
SCARA: Scalable Graph Neural Networks with
Feature-Oriented Optimization

Ningyi Liao∗

Nanyang Technological University

liao0090@e.ntu.edu.sg

Dingheng Mo∗

Nanyang Technological University

dingheng001@e.ntu.edu.sg

Siqiang Luo
Nanyang Technological University

siqiang.luo@ntu.edu.sg

Xiang Li
East China Normal University

xiangli@dase.ecnu.edu.cn

Pengcheng Yin
Google Research

pcyin@google.com

ABSTRACT

Recent advances in data processing have stimulated the demand

for learning graphs of very large scales. Graph Neural Networks

(GNNs), being an emerging and powerful approach in solving graph

learning tasks, are known to be difficult to scale up. Most scalable

models apply node-based techniques in simplifying the expensive

graph message-passing propagation procedure of GNN. However,

we find such acceleration insufficient when applied to million- or

even billion-scale graphs. In this work, we propose SCARA, a scal-

able GNN with feature-oriented optimization for graph compu-

tation. SCARA efficiently computes graph embedding from node

features, and further selects and reuses feature computation results

to reduce overhead. Theoretical analysis indicates that our model

achieves sub-linear time complexity with a guaranteed precision

in propagation process as well as GNN training and inference. We

conduct extensive experiments on various datasets to evaluate the

efficacy and efficiency of SCARA. Performance comparison with

baselines shows that SCARA can reach up to 100× graph propaga-

tion acceleration than current state-of-the-art methods with fast

convergence and comparable accuracy. Most notably, it is efficient

to process precomputation on the largest available billion-scale

GNN dataset Papers100M (111M nodes, 1.6B edges) in 100 seconds.

PVLDB Reference Format:

Ningyi Liao, Dingheng Mo, Siqiang Luo, Xiang Li, and Pengcheng Yin.

SCARA: Scalable Graph Neural Networks with Feature-Oriented

Optimization. PVLDB, 15(11): 3240-3248, 2022.

doi:10.14778/3551793.3551866

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/gdmnl/SCARA-PPR.

1 INTRODUCTION

Recent years have witnessed the burgeoning of online services

based on data represented by graphs, which leads to rapid increase

in the amount and complexity of such graph data. Graph Neural Net-

works (GNNs) are specialized neural models designed to represent

∗Both authors contributed equally to this research.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 11 ISSN 2150-8097.
doi:10.14778/3551793.3551866

and process graph data, and have achieved strong performance on

graph understanding tasks such as node classification [7, 11, 16, 19],

link prediction [5, 27, 36, 39], and community detection [2, 10, 28].

One of the most widely adopted GNN models is the Graph Con-

volutional Network (GCN) [19] which learns graph representations

by leveraging information of topological structure. Specifically, the

GCN represents each node state by a feature vector, successively

propagates the state to neighboring nodes, and updates the neighbor

features using a neural network. This interleaved process of graph

propagation and state update can proceed for multiple iterations.

While being able to effectively gather state information from the

graph structure, GCNs are known to be resource-demanding, which

implies limited scalability when deployed to large-scale graphs

[34, 41]. It is also non-trivial to fit the node features of large graphs

into the memory of hardware accelerators like GPUs. However, it is

increasingly demanding to apply these effective models to modern

real-world graph datasets. Recent studies have attempted to learn

representations of large graphs such as the Microsoft Academic

Graph (MAG) of 100 million entries [24, 35]. Nonetheless, directly

fitting the basic GCN model to such data would easily cause un-

acceptable training time or out-of-memory error. Hence, how to

adopt the GCN model efficiently to these very large-scale graphs

while benefiting from its performance becomes a challenging yet

important problem in realistic applications.

Existing Approaches are Not Scalable Enough. Several tech-

niques have been proposed towards more efficient learning for

GNN, addressing the scalability issues. One optimization is to de-

couple graph propagation from the feature update and employ

linear models to simplify computation [20, 32]. There is no need

to store the whole graph in the GPU and the memory footprint is

thence reduced. Such methods exploit graph data management tech-

niques such as Personalized PageRank [23] to calculate the graph

representation used in the model. Another direction is easing node

interdependence, which enables training on smaller batches and is

achieved by neighbor sampling [8, 15], layer sampling [7, 13, 16],

and subgraph sampling [11, 18, 37]. Various sampling schemes have

been applied to restrain the number of nodes contained in GNN

learning pipelines and reduce computational overhead. Other al-

gorithms are also utilized in simplifying graph propagation and

learning in order to improve efficiency and efficacy, including dif-

fusion [4, 20], self-attention [26, 27, 38], and quantization [12].

Unfortunately, such methods are still not efficient enough when

applied to million-scale or even larger graphs. According to [29], the

very recent state-of-the-art algorithm GBP [9] still consumes more

3240

https://doi.org/10.14778/3551793.3551866
https://github.com/gdmnl/SCARA-PPR
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3551793.3551866
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Table 1: Time and memory complexity of scalable GNN models. Precomputation memory complexity indicates the usage of

intermediate variables, while the training and inferencememory refer to the GPU usage for storing and updating representation

and weight matrices in each training iteration. Time complexity is for the full training and/or inference node set.

Model Precomp. Mem. Training Mem. Inference Mem. Precomp. Time Training Time Inference Time

GCN [19] ś 𝑂 (𝐿𝑛𝐹 + 𝐿𝐹 2) 𝑂 (𝐿𝑛𝐹 + 𝐿𝐹 2) ś 𝑂 (𝐼𝐿𝑚𝐹 + 𝐼𝐿𝑛𝐹 2) 𝑂 (𝐿𝑚𝐹 + 𝐿𝑛𝐹 2)

GraphSAINT [37] ś 𝑂 (𝐿2𝑏𝐹 + 𝐿𝐹 2) 𝑂 (𝐿𝑛𝐹 + 𝐿𝐹 2) ś 𝑂 (𝐼𝐿2𝑛𝐹 2) 𝑂 (𝐿𝑚𝐹 + 𝐿𝑛𝐹 2)

GAS [13] 𝑂 (𝐿𝑛𝐹) 𝑂 (𝐿𝑑𝑏𝐹 + 𝐿𝐹 2) 𝑂 (𝐿𝑑𝑏𝐹 + 𝐿𝐹 2) 𝑂 (𝑚 + 𝐿𝑛𝐹) 𝑂 (𝐼𝐿𝑚𝐹 + 𝐼𝐿𝑛𝐹 2) 𝑂 (𝑛𝐹)

APPNP [20] 𝑂 (𝑚) 𝑂 (𝐿𝑏𝐹 + 𝐿𝐹 2 + 𝑑𝑏) 𝑂 (𝐿𝑏𝐹 + 𝐿𝐹 2 + 𝑑𝑏) 𝑂 (𝑚) 𝑂 (𝐼𝑇𝑚𝐹 + 𝐼𝐿𝑛𝐹 2) 𝑂 (𝑇𝑚𝐹 + 𝐿𝑛𝐹 2)

PPRGo [6] 𝑂 (𝑛/𝑟𝑚𝑎𝑥) 𝑂 (𝐿𝑏𝐹 + 𝐿𝐹 2 +𝐾𝑏) 𝑂 (𝐿𝑏𝐹 + 𝐿𝐹 2 +𝐾𝑏) 𝑂 (𝑚/𝑟𝑚𝑎𝑥) 𝑂 (𝐼𝐾𝑛𝐹 + 𝐼𝐿𝑛𝐹 2) 𝑂 (𝐾𝑛𝐹 + 𝐿𝑛𝐹 2)

SGC [32] 𝑂 (𝑚) 𝑂 (𝐿𝑏𝐹 + 𝐿𝐹 2) 𝑂 (𝐿𝑏𝐹 + 𝐿𝐹 2) 𝑂 (𝐿𝑚𝐹) 𝑂 (𝐼𝐿𝑛𝐹 2) 𝑂 (𝐿𝑛𝐹 2)

GBP [9] 𝑂 (𝑛𝐹) 𝑂 (𝐿𝑏𝐹 + 𝐿𝐹 2) 𝑂 (𝐿𝑏𝐹 + 𝐿𝐹 2) 𝑂 (𝐿𝐹
√︁

𝐿𝑚 log(𝐿𝑛)/𝜖) 𝑂 (𝐼𝐿𝑛𝐹 2) 𝑂 (𝐿𝑛𝐹 2)

SCARA (ours) 𝑂 (𝑛𝐹) 𝑂 (𝐿𝑏𝐹 + 𝐿𝐹 2) 𝑂 (𝐿𝑏𝐹 + 𝐿𝐹 2) 𝑂 (𝐹
√︁

𝑚 log𝑛/𝜆) 𝑂 (𝐼𝐿𝑛𝐹 2) 𝑂 (𝐿𝑛𝐹 2)

than 104 seconds solely for precomputation on the Papers100M

graph (111M nodes, 1.6B edges, generated from MAG) to reach

proper accuracy. In our experiments, the same model even exceeds

the 160GB RAM bound on a single worker during learning. Such

cost is still too high for the method to be applied in practice.

