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ABSTRACT
Recent advances in Computer Vision (CV) algorithms have im-

proved accuracy and efficiency, making video annotations possible

with high accuracy. In this paper, we utilize the annotated data

provided by such algorithms and construct graph representations

to capture both object labels and spatial-temporal relationships

of objects in videos. We define the problem of Spatial and Tem-

poral Constrained Ranked Retrieval (STAR Retrieval) over videos.

Based on the graph representation, we propose a two-phase ap-

proach, consisting of the ingestion phase, where we construct and

materialize the Graph Index (GI), and the query phase, where we

compute the top ranked windows (video clips) according to the

window matching score efficiently. We propose two algorithms

to perform Spatial Matching (SMA) and Temporal Matching (TM)

separately with an early-stopping mechanism. Our experiments

demonstrate the effectiveness of the proposed methods, achieving

orders of magnitude speedups on queries with high selectivity.
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1 INTRODUCTION
Large amounts of videos are being recorded and produced daily

thanks to the popularity of modern computing devices and fast

networks. Such abundance of video instigates pressing needs for

subsequent analysis. With Deep Learning models, solid accuracy

and efficiency have been achieved on many fundamental computer

vision tasks such as image classification [18, 19, 39, 43], object

detection [15, 17, 34, 35], and object tracking[4, 46, 47]. Such ad-

vances enable new opportunities for query processing over videos.

For example, analyzing the results produced by object detection

algorithms, objects that appeared per frame can be annotated auto-

matically by type, enabling queries regarding the object types, the

number of objects as well as the position of objects in the scene.

Recent works in the data management community utilize com-

puter vision (CV) algorithms to extract data from raw frames to

answer queries over videos with conditions such as object types[20,

25], object colors[23, 24], spatial constraints [27, 48], temporal con-

straints [8, 9] as well as interactions [6]. The current processing
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pipeline in the literature falls under two broad categories; one is to

accelerate query answering via filtering based on cheap approxi-

mate filters utilizing DLmodels [20, 25, 48], while another approach

applies CV algorithms as a pre-processing step and works on the

extracted data only [8, 9]. The first approach usually requires extra

training for cheap neural network models, while the second can

adapt to new CV algorithms easily which can be further refined by

humans to improve the annotation results if required.

In this paper, we take the second approach and focus on a new

type of video retrieval (called STAR Retrieval) that seeks to identify

video segments of a set duration, while satisfying user-provided

constraints on the spatial relationships among objects of interest,

as well as other conditions on the object labels (such as object type,

object color, etc.). Such queries are helpful in scenarios where one

is interested in identifying video clips from a large video repository

which contain user-specified objects with user-specified spatial and

temporal constraints among them. Such operations are prevalent in

video editing, video content creation, news production, marketing

and advertising of social media content. For example identify his-

torical footage in which Barack Obama is on the right of a fighter

Jet and left to Michelle Obama during the preparation of a news

story, using archive videos, identify archive clips of a coastguard

vessel next to a burning tanker to easily assemble footage from

related past events, or creating popular social media compilations

based on social media challenges. Such queries usually only focus

on particular moving patterns of selected objects, based on the

relative spatial relationships between objects being considered.

Different from existing works [8, 9], where only temporal rela-

tionships are supported, we consider both the spatial relationships

between objects in the same frame, and the temporal moving pat-

tern across frames. We use graphs as the data model to encode both

object attributes and the spatial-temporal relationships between ob-

jects. Specifically, (1) Each vertex on the graph represents an object,

with object labels as vertex attributes, which can be obtained via

CV algorithms. (2) Each edge represents the spatial relationship be-

tween two objects. We consider relative positions between any two

objects, since in most cases objects are moving, and the absolute

position of objects in the frame is less important. Moreover, queries

that require conditions on the absolute position of objects can be

easily supported by incorporating the position as an attribute on

the vertex. (3) Based on the above, a sequence of graphs is used to

capture the temporal relationships of objects between frames. We

employ the track ID, produced by object tracking algorithms, as the

unique identifier for each vertex, where the same track ID is used

across the graph sequence for vertices that refer to the same object.

