Additionally, D-trees consistently
outperform nD-trees, ET-trees, and HK for all graphs. avдd , the
average distances between nodes and roots, is less than ten in

D-trees while avдd for HK is several times larger.

7.9 Performance for Update Operations
Figure 14 shows the run times for update operations. First, we see

that HK is much slower than the other techniques (the differences

are usually an order of magnitude). While balanced binary trees

offer good worst-case performance, they are much deeper than D-

trees.Moreover,HK does not use spanning trees but amore complex

representation, adding to the overhead of update operations. Next,

we compare D-trees to nD-trees to show the effectiveness and costs

of our heuristics. When deleting non-tree edges, the differences

are minimal: the overhead for preserving BFS-trees in D-trees is

very small. We observe the biggest differences for inserting (tree

and non-tree) edges. Since nD-trees do not utilize any heuristics

for minimizing Sd , the distances between the roots and other nodes

in the spanning trees tend to grow over time. This has a negative

impact on insertions (and not just queries), because we have to

navigate to the roots of the spanning trees to determine whether

we insert a tree or non-tree edge. When deleting tree edges, there is

no clear winner between D-trees and nD-trees. While D-trees have

a smaller cut number, they search through all potential replacement

edges to pick the best one (lowering Sd ). nD-trees terminate the

search for a replacement edge as soon as they find the first one.

7.10 Discussion
D-trees outperform HK in querying and inserting tree and non-tree

edges, because of the smaller Sd in the D-trees. The ET-trees em-

ployed by HK are shaped differently and do not represent spanning

trees directly. Basically, the occurrences of nodes in an Euler tour

of a spanning tree are mapped into a balanced binary tree such

that the in-order traversal of this tree is the Euler tour. This makes

it independent of the diameter of a graph and results in trees of
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depth log
2
(n) (n being the number of nodes). Consequently, in the

worst case, a lookup on this tree is still logarithmic in the number

of nodes. However, it cannot take advantage of graphs with small

diameters, the nodes are embedded much deeper in the tree com-

pared to a D-tree. It gets even worse when deleting a non-tree edge:

HK has logarithmic runtime for this case (in contrast to the con-

stant runtime in D-trees). On average, D-trees have very small cut

numbers Sc , usually less than fifteen, often smaller than ten. Due

to the structure of the ET-tree, the splits are more even, resulting

in longer searches on larger trees (usually more than an order of

magnitude larger compared to D-trees). Even though D-trees go

through all non-tree edges when searching for a replacement edge

(while HK takes the first valid edge it finds), due to the small Sc
and Sd , this is still efficient.

8 CONCLUSION
We identify two crucial parameters for optimizing connectivity

queries via spanning trees in fully dynamic graphs: Sd , the sum
of distances between nodes in a tree and its root, and Sc , the cut
number of a tree. Due to the high cost of maintaining trees that

minimize Sd and Sc , we develop a data structure, called D-tree with

heuristics to keep the values of Sd and Sc small when updating the

trees. This makes the evaluation of connectivity queries and the

maintenance of spanning trees more efficient. Moreover, we show

that it is possible to implement our heuristics with a low overhead,

i.e., we only need to know the size of each subtree in a spanning

tree. Extensive experiments with real-world datasets demonstrate

that our approach has a performance close to optimal BFS-trees

and outperforms algorithms that guarantee worst-case complexity.

For instance, maintaining D-trees is up to fifty times faster than

HK and D-trees have a much better average query performance.

For future work, we plan to extend our approach for connectiv-

ity queries on (sparse) graphs with large diameters, such as road

networks, by representing a connected component with multiple

spanning trees to flatten them. We also want to make our approach

workload-aware, i.e., adapt it to a given ratio of queries and update

operations. Since our update operations are very efficient, we can

afford to add some overhead in the form of further optimizations

when faced with a high proportion of queries. Additionally, in the

context of workload-awareness wewant to consider the distribution

of connectivity queries. We also plan to investigate if our approach

can be adapted to directed graphs.
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