Our Contributions. In this paper, we propose SCARA, a scalable

Graph Neural Network algorithm with low time complexity and

high scalability on very large datasets. On the theoretical side, the

time complexity of SCARA for precomputation/training/inference

matches the same sub-linear level with the state of the art, as shown

in Table 1. On the practical side, to our knowledge, SCARA is

the first GNN algorithm that can be applied to billion-scale graph

Papers100M with a precomputation time less than 100 seconds and

complete training under a relatively strict memory limit.

Particularly, SCARA employs several feature-oriented optimiza-

tions. First, we observe that most current scalable methods repeti-

tively compute the graph propagation information from the node-

based dimension, which results in complexity at least proportional

to the number of graph nodes. To address this issue, we design a

Feature-Push method that realizes the information propagation

from the feature vectors, which removes the linear dependency on

the number of nodes in the complexity while maintaining the same

precision of corresponding graph propagation values. Second, as

we mainly process the feature vectors, we discover that there is

significant room to reuse the computation results across different

feature dimensions. Hence we propose the Feature-Reuse algo-

rithm. Through compositing the calculation results, SCARA can

efficiently prevent time-consuming repetitive propagation. By such

means, SCARA outperforms all leading competitors in our experi-

ments in all 6 GNN learning tasks in regard to model convergence

time, i.e., the sum of precomputation and training time, with highly

efficient inference speed, significantly better memory overhead,

and comparable or better accuracy.

In summary, we have made the following contributions:

• We present the Feature-Push algorithm which propagates the

graph information from the feature vectors with forward push

and random walk. Our method realizes a sub-linear complexity for

precomputation running time along with efficient model training

and inference implemented in the mini-batch approach.

• We propose the Feature-Reuse mechanism which further uti-

lizes the feature-oriented optimizations to improve the efficiency

of feature propagation while maintaining precision. The technique

is able to half the overhead for several graph representations.

• We conduct comprehensive experiments to evaluate the effi-

ciency and effectiveness of the SCARA model on various datasets

and with benchmark methods. Our model is efficient to process the

billion-scale dataset Papers100M. It also achieves up to 100× faster

in precomputation time than the current state of the art.

2 PRELIMINARIES AND RELATED WORKS

Notations. Consider a graph 𝐺 = ⟨𝑉 , 𝐸⟩ with node set 𝑉 and edge

set 𝐸. Let 𝑛 = |𝑉 |,𝑚 = |𝐸 |, and 𝑑 =𝑚/𝑛. The graph connectivity is

represented by the adjacency matrix with self-loops as 𝑨 ∈ R𝑛×𝑛 ,

while the diagonal degree matrix is 𝑫 ∈ R𝑛×𝑛 . Following [9, 29], we

normalize the adjacency matrix by 𝑫 with convolution coefficient

𝑟 ∈ [0, 1] as 𝑨̃(𝑟) = 𝑫
𝑟−1

𝑨𝑫
−𝑟 . For each node 𝑣 ∈ 𝑉 , denote the set

of the out-neighbors by N(𝑣) = {𝑢 | (𝑣,𝑢) ∈ 𝐸}, and the out-degree

of 𝑣 by 𝑑 (𝑣) = |N (𝑣) |. Each 𝑣 has an 𝐹 -dimension attribute vector

𝒙 (𝑣), which composes the attribute matrix 𝑿 ∈ R𝑛×𝐹 .

A GNN recurrently computes the node representation matrix

𝑯
(𝑙) as current state in the 𝑙-th layer. The model input feature

matrix is 𝑯 (0) = 𝑿 in particular. For a conventional 𝐿-layer GCN

[19], the (𝑙 + 1)-th representation matrix 𝑯
(𝑙+1) is updated as:

𝑯
(𝑙+1)

= 𝜎
(

𝑨̃𝑯
(𝑙)
𝑾
(𝑙)
)

, 𝑙 = 0, 1, · · · , 𝐿 − 1, (1)

where 𝑾 (𝑙) is the trainable weight matrix of the 𝑙-th layer, 𝑨̃ =

𝑨̃(1/2) is the normalized adjacencymatrix, and 𝜎 (·) is the activation

function such as ReLU or softmax. For analysis simplicity we keep

the feature size 𝐹 unchanged in all layers.

Summarized in Table 1, we present an analysis on the complexity

bounds of GCN in Eq. (1) to explain the restraints of its efficiency.

We focus on the training phase as it updates the model for 𝐼 epochs

and requires most resources. For the 𝐿-layer GCN model, the multi-

plication of graph propagation 𝑨̃𝑯
(𝑙) is bounded by a complexity

of 𝑂 (𝐿𝑚𝐹) giving the adjacency matrix 𝑨̃ with𝑚 entries and the

propagation is conducted for 𝐿 iterations. The overhead for fea-

ture transformation by multiplying𝑾 (𝑙) is𝑂 (𝐿𝑛𝐹 2). In the training

stage, the above procedure is repeated to iteratively update the

model weights𝑾 (𝑙) . As discovered by previous studies [9, 11], the

dominating term is𝑂 (𝐿𝑚𝐹) when the graph is large, since the latter

transformation can be accelerated by parallel computation. Hence,

the full graph propagation becomes the scalability bottleneck. For

memory usage, the GCN typically takes 𝑂 (𝐿𝑛𝐹 + 𝐿𝐹 2) space to

store layer-wise node representation and weight matrices.

Post-Propagation Model. As the graph propagation possesses

the major computation overhead when the graph is scaled-up, a

3241

straightforward idea is to simplify this step and prevent it from

being repetitively included in each layer. Such approaches are re-

garded as propagation decoupling models [21, 40]. We further clas-

sify them into post- and pre-propagation variants based on the

presence stage of propagation relative to feature transformation.

The post-propagation decoupling methods apply propagation

only on the last model layer, enabling efficient and individual com-

putation of the graph propagation matrix, as well as the fast and

simple model training. The APPNP model [20] introduces the per-

sonalized PageRank (PPR) [23] algorithm in the propagation stage.

The iterative graph propagation in the GCN updates is replaced by

multiplying the PPR matrix after the feature transformation layers:

𝑯
(𝑙+1)

= 𝜎
(

𝑯
(𝑙)
𝑾
(𝑙)
)

, 𝑙 = 0, 1, · · · , 𝐿 − 2, (2)

𝑯
(𝑙+1)

= 𝜎
(

𝚷̂𝑯
(𝑙)
𝑾
(𝑙)
)

, 𝑙 = 𝐿 − 1, (3)

where 𝚷̂ =
∑𝐿
𝑙=0

𝛼 (1 − 𝛼)𝑙 𝑨̃𝑙 is the PPR matrix.

In this design, the feature transformation benefit from the mini-

batch scheme in both training and inference stages, hence reducing

the demand for GPU memory. In Table 1, the batch size is 𝑏. Regard-

ing computation speed, a 𝑇 -round Power Iteration computation on

the PPR matrix [23] leads to 𝑂 (𝑇𝑚𝐹 + 𝐿𝑛𝐹 2) time per epoch. The

PPRGo model [6] further improves the efficiency of precomputing

the PPR matrix 𝚷 by the Forward Push algorithm [3] with an error

threshold 𝑟𝑚𝑎𝑥 and only records the top-𝐾 entries. However, it

demands 𝑂 (𝑛/𝑟𝑚𝑎𝑥) space to store the dense PPR matrix.
Pre-Propagation Model. Another line of research, namely the

pre-propagation models such as SGC [32], chooses to propagate

graph information in advance and encode it to the attributes matrix

𝑿 , forming an embedding matrix 𝑷 that is utilized as the input

feature to the neural network layers. In a nutshell, we summarize

the model updates in the following scheme:

𝑯
(0)

= 𝑷 =

𝐿𝑃
∑︁

𝑙=0

𝑎𝑙 𝑨̃
𝑙
(𝑟)
· 𝑿 , (4)

𝑯
(𝑙+1)

= 𝜎
(

𝑯
(𝑙)
𝑾
(𝑙)
)

, 𝑙 = 0, 1, · · · , 𝐿 − 1, (5)

where 𝐿𝑃 denotes the depth of precomputed propagation and 𝑎𝑙 is

the layer-dependent diffusion weight.

The line of Eq. (4) corresponds to the precomputation section and

is calculated only once for each graph. The complexity of this stage

is solely related to the precomputation techniques applied in the

model. In SGC, the equation is given by an 𝐿-hop multiplication of

𝑷 = 𝑨̃
𝐿
𝑿 , taking 𝑂 (𝐿𝑚𝐹) time. A recent work GBP [9] employs

a PPR-based bidirectional propagation with 𝐿𝑃 = 𝐿 and tunable

𝑎𝑙 and 𝑟 . Under an approximation of relative error 𝜖 , it improves

precomputation complexity to 𝑂 (𝐿𝐹
√︁

𝐿𝑚 log(𝐿𝑛)/𝜖) in the best

case. It is notable that since GBP contains a node-based traverse

scheme, it is sensitive to the scale of 𝑛 in practice.

Eq. (5) follows the neural network feature transformation, taking

𝑷 as input feature. Compared to Eq. (3), it completely removes the

need for additional multiplication, hence both training and infer-

ence are reduced to 𝑂 (𝐿𝑛𝐹 2). The simple GNN provides scalability

in both resource-demanding training and frequently-queried in-

ference, with the ease to employ techniques such as mini-batch

training, parallel computation, and data augmentation.
Other Methods. There is a large scope of GNNs related to sam-

pling techniques, which simplifies the propagation by replacing

the full-batch graph updates with sampled nodes in mini-batches.