Figure 1(a)-(c) depicts an example scenario where a car (anno-

tated by B) is passing the pedestrian (annotated by A) from the left.

For each frame, we can construct a corresponding graph, shown in

3226

https://doi.org/10.14778/3551793.3551865
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3551793.3551865


A

B

B A

(d) Graph Representation for (a)

A

B

A
B

(a) Annotated Frame 1 (b) Annotated Frame 2 (c) Annotated Frame 3 (e) Graph Representation for (b)

B A
A

B

(f) Graph Representation for (c)

C C C

D

x

y

Figure 1: An Example

Figure 1(d)-(f). Utilizing the unique track ID on vertices, the tempo-

ral information between frames is easily captured by the sequence

of graphs. For each graph, the object labels are represented with

different shapes (circle and square) in the vertices, while the spatial

information is represented in two groups of values: (1) the distance

between two object (e.g., 𝑑1 in Figure 1(d)), and (2) the angle values

between two objects (e.g., 𝜃11, 𝜃12 in Figure 1(d)).

In the above example, we only consider object type for brevity.

Other attributes of interest such as object colors, vehicle brand, etc.,

can be easily added and supported. Moreover, since both the angle

and the distance between two objects can be continuous values,

retrieving videos while requiring exact matches in these values

would be too strict to apply in any practical scenario. Thus, we

introduce edge discretization to restrict edge attributes to a pre-

defined number of buckets. As such we reduce the value range for

edge attributes while guaranteeing that attribute values in close

proximity share the same discretized values.

Graph representations capture both the object labels on nodes

and relationships between objects on edges explicitly, making it

easier to support arbitrary query conditions on both objects and

relationships between objects. Utilizing graph modeling, any video

of arbitrary length can be represented with a sequence of graphs,

where the spatial information of objects is captured implicitly by

track IDs throughout the sequence. Queries are provided as a short

sequence of graphs (one graph per frame of the query), represent-

ing a certain movement pattern amongst objects , with the spatial

relationships between objects in each frame being considered. We

use query graph sequences to denote such queries. The query graph

sequence can be obtained either by examples or by sketches. Specif-

ically, with a query-by-example approach, users can provide a short

video clip as the initial step. With object detection and tracking

algorithms applied, users then specify the set of objects that are

of interest. Based on the annotation results, a graph sequence can

be generated. Similarly, with a query-by-sketch approach, users

construct a sequence of graphs directly with specified attributes

on nodes (objects) and edges (spatial relationships between objects,

i.e., 𝑑 and 𝜃 values from the above example). Such approaches can

be easily realized and are useful to retrieve specific moving patterns

from videos in scenarios such as scene retrieval and pattern search.

As such, we can composite only selected objects of interest into the

query graph, making the query more specific and precise, which

cannot be done utilizing Machine Learning-based approaches.

The main objective is to retrieve ranked video clips from a video

repository such that: (1) the duration of video clips (number of

frames) is the same as the number of frames in the given query,

and (2) each video clip is associated with a matching score, where

video clips with higher matching scores are ranked higher in the

query results. The candidates of such video clips can be obtained

by imposing a sliding window over whole videos to obtain clips,

where the window size is equal to the length of the given query.
1

In a similar manner, we also construct graph representations for

each video clip. By aligning two graph sequences obtained from the

query and the video clip, we derive a one-to-one mapping between

graphs in the video clip and graphs in the given query. We propose

a matching framework to produce the matching score of each video

clip, where the score reflects the closeness of the video clip and the

given query, which will be formally defined in Section 2.

In this paper, we refer to this problem as Spatial and Temporal

constrAined Ranked Retrieval (STAR Retrieval) over videos. For

ease of presentation, we use the term windows to refer to the video

clips extracted from videos in the repository and use the term query
graph sequence to denote the graph representation of the given

query, which will be formally defined in Section 2.