A popular direction is graph-wise sampling, such as Cluster-GCN

[11] exploiting clustering structure and GraphSAINT [37] using

various levels of information. The representative GraphSAINT-RW

integrates 𝐿-hop random walk graph sampling with a training com-

plexity𝑂 (𝐿2𝑛𝐹+𝐿𝑛𝐹 2). It is however not applicable in the full graph

inference stage, causing the inference time and memory overheads

to be identical to the vanilla GCN. GAS [13] samples layer-wise

neighbors and consumes great memory for historical embedding. It

has𝑂 (𝐿𝑚𝐹 + 𝐿𝑛𝐹 2) training overhead, while the optimal inference

complexity is benefited by the cached embedding.

In our experiments, we compare our GNN algorithm with the

state of the arts from each of the aforementioned categories, to

demonstrate the scalability and effectiveness of our algorithm.

3 SCARA FRAMEWORK

We propose our SCARA framework composing Feature-Push and

Feature-Reuse. The Feature-Push algorithm conducts propaga-

tion from the aspect of feature, while Feature-Reuse is a novel

technique that reuses columns in the feature matrix. We present

analysis on the algorithmic complexity and precision guarantee to

demonstrate the theoretical validity and effectiveness of SCARA.

3.1 Overview
To realize scalability in the network training and inference stage,

and to better employ advanced Personalized PageRank (PPR) al-

gorithms to optimize graph diffusion, we apply the backbone of

propagation decoupling approach in our GNN design. Similar to

the idea of pre-propagation models [9, 32], in precomputation stage

we follow Eq. (4) to compute the graph information 𝑷 in advance

together with the node attributes 𝑿 . Then, a simple yet effective

feature transformation is conducted as given in Eq. (5).

The propagation stage is the complexity bottleneck, mentioned

earlier. Hence, we focus on reducing its computation complexity.

We rewrite Eq. (4) in our propagation as:

𝑷 =

∞
∑︁

𝑙=0

𝛼 (1 − 𝛼)𝑙 𝑨̃𝑙
(𝑟)
· 𝑿 =

∞
∑︁

𝑙=0

𝛼 (1 − 𝛼)𝑙
(

𝑫
𝑟−1

𝑨𝑫
−𝑟
)𝑙
𝑿 , (6)

where 𝛼 is the teleport probability as we set 𝑎𝑙 = 𝛼 (1 − 𝛼)
𝑙 to be

associated with the form in the PPR calculation. Compared with

APPNP and PPRGo, we adopt a generalized graph adjacency 𝑨̃(𝑟)

with an adjustable convolution factor 𝑟 ∈ [0, 1] to fit different scales

of graphs. The upper bound is set to 𝐿𝑃 = ∞ to better capture the

whole graph information without efficiency degeneration.

Our computation of Eq. (6) is displayed in Algorithm 1 (Feature-

Push) and explained in detail in Section 3.2. The highlight of

Feature-Push is the application of propagating from features,

which differs from prior works. In many real-world tasks, when a

graph is scaled-up, its numbers of nodes (𝑛) and edges (𝑚) increase,

but the node attributes dimension (𝐹) usually remains unchanged.

Thus, an algorithm with complexity mainly dependent on 𝐹 enjoys

better scalability than those dominated by 𝑛 or𝑚.

As the attribute matrix 𝑿 is included in our computation, we

then investigate how to fully utilize its information contained to

further accelerate our algorithm, which leads to the Algorithm 2

(Feature-Reuse). The motivation is to reduce the expensive it-

erative computation of 𝑷 components by exploiting the previous

3242

results based on attribute vectors 𝒙 on selected dimensions 𝑓 . We

apply a linear combination scheme with precision guarantee to

lighten the constraints of Algorithm 1 while improving speed. We

further describe this methodology in Section 3.3.

3.2 Feature-Push

Examining Eq. (6), the embedding matrix 𝑷 is the composition of

graph diffusion matrix 𝑨̃(𝑟) and node attributes 𝑿 . Most scalable

methods such as APPNP [20] and SGC [32] compute the propaga-

tion part separately from network training, resulting in a complexity

at least proportional to𝑚. GBP [9] discusses a bidirectional propa-

gation with both node-side random walk on 𝑫
−1
𝑨 and feature-side

reverse push on 𝑫
−𝑟
𝑿 . Although the random walk step ensures

precision guarantee, it requires long running time when not being

accelerated by other methods [30, 31].

We propose the Feature-Push approach that propagates graph

information from the feature dimension, which is capable to utilize

efficient single-source PPR algorithms through a simple but surpris-

ingly effective transformation. Intuitively, the Feature-Push is first

initialized by the normalized features 𝑫1−𝑟
𝑿 . Then, single-source

PPR algorithms, which compute the PPR values from a source node

to other nodes, are applied to iteratively propagate the information

with
(

𝑨𝑫
−1
)𝑙
. It achieves the embedding matrix based on that:

𝑨̃
𝑙
(𝑟)
· 𝑿 =

(

𝑫
𝑟−1

𝑨𝑫
−𝑟
)𝑙
𝑿 = 𝑫

𝑟−1
(

𝑨𝑫
−1
)𝑙
𝑫
1−𝑟

𝑿 , (7)

In order to better derive Feature-Push, we borrow the Person-

alized PageRank (PPR) notations to describe our technique manipu-

lating feature vectors. On a graph𝐺 , given a source node 𝑠 ∈ 𝑉 and

a target node 𝑡 ∈ 𝑉 , the PPR 𝜋 (𝑠, 𝑡) represents the probability of a

random walk with teleport factor 𝛼 ∈ (0, 1) which starts at node 𝑠

and stops at 𝑡 . In general, forward PPR algorithms, often categorized

as single-source PPR, start the computation from 𝑠 , contrasted to

backward or reverse alternatives that are developed from 𝑡 [29].

Algorithm 1 Feature-Push

Input: Graph𝐺 , node set𝑈 , feature vector 𝒙 , probability 𝛼 , con-

volution factor 𝑟 , push coefficient 𝛽

Output: Approximate embedding vector 𝝅̂ (𝒙)

1 for all 𝑢 ∈ 𝑈 do

2 𝑟 ′(𝒙 ;𝑢) ← 𝑥 (𝑢) · 𝑑 (𝑢)1−𝑟

3 𝑟 (𝒙 ;𝑢) ← 𝑟 ′(𝒙 ;𝑢)/
∑

𝑢∈𝑈 𝑟
′(𝒙 ;𝑢)

4 𝜋 (𝒙 ; 𝑡) ← 0 for all 𝑡 ∈ 𝑈

5 while exist 𝑢 ∈ 𝑈 such that 𝑟 (𝒙 ;𝑢) > 𝑟𝑚𝑎𝑥/𝑑 (𝑢) do

6 for all 𝑣 ∈ N (𝑢) do

7 𝑟 (𝒙 ; 𝑣) ← 𝑟 (𝒙 ; 𝑣) + (1 − 𝛼) · 𝑟 (𝒙 ;𝑢)/𝑑 (𝑢)

8 𝜋 (𝒙 ;𝑢) ← 𝜋 (𝒙 ;𝑢) + 𝛼 · 𝑟 (𝒙 ;𝑢)

9 𝑟 (𝒙 ;𝑢) ← 0

10 𝑟𝑠𝑢𝑚 ←
∑

𝑢∈𝑈 𝑟 (𝒙 ;𝑢), 𝑁𝑊 ← 𝑟𝑠𝑢𝑚/𝛽

11 for all 𝑢 ∈ 𝑈 such that 𝑟 (𝒙 ;𝑢) ≠ 0 do

12 perform
𝑟 (𝒙 ;𝑢)
𝑟𝑠𝑢𝑚

· 𝑁𝑊 random walks from 𝑢

13 for all random walk stopping at 𝑡 do

14 𝜋 (𝒙 ; 𝑡) ← 𝜋 (𝒙 ; 𝑡) + 𝑟𝑠𝑢𝑚/𝑁𝑊
15 𝜋 (𝒙 ; 𝑡) ← 𝜋 (𝒙 ; 𝑡) · 𝑑 (𝑡)𝑟−1 for all 𝑡 ∈ 𝑈

16 return 𝝅̂ (𝒙) ←
(

𝜋 (𝒙 ; 𝑡1), · · · , 𝜋 (𝒙 ; 𝑠𝑛𝑈)
)

When the PPR calculation is integrated with features, it shares

similarities in forms but with different interpretation. Consider the

PPR problem with nodes in a set 𝑈 ⊆ 𝑉 as the source nodes. Let

𝑛𝑈 be the size of set𝑈 . Denote a matrix 𝑿 = (𝒙1, · · · , 𝒙𝐹), where

𝒙 𝑓 (1 ≤ 𝑓 ≤ 𝐹) is the 𝑓 -th column vector that is of length 𝑛𝑈 and

the sum of elements is 1. Following [29], we assume all the entries

𝑥 𝑓 (𝑢) ≥ 0 for each 𝑢 ∈ 𝑈 . We use 𝜋 (𝒙 ; 𝑡) to represent the PPR for

feature vector 𝒙 , and can be defined as the probability of the event

that a random walk which starts at a node 𝑠 ∈ 𝑈 with probability

distribution 𝒙 and stops at 𝑡 . It can be derived from the definition

that, each feature PPR 𝜋 (𝒙; 𝑡) can be interpreted as a generalized

integration of normal PPR value 𝜋 (𝑠, 𝑡), hence the properties and

operations of common PPR are still valid. The embedding matrix is

𝑷 = (𝝅 (𝒙1), · · · , 𝝅 (𝒙𝐹)), where 𝝅 (𝒙 𝑓) = 𝝅𝑓 is the 𝑓 -th column of

feature PPR vector corresponding to vector 𝒙 𝑓 , and is composed by

𝝅𝑓 =

(

𝜋 (𝒙 𝑓 ; 𝑡1), · · · , 𝜋 (𝒙 𝑓 ; 𝑡𝑛𝑈)
)

. We here look into the redefined

problem for approximating feature PPR:

Definition 3.1 (Approximate PPR for Feature). Given an abso-

lute error bound 𝜆 > 0, a PPR threshold 0 < 𝛿 < 1, and a failure

probability 0 < 𝜙 < 1, the approximate PPR query for feature vector

𝒙 computes an estimation 𝜋 (𝒙 ; 𝑡) for each 𝑡 ∈ 𝑈 with 𝜋 (𝒙 ; 𝑡) > 𝛿 ,

such that with probability at least 1 − 𝜙 ,

|𝜋 (𝒙 ; 𝑡) − 𝜋 (𝒙 ; 𝑡) | ≤ 𝜆. (8)

Recognizing that GNNs require less precise propagation infor-

mation to achieve proper performance [25, 42], the approximate

feature PPR enables employing efficient computation based on for-

ward PPR algorithms without loss in eventual model effectiveness

[31, 33]. We employ a scalable algorithm Feature-Push to compute

the embedding matrix combining Forward Push [3] and Random

Walk techniques that both operate feature vectors. The algorithm

makes use of both approaches, that random walk is accurate but

less efficient, while forward push is fast with a loose precision

guarantee. Algorithms exploiting such combination have been the

state of the arts in various PPR benchmarks [22, 31]. We highlight

that the differences between Algorithm 1 and [22, 31] are two-fold.

First, the push starts from the feature vector, which can be seen

as a generalized PPR operation taking probability distribution 𝒙

into account. Second, the feature-based query facilitates subsequent

transformation in Eq. (7) and reusing in Eq. (9).

As shown in Algorithm 1, the Feature-Push algorithm outputs

the approximation of embedding vector 𝝅̂ (𝒙) for input feature 𝒙 .

Repeating it for 𝐹 times with all features 𝒙1, · · · , 𝒙𝐹 produces all

columns compositing the estimate of embedding matrix 𝑷 . The

algorithm first computes the approximation 𝜋 (𝒙 ; 𝑡) for each node

𝑡 ∈ 𝑈 through forward push (line 2-9 in Algorithm 1), then conducts

compressed random walks to save computation (line 10-14). We

analyze each method and their combination respectively.

Forward Push on Feature Value. Instead of calculating the PPR

value 𝜋 (𝑠, 𝑡), the forward push method in Feature-Pushmaintains

a reserve value 𝜋 (𝒙 ; 𝑡) directly for node 𝑡 ∈ 𝑈 and feature 𝒙 as the

estimation of 𝜋 (𝒙 ; 𝑡). An auxiliary residue value 𝑟 (𝒙 ; 𝑡) is recorded

as the intermediate result for each node-feature pair. The residue is

initialized by the 𝐿1-normalized feature vector 𝒙 . to transfer node

attributes to distributions in line with 𝜋 (𝒙; 𝑡) that stands for the

probability with a sum of 1 for all nodes 𝑡 ∈ 𝑈 . The forward push

3243

algorithm subsequently updates the residue of target node 𝑡 from

the source node 𝑠 to propagate the information. The threshold 𝑟𝑚𝑎𝑥
controls the terminating condition so that the process can stop early.

Eventually, the forward push transfers 𝛼 portion of node residue

𝑟 (𝒙 ; 𝑡) into reserve value, while distributing the remaining (1 − 𝛼)

to the neighbors of 𝑠 .

Random Walk on Feature Residue. Feature-Push then per-

forms random walks with decay factor 𝛼 to propagate the residue

feature value. Compared with the pure random walk approach,

Feature-Push only requires
𝑟 (𝒙 ;𝑡)
𝑟𝑠𝑢𝑚

·𝑁𝑊 number of walks per node

with the same precision guarantee, benefiting from the Forward

Push results. The estimation of 𝜋 (𝒙 ; 𝑡) is achieved by implementing

the Monte-Carlo method [14, 30], and is updated according to the

fraction of random walks terminating at 𝑡 .

Combination and Normalization. To depict the combination of

forward push and random walk, we define the coefficient 𝛽 :

Definition 3.2 (Push Coefficient). The push coefficient 𝛽 is the

scale between the total left residual 𝑟𝑠𝑢𝑚 and the total number of

sampled random walks 𝑁𝑊 in Feature-Push.

The scale 𝛽 is the key coefficient of Feature-Push, which bal-

ances absolute error guarantee and time complexity. Referencing

the trade-off in [31], we set 𝛽 to a specific value, namely standard

push coefficient 𝛽𝑠 =
𝜆2

(2𝜆/3+2) ·log(2/𝜙)
, to satisfy the guarantee of

𝜋 (𝒙 ; 𝑡) in Definition 3.1. In Algorithm 1, the forward push and ran-

dom walk are combined as line 14. Derived from the single-source

PPR analysis [3, 31], we state that our Feature-Push algorithm

provides an unbiased estimation 𝜋 (𝒙 ; 𝑡) of the value 𝜋 (𝒙 ; 𝑡):

Lemma 3.3. Algorithm 1 produces an unbiased estimation 𝜋 (𝒙 ; 𝑡)

of the value 𝜋 (𝒙 ; 𝑡) satisfying Eq. (8). Repeating it for 𝐹 times produces

an unbiased estimation 𝑷 of the embedding matrix 𝑷 .

The combination of forward push and random walk generates

the approximate 𝚷
(𝑙)

= 𝛼 (1 − 𝛼)𝑙
(

𝑨𝑫
−1
)𝑙
for a certain 𝑙 . To be

aligned with the embedding matrix 𝑷
(𝑙) in Eq. (6), we apply the

normalization by degree vector (lines 2 and 15 in Algorithm 1) to

achieve the transformation in Eq. (7). These operations on embed-

ding values can be efficiently implemented in vector-based schemes.

3.3 Feature-Reuse

A key difference between the feature PPR and the classic single-

source PPR is that, in single-source PPR, queries on nodes are

orthogonal to each other, while in feature PPR there is similarity

between different features. Calculating based on features in Algo-

rithm 1 enables taking advantage of such property and utilizing

computed values to estimate the PPR of another similar feature.

We propose Feature-Reuse algorithm that speeds up the fea-

ture PPR computation by leveraging and reusing the similarity

between different feature vectors. We select a set of vectors as the

base vectors from all features and compute their PPR values by

Feature-Push. When querying the PPR value on a non-base fea-

ture vector, Feature-Reuse separates a segment of the vector that

can be obtained by combining the base vectors, and estimate the

PPR value of this segment directly with the PPR value of the base

vectors without additional Feature-Push computation overhead.

As a toy example, if we have the PPR 𝝅 (𝒃) for base feature vector

𝒃 = (0.5, 0.5), and need to compute the PPR for 𝒙 = (0.4, 0.6), we

can firstly decompose 𝒙 = (0.4, 0.4) + (0, 0.2). We then acquire the

PPR for (0.4, 0.4) directly by 0.8𝝅 (𝒃), and just need to compute the

PPR value of the residue (0, 0.2). The latter PPR calculation is faster

due to the reduced dimension and a loose precision bound.

Base Selection. Algorithm 2 shows the pseudo code of Feature-

Reuse. To represent the similarity between feature vectors, we

design a simple yet effective metric, namely the minimum L1 dis-

tance counter 𝑀 (·). Feature-Reuse chooses 𝑛𝐵 ≪ 𝑛𝑈 feature

vectors with the highest minimum L1 distance counter as the base

vectors 𝒃𝑖 to compose the base set 𝑿𝐵 = {𝒃1, · · · , 𝒃𝑛𝐵 } (line 2-8).

Feature-Push is then invoked to compute the PPR value 𝝅̂ (𝒃𝑖 , 𝛽
∗)

of the base vectors with push coefficient 𝛽∗ = 𝛾𝛽𝑠 =
𝛾𝜆2

log(2/𝜙) ·(2𝜆/3+2)
,

where 0 < 𝛾 ≤ 1 is a tunable precision factor.