Answering such queries by enumerating all possible windows

and computing their matching scores as described above could

be very inefficient and costly. To accelerate query answering, We

simplify the query graph and propose a two-phase framework, con-

sisting of both an ingestion phase, where a Graph Index (GI) is

constructed and materialized, and a query phase, where queries

are evaluated efficiently utilizing the proposed algorithms. The GI

index provides efficient edge retrieval according to the given ver-

tex attributes and edge attributes, while minimizing the storage

overhead. During the query phase, a matching procedure is per-

formed utilizing spatial and temporal information stored in the GI

index to prune unrelated edges or data graphs early. By adopting an

early-stopping mechanism based on score estimation, the matching

procedure can terminate as soon as the ranked result is finalized.

Our contributions are summarized as follows:

• We introduce and formalize the STAR Retrieval problem us-

ing graphs to represent spatial and temporal relationships of

interest in both videos and queries.

• Wepropose Graph Index (GI) to precompute andmaterialize the

graphs constructed from annotations with edge discretization,

which is then used to accelerate query answering.

• We propose two algorithms, namely, Spatial Matching to per-

form efficient graph matching for each query graph, and Tem-

poral Matching to perform temporal matching across query

graphs with an early-stopping mechanism.

• We evaluate our approach via real-world videos, demonstrat-

ing orders of magnitude performance improvement over the

baseline on queries with high selectivity.

1
We use sliding window semantics as an example; other window semantics can also

be easily supported.
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The remainder of the paper is organized as follows. Section 2

formally defines the problem. Section 3 presents the overview of

the framework, followed by the Graph Index (GI) in Section 4, and

query processing in Section 5. Section 6 evaluates the proposed

methods via experiments. Related works are discussed in Section 7,

and Section 8 concludes the paper.

2 PROBLEM DEFINITION
A video,V , is a sequence of frames,V =< 𝑓1, . . . , 𝑓𝑛 >. For each

frame, we can obtain a set of objects, where each object is repre-

sented by a unique identifier (i.e., object ID), along with other labels

such as object type, object color, etc. Let L be the set of all labels,
and ID be the set of all object identifiers. We use a function from ID
to L to describe the labels of each object represented by its object

identifier. We utilize a graph abstraction to represent the informa-

tion extracted from each frame. In this representation each vertex

is an object identifier (i.e., object ID), and each edge represents the

spatial relationships between two vertices. We use Object Graphs

to denote such graphs, defined as follows:

Definition 1. Object Graph. We represent a given frame 𝑓 by a
graph𝐺 𝑓 = (𝑉𝐺𝑓

, 𝐸𝐺𝑓
, 𝐿𝐺𝑓
), where𝑉𝐺𝑓

⊆ ID is the set of object IDs,
𝐸𝐺𝑓

is the set of edges, and 𝐿𝐺𝑓
: 𝑉𝐺𝑓

→ L∗ is a labeling function
that maps an object ID to a set of labels. Each edge 𝑒𝑖 ∈ 𝐸𝐺𝑓

takes the
form of 𝑒𝑖 = (𝑢, 𝑣, 𝜃𝑖 , 𝑑𝑖 ) that denotes the spatial relation between two
objects with IDs,𝑢 and 𝑣 , where 𝜃𝑖 represents the angle from the object
with ID 𝑢 to the object with ID 𝑣 , while 𝑑𝑖 represents the distance
between the two objects.

For each frame, 𝑓𝑖 ∈ V , the object graph can be extracted with

the following information captured on the graph: (1) Vertices (Ob-
ject IDs). The unique identifier (i.e., object ID) of each object in the

frame, which can be obtained utilizing object tracking algorithms.