Residue Calculation. Algorithm 2 then computes the approxi-

mate values of the rest features (line 11-20). Given selected base

vectors 𝒃𝑖 ∈ 𝑿𝐵 , a feature vector can be written in a linear decom-

position with residue as 𝒙 𝑓 =
∑𝑛𝐵
𝑖=1 𝜃𝑖 · 𝒃𝑖 + 𝒙

′, where 0 ≤ 𝜃𝑖 < 1

and 𝒙
′ is the residue feature vector. We compute the PPR vector

𝝅̂ (𝒙 ′, 𝛽 ′) according to the remaining part left in linear decompo-

sition 𝒙
′ by Feature-Push with a less precise push coefficient

𝛽 ′ =
(

1 − 𝛾
∑𝑛𝐵
𝑖=1 𝜃𝑖

)

𝛽𝑠 . Finally, we constitute the estimation as:

𝝅
∗ (𝒙 𝑓) =

𝑛𝐵
∑︁

𝑖=1

𝜃𝑖 · 𝝅̂ (𝒃𝑖 , 𝛽
∗) + 𝝅̂ (𝒙 ′, 𝛽 ′). (9)

The PPR of base vectors 𝝅̂ (𝒃𝑖 , 𝛽
∗) acquired by Feature-Push

has its own accuracy guarantee as stated in Lemma 3.3. However,

how to assure the other vectors composed by Eq. (9) satisfy the

Algorithm 2 Feature-Reuse

Input: Graph𝐺 , feature set 𝑿 = {𝒙 𝑓 }, base set size 𝑛𝐵 , decompo-

sition threshold 𝛿0, precision factor 𝛾 , error bound 𝜆

Output: Approximate embedding matrix 𝑷

1 𝛽𝑠 ←
𝜆2

(2𝜆/3+2) ·log(2𝑛)

2 𝑀 (𝒙 𝑓) ← 0 for all 𝒙 𝑓 ∈ 𝑿 , 𝑿𝐵 = ∅

3 for all 𝒙 𝑓 ∈ 𝑿 do

4 𝒙 𝑓 ∗ ← argmin𝒙𝑓 ∗ ∈𝑿
∥𝒙 𝑓 ∗ − 𝒙 𝑓 ∥1

5 𝑀 (𝒙 𝑓 ∗) ← 𝑀 (𝒙 𝑓 ∗) + 1

6 for 𝑖 from 1 to 𝑛𝐵 do

7 𝒃𝑖 ← argmax𝒃𝑖 ∈𝑿 𝑀 (𝒃𝑖)

8 𝑿𝐵 ← 𝑿𝐵 ∪ 𝒃𝑖 , 𝑿 ← 𝑿 − 𝒃𝑖

9 for 𝑖 from 1 to 𝑛𝐵 do

10 𝝅̂𝑖 ← Apply Alg. 1 on 𝒃𝑖 with 𝛽
∗
= 𝛾𝛽𝑠

11 for all 𝒙 𝑓 ∈ 𝑿 do

12 𝜃𝑖 ← 0 for 𝑖 from 1 to 𝑛𝐵
13 𝒙

′ ← 𝒙 𝑓 , 𝛿 ← 1, 𝜗 ← 1

14 while 𝜗 · 𝛿 > 𝛿0 do

15 𝒃𝑖 ← argmin𝒃𝑖 ∈𝑿𝐵
∥𝒙 ′ − 𝒃𝑖 ∥1

16 𝜗 ← argmin𝜗 ∥𝒙
′ − 𝜗𝒃𝑖 ∥1, 𝛿 ← 𝛿/2

17 𝒙
′ ← 𝒙

′ − 𝜗𝒃𝑖 , 𝜃𝑖 ← 𝜃𝑖 + 𝜗

18 𝝅
∗
𝑓
← Apply Alg. 1 on 𝒙

′ with 𝛽 ′ =
(

1 − 𝛾
∑𝑛𝐵
𝑖=1 𝜃𝑖

)

𝛽𝑠

19 for 𝑖 from 1 to 𝑛𝐵 do

20 𝝅
∗
𝑓
← 𝝅

∗
𝑓
+ 𝜃𝑖 · 𝝅̂𝑖

21 return 𝑷 =

(

𝝅
∗
1 , · · · , 𝝅

∗
𝐹

)

3244

approximation in Definition 3.1? To investigate the estimation error

of feature vectors, we propose the following lemma. All the missing

proofs in this paper can be found in [1].

Lemma 3.4. Given a feature vector 𝒙 𝑓 , the ground truth of PPR vec-

tor is 𝝅 (𝒙 𝑓), and the estimation output by Eq. (9) is 𝝅∗ (𝒙 𝑓). For any

respective element 𝜋 (𝒙 𝑓 ; 𝑡) and 𝜋
∗ (𝒙 𝑓 ; 𝑡), |𝜋 (𝒙 𝑓 ; 𝑡) −𝜋

∗ (𝒙 𝑓 ; 𝑡) | ≤ 𝜆

holds with probability at least 1 − 𝜙 , for 𝛽 ′ such that 𝛽 ′ > 𝛽∗ and

𝛽 ′ ≤
𝜆2/log(2/𝜙) − 2

∑𝑛𝐵
𝑖=1 𝜃𝑖𝛽

∗

2𝜆/3 + 2
. (10)

Lemma 3.4 indicates that, when choosing a smaller push co-

efficient 𝛽∗ for base vectors, the coefficient 𝛽 ′ can be larger and

reduce the cost of PPR computation on most feature vectors. We can

thence derive the following lemma, which states that the setting in

Algorithm 2 satisfies Definition 3.1:

Lemma 3.5. Given a feature set 𝑿 , for any feature vector 𝒙 𝑓 ∈ 𝑿 ,

Algorithm 2 returns an approximate PPR vector 𝝅̂ (𝒙 𝑓), that any of

its elements 𝜋 (𝒙 𝑓 ; 𝑡) satisfies Eq. (8) with at least 1 − 𝜙 probability.

Proof. In Algorithm 2 there is 𝛽∗ = 𝛾𝛽𝑠 . Then 𝛽
′ satisfies:

𝛽′ ≤
𝜆2/log(2/𝜙)

2𝜆/3 + 2
−

𝑛𝐵
∑︁

𝑖=1

𝛽∗𝜃𝑖 ≤
𝜆2/log(2/𝜙) − 2

∑𝑛𝐵
𝑖=1 𝛽

∗𝜃𝑖

2𝜆/3 + 2
. (11)

Therefore, 𝛽∗ for base vectors and 𝛽 ′ for remaining vectors sat-

isfy Eq. (10). According to Lemma 3.4 this lemma follows. □

3.4 Complexity Analysis
We then develop theoretical analysis on the time and memory

complexity of SCARA. We have the following lemma:

Lemma 3.6. The time complexity of Feature-Push is𝑂 (
√︃

𝑚 ∥𝒙 ∥1
𝛽
).

Proof. We analyze the two parts of Algorithm 1 separately.

The forward push with early termination runs in 𝑂 (∥𝒙 ∥1/𝑟𝑚𝑎𝑥)

according to [3]. For the random walks in Feature-Push, we em-

ploy the complexity derived by [31] as 𝑂 (𝑚 · 𝑟𝑚𝑎𝑥/𝛽). Hence the

overall running time of one query in Algorithm 1 is bounded by

𝑂
(

∥𝒙 ∥1
𝑟𝑚𝑎𝑥

+ 𝑟𝑚𝑎𝑥 ·
𝑚
𝛽

)

.By applying Lagrange multipliers, the com-

plexity is minimized by selecting 𝑟𝑚𝑎𝑥 =

√︃

𝛽 ∥𝒙 ∥1
𝑚 . □

According to Lemma 3.6, the time complexity of computing

𝜋 (𝒙, 𝛽) with Algorithm 1 can be bounded by𝑂 (
√︁

𝑚∥𝒙 ∥1/𝛽). To get

PPR value with absolute error guarantee of 𝜆, Algorithm 1 requires

a push coefficient 𝛽𝑠 =
𝜆2/log(2/𝜙)

2𝜆/3+2
. Then without Feature-Reuse,

the time complexity for computing PPR value for each normalized

feature vector is bounded by 𝑂 (
√︁

𝑚/𝛽𝑠).

When Feature-Reuse applies, let 𝜃𝑠𝑢𝑚 =
∑𝑛𝐵
𝑖=1 𝜃𝑖 denote the pro-

portion of a feature 𝒙 𝑓 computed by base vectors, and the L1 length

of the rest 𝒙 ′ is 1−𝜃𝑠𝑢𝑚 . In Algorithm 2, we compute the remaining

part with push coefficient of (1−𝛾𝜃𝑠𝑢𝑚)𝛽𝑠 , where 0 < 𝛾 ≤ 1. Recall-

ing that the L1 length of the feature vector is reduced by 𝜃𝑠𝑢𝑚 with

Feature-Reuse, we derive the time complexity of Feature-Reuse

on 𝒙 is 𝑂

(

√︃

𝑚 (1−𝜃𝑠𝑢𝑚)
𝛽𝑠 (1−𝛾𝜃𝑠𝑢𝑚)

)

, which is
√︃

1−𝜃𝑠𝑢𝑚
1−𝛾𝜃𝑠𝑢𝑚

times smaller than

those without Feature-Reuse.

For example, if we compute 𝜃𝑠𝑢𝑚 = 1/2 for a vector 𝒙 𝑓 with the

base vectors, and set 𝛾 = 1/4, then the complexity of computing the

PPR for 𝒙 𝑓 is 𝑂 (
√︁

4𝑚/7𝛽𝑠), which is substantially better than the

consumption without Feature-Reuse 𝑂 (
√︁

𝑚/𝛽𝑠). The overhead of

each base vector is𝑂 (
√︁

4𝑚/𝛽𝑠), which is only twice slower than the

original complexity. As we select only a few base vectors, the addi-

tional overhead produced by computing base vectors is neglectable

compared with the acceleration gained.

When Feature-Reuse applies, the complexity of computing a

feature vector is not worse than the complexity without Feature-

Reuse, and is equivalent to the latter only when 𝜃𝑠𝑢𝑚 = 0 (i.e.

the feature vector is completely orthogonal with the base vectors).

Therefore in the worst case, the complexity of SCARA on feature

matrix 𝑿 is equivalent to repeating 𝐹 queries of Algorithm 1. By

setting𝜙 = 1/𝑛, we can derive the time overhead of SCARA precom-

putation. For the complexity of memory, the usage of a single-query

Feature-Push can be denoted as 𝑂 (𝑛). Hence the precomputation

complexity of SCARA is given by the following theorem:

Theorem 3.7. Time complexity of SCARA precomputation stage

is bounded by 𝑂
(

𝐹
√︁

𝑚 log𝑛/𝜆
)

. Memory complexity is 𝑂 (𝑛𝐹).

4 EXPERIMENTAL EVALUATION

4.1 Experiment Setting
Datasets. We adopt benchmark datasets of different graph prop-

erties, feature dimensions, and data splitting for large-scale node

classification tasks. We present the dataset statistics in Table 2.

Among the datasets, PPI, Yelp, and Amazon are for inductive learn-

ing, where the training and testing graphs are different and require

separate graph precomputation and propagation. The given origi-

nal node splittings are in Table 2. The learning tasks on the other

datasets are transductive and are performed on the same graph

structure. For a dataset with 𝑁𝑐 target classes, we refer to conven-

tion in [6, 19] to randomly select two sets of 20𝑁𝑐 and 200𝑁𝑐 nodes

for training and validation, respectively, and the rest labeled nodes

in the graph as the testing set.

Table 2: Dataset statistics and parameters. łSplitž is the percentage of nodes in training/validation/testing set. ł(i)ž and ł(t)ž

stand for inductive and transductive tasks. ł(m)ž and ł(s)ž stand for multiple and single target classifications.

Dataset Nodes 𝑛 Edges𝑚 Features 𝐹 Classes 𝑁𝑐 Split Probability 𝛼 Convolution 𝑟 Common

PPI [16] 56, 944 818, 716 50 121 (m) 0.79/0.11/0.10 (i) 0.3 0.0

𝜆 = 1 × 10−4

𝑛𝐵 = 0.02𝑛𝑈
𝛾 = 0.2

𝛿0 = 1/16

Yelp [37] 716, 847 6, 977, 410 300 100 (m) 0.75/0.10/0.15 (i) 0.9 0.3

Reddit [16] 232, 965 114, 615, 892 602 41 (s) 0.01/0.04/0.96 (t) 0.5 0.5

Amazon [11] 2, 400, 608 123, 718, 024 100 47 (s) 0.70/0.15/0.15 (i) 0.2 0.2

MAG [35] 27, 394, 820 366, 143, 207 200 100 (m) 0.01/0.01/0.99 (t) 0.5 0.5

Papers100M [17] 111, 059, 956 1, 615, 685, 872 128 172 (s) 0.78/0.08/0.14 (t) 0.2 0.5

3245

Table 3: Average results of SCARA and baselines on large-scale datasets for transductive and inductive learning. łLearnž

and łInferž columns are the learning (sum of precomputation and training) and inference time (s), respectively. łMem.ž is

the peak RAMmemory (GB). łF1ž is the micro F1-score (%) on testing sets. łOOMž stands for out of memory error, ł> 12hž

means the model requires more than 12h clock time to produce proper results. The respective models of first and second

best performance in łLearnž, łInferž, łMem.ž, and łF1ž columns are marked in bold and underlined font.

Transductive
Reddit MAG Papers100M

Learn (Pre. + Train) Infer Mem. F1 Learn (Pre. + Train) Infer Mem. F1 Learn (Pre. + Train) Infer Mem. F1

GraphSAINT 51.5 (ś 51.5) 26.1 11.1 30.7 ±3.0 ś ś ś ś OOM ś ś ś ś ś OOM ś

GAS 3563 (ś 3563) 0.1 14.6 38.0 ±0.2 ś ś ś ś OOM ś ś ś ś ś OOM ś

PPRGo 163 (157 + 4.8) 74.1 8.0 31.0 ±1.7 ś > 12h ś ś 146 ś ś ś ś ś OOM ś

GBP 1891 (2127 + 16.3) 6.2 8.4 39.2 ±0.3 4572 (4470 + 102) 1433 177 ∗ 34.8 ±0.1 ś ś ś ś OOM ś

SCARA (ours) 12.0 (1.8 + 10.6) 4.8 4.7 40.3 ±0.7 460 (380 + 80.0) 1421 49.4 35.0 ±0.3 1471 (83.5 + 1388) 2.8 63.7 35.5 ±0.8

Inductive
PPI Yelp Amazon

Learn (Pre. + Train) Infer Mem. F1 Learn (Pre. + Train) Infer Mem. F1 Learn (Pre. + Train) Infer Mem. F1

GraphSAINT 2813 (ś 2813) 4.1 3.2 89.3 ±0.2 8589 (ś 8589) 193 54.0 64.9 ±0.1 2612 (ś 2612) 804 87.9 81.3 ±0.1

GAS 326 (ś 326) 0.1 6.6 99.3 ±0.1 3622 (ś 3622) 0.1 22.0 63.8 ±0.0 19218 (ś 19218) 0.4 41.7 71.7 ±0.5

PPRGo 4019 (70.0 + 3949) 1.7 2.7 50.1 ±0.7 13073 (91.9 +12981) 30.1 16.9 56.5 ±2.6 3041 (2092 + 949) 63.3 27.4 78.4 ±3.0

GBP 86.4 (18.5 + 67.9) 0.3 2.5 99.3 ±0.0 198 (77.2 + 121) 2.9 13.4 60.6 ±0.1 2193 (1019 + 1174) 7.5 13.4 86.8 ±0.1

SCARA (ours) 49.3 (0.5 + 48.9) 0.3 2.5 99.3 ±0.0 154 (3.6 + 150) 3.1 7.4 61.4 ±0.4 1281 (7.0 + 1274) 6.8 7.3 83.8 ±0.1

∗ GBP experiment of this entry is conducted on a different machine with a larger 192GB RAM.

Metrics. Predictions on datasets PPI, Yelp, and MAG are multi-label

classification having multiple targets for each node. The other tasks

are multi-class with only one target class per node. We uniformly

utilize micro F1-score to assess the model prediction performance.

The evaluation is conducted on amachine with Ubuntu 18 operating

system, with 160GB RAM, an Intel Xeon CPU (2.1GHz), and an

NVIDIA Tesla K80 GPU (11GB memory). The implementation is by

PyTorch and C++.

Baseline Models. We select the state-of-the-art models of differ-

ent scalable GNN methods analyzed in Section 2 as our baselines.

GraphSAINT-RW [37] and GAS [13] are representative of differ-

ent sampling-based algorithms. For post- and pre-propagation de-

coupling approaches, we respectively employ the most advanced

PPRGo [6] and GBP [9]. For a fair comparison, we mostly retain

the implementations and settings from original papers and source

codes. We uniformly apply single-thread executions for all models.

Hyperparameters. Propagation parameters 𝛼, 𝑟, 𝜆 and Feature-

Reuse parameters 𝑛𝐵, 𝛾, 𝛿0 are presented in Table 2 per dataset.

For neural network architecture we set layer depth 𝐿 = 4, layer

width𝑊 = 2048 and𝑊 = 128 for inductive and transductive tasks,

respectively, to be aligned with optimal baseline results in [9]. In

model optimization, we employ mini-batch training with respective

batch size 2048 and 64 for inductive and transductive learning, for

a maximum of 1000 epochs with early stopping.

The effects of 𝛼 and 𝑟 values on accuracy and efficiency metrics

are shown in Figure 1, which indicates that our selections of pa-

rameter values are efficient and do not influence GNN performance.

The full exploration on hyperparameters can be found in [1].

4.2 Performance Comparison
We evaluate the performance of SCARA and baselines in terms

of both effectiveness and efficiency. Table 3 shows the average

results of repetitive experiments on 6 large datasets, including

the assessments on accuracy, memory, and the running time for

different phases. Among them the keymetric is learning time, which

is summed up by precomputation and training times and presents

the efficiency through the information retrieving process to acquire

an effective model. The training curves are given in Figure 2.

As an overview, the experimental results demonstrate the supe-

riority of our model achieving scalability throughout the learning

phase. On all datasets, SCARA reaches 5 − 100× acceleration in

precomputation time than the best decoupling method, as well as

comparable or better training and inference speed, and significantly

better memory overhead. When the graphs are scaled-up, the time

and memory footprints of SCARA increase relatively slower than

our GNN baselines, which is in line with our complexity analysis.