(2) Vertex Attributes (Object Labels). The labels (metadata) re-

garding any object in the frame, including attributes such as color,

object type, etc., which can be obtained directly from object detec-

tion results. We assume that such object labels are static attributes

and do not change for each unique object recognized by the same

object identifier. (3) Edge Attributes (Spatial Relationship be-
tweenVertices). 𝜃 and𝑑 values associated with edges, representing

the spatial relationships between objects in the frame, which can

be derived from the relative positions of bounding boxes produced

by object detection algorithms.

The edge attributes can be obtained as follows: we represent each

frame in a two-dimensional space with the origin at the top-left

corner of the frame, as shown in Figure 1(a). For each object with

identifier, 𝑜 , we can obtain its position (𝑥𝑜 , 𝑦𝑜 , ℎ𝑜 ,𝑤𝑜 ) in pixels from

the object detection results, where 𝑥𝑜 and 𝑦𝑜 denote the horizontal

and vertical positions of the object center, ℎ𝑜 is the height of the

object, and𝑤𝑜 is the width of the object, assuming that each object

is recognized as a rectangle. For any given pair of objects with ID 𝑢

and 𝑣 in the frame, the edge attributes can be computed based on

the center points as follows: 𝑑 =
√︁
(Δ𝑥)2 + (Δ𝑦)2, 𝜃 = arctan

Δ𝑦
Δ𝑥 ,

where Δ𝑥 = 𝑥𝑣 − 𝑥𝑢 and Δ𝑦 = 𝑦𝑣 − 𝑦𝑢 .
We useQuery Graph to denote the Object Graph corresponding

to a single frame of the given query and Data Graph to denote

the Object Graph constructed based on a frame from the video

repository. We then define query graph matching as follows.

Definition 2. Query Graph Matching. Given a query graph 𝑃 =

(𝑉𝑃 , 𝐸𝑃 ) and a data graph𝐺 = (𝑉𝐺 , 𝐸𝐺 ), the Query Graph Matching
returns all subgraphs 𝑀 = (𝑉𝑀 , 𝐸𝑀 ) of 𝐺 if there exists a bijective
function ℎ : 𝑉𝑃 → 𝑉𝑀 such that for each 𝑣 ∈ 𝑉𝑃 , 𝐿𝑃 (𝑣) ∈ 𝐿𝑀 (ℎ(𝑣)),
and for each edge (𝑢, 𝑣, 𝜃, 𝑑) ∈ 𝐸𝑃 , (ℎ(𝑢), ℎ(𝑣), 𝜃, 𝑑) ∈ 𝐸𝑀 . We use
𝑃 ∼

ℎ
𝑀 to denote that graph𝑀 is a match of 𝑃 with function ℎ, and

𝑃 ∼
ℎ
𝐺 to denote that there is at least one subgraph of𝐺 that matches

𝑃 with ℎ.
We reuse the same vertices (Object IDs) across frames utilizing

the unique tracking identifiers provided by object tracking algo-

rithms. The object graph sequence is defined as follows.

Definition 3. Object Graph Sequence. An object graph sequence,
G𝐹 = ⟨𝐺 𝑓1 , . . . ,𝐺 𝑓𝑙 ⟩ is a sequence of graphs constructed based on a
sequence of frames 𝐹 = ⟨𝑓1, . . . , 𝑓𝑙 ⟩. The length of an object graph
sequence is the total number of frames in 𝐹 , i.e., |G𝐹 | = |𝐹 |.

We use 𝑉G𝐹 to denote the set of unique vertices in the graph

sequence. We obtain a Query Graph Sequence from the given

query and a Data Graph Sequence based on any video clip from

the video repository. We can now introduce the notion of matching

between a query graph sequence and a data graph sequence of the

same length based on the pairwise matching of individual query

graphs and data graphs.