For prediction performance, SCARA converges in all tasks and out-

puts comparable or better accuracy than other scalable competitors.

From the aspect of time efficiency, our SCARA model effectively

speeds up the learning process in all tasks, mostly benefiting from

the fast and scalable precomputation for graph propagation. The

simple neural model forwarding implemented in mini-batch ap-

proach also contributes to the efficient computation of model train-

ing and inference. On the largest available dataset Papers100M,

our method efficiently completes precomputation in 100 seconds,

and finishes learning in an acceptable length of time, showing

the scalability of processing billion-scale graphs. In comparison,

0.1 0.3 0.5 0.7 0.9
Convolution r

0.1

0.3

0.5

0.7

0.9

P
ro
b
ab
ili
ty

α

2.3310 2.3259 2.2926 2.2587 2.2555

2.1098 2.1041 2.0616 2.0316 2.0226

1.9149 1.8915 1.8445 1.8338 1.8329

1.7140 1.6946 1.6783 1.6607 1.6613

1.5533 1.5455 1.5449 1.5413 1.5218

Precomputation Time (s)

(a) Precomputation Time

0.1 0.3 0.5 0.7 0.9
Convolution r

0.1

0.3

0.5

0.7

0.9

P
ro
b
ab
ili
ty

α

40.4700 40.2400 41.0300 39.8100 40.3300

40.6700 40.6800 40.3600 40.3400 40.4100

40.2800 40.8900 40.3400 40.2500 40.3600

41.0200 40.1600 41.1200 40.6500 39.8600

40.2500 40.4400 41.0300 40.6200 40.2400

Testing Accuracy (%)

(b) Testing Accuracy

Figure 1: Effect of propagation parameters 𝛼 and 𝑟 on SCARA

(a) efficiency and (b) accuracy for Reddit dataset.

3246

0 5 10 15 20 25 30 35 40
Train Time (s)

10

20

30

40

V
al

F
1
M
ic
ro

(%
)

GrahSAINT

GAS

PPRGo

GBP

SCARA (Ours)

(a) Reddit

0 25 50 75 100 125 150 175 200
Train Time (s)

40

60

80

100

V
al

F
1
M
ic
ro

(%
)

GrahSAINT

GAS

PPRGo

GBP

SCARA (Ours)

(b) PPI

0 100 200 300 400 500
Train Time (s)

30

40

50

60

70

V
al

F
1
M
ic
ro

(%
)

GrahSAINT

GAS

PPRGo

GBP

SCARA (Ours)

(c) Yelp

Figure 2: Validation F1 convergence curves of SCARA and baseline models on (a) Reddit, (b) PPI, and (c) Yelp datasets. Curves

only represents the process of training phase. Shaded area is the result range of multiple runs.

sampling-based GraphSAINT and GAS achieve good performance

on several datasets, but the 𝑂 (𝐼𝐿𝑚𝐹) term in training complexity

results in great slowdown when graphs are scaled-up. GraphSAINT

is costly for its full-batch prediction stage on the whole graph,

which is usually only executable on CPUs. GAS is particularly fast

for inference, but it comes with the price of trading off memory

expense and training time to manipulate its cache. The propagation

decoupling models PPRGo and GBP show better scalability, but take

more time than SCARA to converge, due to the graph information

yielded by precomputation algorithms. It can be seen that their

node-based propagation computations are less efficient when the

graph sizes become larger, which aligns with Table 1 complexity

analysis. Remarkably, SCARA achieves about 100× and 40× faster

for precomputation than these two competitors on Reddit and PPI.

Regarding memory overhead, our method also demonstrates its

efficiency benefit from its scalable implementation.We discover that

the major memory expense of SCARA only increases proportional

to the graph attributematrix, while PPRGo andGBP usually demand

twice as large RAM, and GraphSAINT and GAS use even more

for their samplers. On the billion-scale Papers100M graph, most

baselines meet out of memory error in our machine.

For learning effectiveness, SCARA achieves similar or better

F1-score compared with current GNN baselines. For most datasets,

our model outperforms both the state-of-the-art pre-propagation

approach GBP and the scalable post-propagation baseline PPRGo. It

is worth noting that most baselines fail to or only partially converge

before training terminates in certain tasks.

Figure 2 shows the validation F1-score versus training time on

representative datasets and corresponding GNN models. It can be

observed that when comparing the time consumption to conver-

gence, the SCARA model is efficient in reaching the same precision

faster than most methods. The performances of GraphSAINT, GAS,

and PPRGo in the figure are relatively suboptimal because they

require more training time beyond the display scopes to converge.

4.3 Effect of Feature-Reuse
To examine the Feature-Reuse technique utilized in our model, we

conduct an ablation study to compare the precomputation perfor-

mance of SCARA by applying the Feature-Reuse as in Algorithm 2

or without reusing features and only full-precision Feature-Push

computation. We choose the Reddit dataset to generate trimmed

feature matrices with different dimensions 𝐹 to evaluate the feature-

oriented optimization. The results of average times and testing

accuracies over these feature matrices are given in Table 4.

By comparing the relative speed-up in Table 4, we state that

Feature-Reuse substantially reduces the precomputation time for

different node feature sizes. When the number of features increases,

the algorithm benefits more acceleration from adopting the feature

optimization scheme, and achieves up to 1.6× speed-up compared

to Feature-Push propagation without reuse. Meanwhile, Feature-

Reuse causes no significant difference on effectiveness as minor

accuracy fluctuations are under the error bound of repetitive exper-

iments. More detailed results can be found in [1].

Table 4: Effect of SCARA with and without Feature-Reuse

on precomputation time (s) and testing accuracy (%) for Red-

dit dataset with different feature dimensions 𝐹 .

Feature 𝑭 = 100 𝑭 = 200 𝑭 = 400 𝑭 = 602

Pre. Time

w/o Reuse 0.46 0.93 1.83 2.84

w/ Reuse 0.35 0.67 1.30 1.85

Speed-up 133% 138% 141% 155%

Accuracy

w/o Reuse 27.7 31.9 37.0 40.5

w/ Reuse 27.8 31.7 36.7 40.3

Δ +0.1 −0.2 −0.3 −0.2

5 CONCLUSION

In this paper, we propose SCARA, a scalable Graph Neural Net-

work algorithm with feature-oriented optimizations. Our theoret-

ical contribution includes showing the SCARA model has a sub-

linear complexity that efficiently scale-up the graph propagation

by Feature-Push and Feature-Reuse algorithms. We conduct

extensive experiments on various datasets to demonstrate the scal-

ability of SCARA in precomputation, training, and inference. Our

model is efficient to process billion-scale graph data and achieve up

to 100× faster than the current state-of-the-art scalable GNNs in

precomputation, while maintaining comparable or better accuracy.

ACKNOWLEDGMENTS

This research is supported by the Ministry of Education, Singapore,

under its Academic Research Fund Tier 1 Seed (RS05/21) and in

part by NTU startup grant. Any opinions, findings and conclusions

or recommendations expressed in this material are those of the

author(s) and do not reflect the views of the Ministry of Educa-

tion, Singapore. Xiang Li is supported by Shanghai Pujiang Talent

Program (Project No. 21PJ1402900) and Shanghai Science and Tech-

nology Committee General Program (Project No. 22ZR1419900). We

also thank the anonymous reviewers for their valuable feedback.

3247

REFERENCES
[1] 2022. SCARA Technical Report. https://sites.google.com/view/scara-techreport
[2] Rami Al-Rfou, Bryan Perozzi, and Dustin Zelle. 2019. DDGK: Learning Graph

Representations for Deep Divergence Graph Kernels. In The World Wide Web
Conference (San Francisco, CA, USA). 37ś48.

[3] Reid Andersen, Fan Chung, and Kevin Lang. 2006. Local Graph Partitioning
using PageRank Vectors. In 2006 47th Annual IEEE Symposium on Foundations of
Computer Science (FOCS’06). IEEE, 475ś486. https://doi.org/10.1109/FOCS.2006.
44

[4] James Atwood and Don Towsley. 2016. Diffusion-convolutional neural net-
works. 29th Advances in Neural Information Processing Systems (2016), 2001ś2009.
arXiv:1511.02136

[5] Rianne van den Berg, Thomas N Kipf, and Max Welling. 2018. Graph convolu-
tional matrix completion. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining.

[6] Aleksandar Bojchevski, Johannes Klicpera, Bryan Perozzi, Amol Kapoor, Martin
Blais, Benedek Rózemberczki, Michal Lukasik, and Stephan Günnemann. 2020.
Scaling Graph Neural Networks with Approximate PageRank. Proceedings of the
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(2020), 2464ś2473.

[7] Jie Chen, Tengfei Ma, and Cao Xiao. 2018. FastGCN: Fast Learning with Graph
Convolutional Networks via Importance Sampling. In International Conference
on Learning Representations.

[8] Jianfei Chen, Jun Zhu, and Le Song. 2018. Stochastic training of graph convo-
lutional networks with variance reduction. 35th International Conference on
Machine Learning 3 (2018), 1503ś1532. arXiv:1710.10568

[9] Ming Chen, Zhewei Wei, Bolin Ding, Yaliang Li, Ye Yuan, Xiaoyong Du, and
Ji Rong Wen. 2020. Scalable graph neural networks via bidirectional propagation.
33rd Advances in Neural Information Processing Systems (2020).

[10] Zhengdao Chen, Joan Bruna, and Lisha Li. 2019. Supervised community detec-
tion with line graph neural networks. 7th International Conference on Learning
Representations (2019).

[11] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh.
2019. Cluster-gcn: An efficient algorithm for training deep and large graph
convolutional networks. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 257ś266.

[12] Mucong Ding, Kezhi Kong, Jingling Li, Chen Zhu, John P Dickerson, Furong
Huang, and Tom Goldstein. 2021. VQ-GNN: A Universal Framework to Scale
up Graph Neural Networks using Vector Quantization. 34th Advances in Neural
Information Processing Systems (2021).

[13] Matthias Fey, Jan E. Lenssen, Frank Weichert, and Jure Leskovec. 2021. GN-
NAutoScale: Scalable and Expressive Graph Neural Networks via Historical
Embeddings. In 38th International Conference on Machine Learning. PMLR 139.

[14] Dániel Fogaras, Balázs Rácz, Károly Csalogány, and Tamás Sarlós. 2005. Towards
Scaling Fully Personalized PageRank: Algorithms, Lower Bounds, and Experi-
ments. Internet Mathematics 2, 3 (jan 2005), 333ś358. https://doi.org/10.1080/
15427951.2005.10129104

[15] William L Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive Representation
Learning in Large Attributed Graphs. 30th Advances in Neural Information
Processing Systems (oct 2017). arXiv:1710.09471

[16] William L Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In Proceedings of the 31st International Conference on
Neural Information Processing Systems. 1025ś1035.

[17] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen
Liu, Michele Catasta, Jure Leskovec, Regina Barzilay, Peter Battaglia, Yoshua Ben-
gio, Michael Bronstein, Stephan Günnemann, Will Hamilton, Tommi Jaakkola,
Stefanie Jegelka, Maximilian Nickel, Chris Re, Le Song, Jian Tang, Max Welling,
and Rich Zemel. 2020. Open Graph Benchmark : Datasets for Machine Learning
on Graphs. 33rd Advances in Neural Information Processing Systems (2020).

[18] Zengfeng Huang, Shengzhong Zhang, Chong Xi, Tang Liu, and Min Zhou. 2021.
Scaling Up Graph Neural Networks Via Graph Coarsening. In Proceedings of the
27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, Vol. 1.
675ś684.

[19] Thomas N Kipf andMaxWelling. 2017. Semi-supervised classification with graph
convolutional networks. In International Conference on Learning Representations.

[20] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. 2019. Pre-
dict then propagate: Graph neural networks meet personalized PageRank. 7th
International Conference on Learning Representations (2019), 1ś15.

[21] Xiang Li, Renyu Zhu, Yao Cheng, Caihua Shan, Siqiang Luo, Dongsheng Li,
and Weining Qian. 2022. Finding Global Homophily in Graph Neural Networks
WhenMeeting Heterophily. In 39th International Conference on Machine Learning.
arXiv:2205.07308

[22] Dandan Lin, Raymond Chi-Wing Wong, Min Xie, and Victor Junqiu Wei. 2020.
Index-Free Approachwith Theoretical Guarantee for Efficient RandomWalkwith
Restart Query. In 2020 IEEE 36th International Conference on Data Engineering
(ICDE). 913ś924. https://doi.org/10.1109/ICDE48307.2020.00084

[23] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The
PageRank Citation Ranking: Bringing Order to the Web. Technical Report.

[24] Arnab Sinha, Zhihong Shen, Yang Song, Hao Ma, Darrin Eide, Bo-June (Paul)
Hsu, and Kuansan Wang. 2015. An Overview of Microsoft Academic Service
(MAS) and Applications. In Proceedings of the 24th International Conference on
World Wide Web (Florence, Italy). 243ś246.

[25] Lichao Sun, Yingtong Dou, Carl Yang, Ji Wang, Philip S. Yu, Lifang He, and Bo Li.
2018. Adversarial Attack and Defense on Graph Data: A Survey. arXiv e-prints
(2018).

[26] Kiran K Thekumparampil, Chong Wang, Sewoong Oh, and Li-Jia Li. 2018.
Attention-based graph neural network for semi-supervised learning. arXiv
e-prints (2018). arXiv:1803.03735v1

[27] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networks. In 8th International
Conference on Learning Representations.

[28] Chun Wang, Shirui Pan, Guodong Long, Xingquan Zhu, and Jing Jiang. 2017.
MGAE: Marginalized Graph Autoencoder for Graph Clustering. In Proceedings
of the 2017 ACM on Conference on Information and Knowledge Management
(Singapore, Singapore) (CIKM ’17). Association for Computing Machinery, New
York, NY, USA, 889ś898. https://doi.org/10.1145/3132847.3132967

[29] Hanzhi Wang, Mingguo He, Zhewei Wei, Sibo Wang, Ye Yuan, Xiaoyong Du,
and Ji Rong Wen. 2021. Approximate Graph Propagation. In Proceedings of the
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
Vol. 1. Association for Computing Machinery, 1686ś1696.

[30] Sibo Wang, Renchi Yang, Runhui Wang, Xiaokui Xiao, Zhewei Wei, Wenqing
Lin, Yin Yang, and Nan Tang. 2019. Efficient Algorithms for Approximate Single-
Source Personalized PageRank Queries. ACM Transactions on Database Systems
44, 4 (dec 2019), 1ś37. https://doi.org/10.1145/3360902 arXiv:1908.10583

[31] Sibo Wang, Renchi Yang, Xiaokui Xiao, Zhewei Wei, and Yin Yang. 2017. FORA:
Simple and effective approximate single-source personalized PageRank. Proceed-
ings of the ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining Part F1296 (2017), 505ś514.

[32] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian
Weinberger. 2019. Simplifying Graph Convolutional Networks. In Proceedings of
the 36th International Conference on Machine Learning, Kamalika Chaudhuri and
Ruslan Salakhutdinov (Eds.), Vol. 97. 6861ś6871.

[33] Hao Wu, Junhao Gan, Zhewei Wei, and Rui Zhang. 2021. Unifying the Global
and Local Approaches: An Efficient Power Iteration with Forward Push. In
Proceedings of the 2021 International Conference on Management of Data, Vol. 1.
1996ś2008.

[34] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
Philip S. Yu. 2021. A Comprehensive Survey on Graph Neural Networks. IEEE
Transactions on Neural Networks and Learning Systems 32, 1 (1 2021), 4ś24.

[35] Renchi Yang, Jieming Shi, Xiaokui Xiao, Yin Yang, Juncheng Liu, and Sourav S
Bhowmick. 2021. Scaling Attributed Network Embedding to Massive Graphs.
Proceedings of the VLDB Endowment 14, 1 (2021), 37ś49.

[36] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton,
and Jure Leskovec. 2018. Graph Convolutional Neural Networks for Web-Scale
Recommender Systems. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining (London, United Kingdom).
974ś983.

[37] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor
Prasanna. 2019. GraphSAINT: Graph Sampling Based Learning Method. In
International Conference on Learning Representations.

[38] Jiawei Zhang, Haopeng Zhang, Congying Xia, and Li Sun. 2020. Graph-bert:
Only attention is needed for learning graph representations. arXiv e-prints (2020).
arXiv:2008.08617

[39] Muhan Zhang and Yixin Chen. 2018. Link prediction based on graph neural
networks. Advances in Neural Information Processing Systems 31 (2018), 5165ś
5175.

[40] Ziwei Zhang, Peng Cui, and Wenwu Zhu. 2020. Deep Learning on Graphs: A
Survey. IEEE Transactions on Knowledge and Data Engineering 14, 8 (2020), 1ś1.
https://doi.org/10.1109/TKDE.2020.2981333 arXiv:1812.04202

[41] Zulun Zhu, Jiaying Peng, Jintang Li, Liang Chen, Qi Yu, and Siqiang Luo. 2022.
Spiking Graph Convolutional Networks. In 31th International Joint Conference
on Artificial Intelligence. arXiv:2205.02767

[42] Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann. 2018. Adversarial
Attacks on Neural Networks for Graph Data. In Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery &DataMining (London,
United Kingdom). 2847ś2856.

3248

https://sites.google.com/view/scara-techreport
https://doi.org/10.1109/FOCS.2006.44
https://doi.org/10.1109/FOCS.2006.44
https://arxiv.org/abs/1511.02136
https://arxiv.org/abs/1710.10568
https://doi.org/10.1080/15427951.2005.10129104
https://doi.org/10.1080/15427951.2005.10129104
https://arxiv.org/abs/1710.09471
https://arxiv.org/abs/2205.07308
https://doi.org/10.1109/ICDE48307.2020.00084
https://arxiv.org/abs/1803.03735v1
https://doi.org/10.1145/3132847.3132967
https://doi.org/10.1145/3360902
https://arxiv.org/abs/1908.10583
https://arxiv.org/abs/2008.08617
https://doi.org/10.1109/TKDE.2020.2981333
https://arxiv.org/abs/1812.04202
https://arxiv.org/abs/2205.02767