Definition 4. Query Graph Sequence Matching. Given a query
graph sequence P (which we consider a pattern) and a data graph
sequence G, with |P | = |G| = 𝑙 , if there exists an injective function
ℎ : 𝑉P → 𝑉G and ∃𝑖 ∈ [1, 𝑙], such that 𝑃𝑖 ∼

ℎ
𝐺𝑖 , where 𝑃𝑖 ∈ P and

𝐺𝑖 ∈ G, then we say that graph sequence G matches pattern P with
ℎ. The matching score is defined as:

𝑠𝑐𝑜𝑟𝑒 (P ∼
ℎ
G) =

∑︂
𝑃𝑖 ∈P,𝐺𝑖 ∈G

𝑠𝑐𝑜𝑟𝑒 (𝑃𝑖 ∼
ℎ
𝐺𝑖 )

where

𝑠𝑐𝑜𝑟𝑒 (𝑃𝑖 ∼
ℎ
𝐺𝑖 ) =

{︄
1, 𝑃𝑖 ∼

ℎ
𝐺𝑖

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

For any arbitrary function ℎ, we have 0 ≤ 𝑠𝑐𝑜𝑟𝑒 (P ∼
ℎ
G) ≤ 𝑙 .

When 𝑠𝑐𝑜𝑟𝑒 (P ∼
ℎ
G) = 𝑙 , then G fully matches P with ℎ (i.e., G

is a complete match of P with ℎ). When 0 < 𝑠𝑐𝑜𝑟𝑒 (P ∼
ℎ
G) < 𝑙 ,

then G partially matches P with ℎ (i.e., G is a partial match of

P with ℎ). Otherwise, G is not a match of pattern P with ℎ.

Definition 5. Query Graph Sequence Matching Score.We use
𝐻 to represent the set of all possible functions between domain 𝑉P
and range𝑉G . The matching score of the data graph sequence G with
respect to the query graph sequence P is defined as the maximum
score produced by function ℎ ∈ 𝐻 : (|G| = |P | = 𝑙)

𝑠𝑐𝑜𝑟𝑒 (P ∼ G) = max

∀ℎ∈𝐻
𝑠𝑐𝑜𝑟𝑒 (P ∼

ℎ
G)

Given the query graph sequence P, and a (long) video V , we

wish to determine the video clips (i.e., windows of frames) with the

highest matching scores, defined as follows.

Definition 6. Spatial and Temporal Constrained Ranked Re-
trieval (STAR Retrieval). Given a video V , a query graph se-
quence P and a query parameter 𝑘 , we useW to represent all win-
dows of frames with size |P | generated on video V , and use G𝑊

3228



to represent the data graph sequence constructed from video clip
𝑊 ∈ W. The result of STAR Retrieval is a ranked list of 𝑘 video clips,
𝑅𝑒𝑠𝑢𝑙𝑡 = (𝑊1, . . . ,𝑊𝑘 ), where ∀𝑊𝑖 ∈ 𝑅𝑒𝑠𝑢𝑙𝑡 , 𝑠𝑐𝑜𝑟𝑒 (P ∼ G𝑊𝑖

) ≥
𝑠𝑐𝑜𝑟𝑒 (P ∼ G𝑊𝑖+1 ) and ∀𝑊𝑗 ∈ W \ 𝑅𝑒𝑠𝑢𝑙𝑡 , 𝑠𝑐𝑜𝑟𝑒 (P ∼ G𝑊𝑗

) ≤
𝑠𝑐𝑜𝑟𝑒 (P ∼ G𝑊𝑘

).
Definition 6 specifies STAR Retrieval on one video. Similarly, for

a video repository, STAR Retrieval is conducted either processing

all videos iteratively or abstracting the video repository as a long

video. By applying windows on a video, the video clip is formed

with only frames enclosed in one window. For simplicity, in the

remaining sections, we use matching score to denote the query

graph sequence matching score for each window.

3 FRAMEWORK OVERVIEW
Performing STAR Retrieval relies on the graph representation of

videos. However, it is infeasible to build graph sequences using all

videos in the repository, from scratch, each time a query is posed.

We adopt a two-phase approach to amortize graph construction

cost over all queries and accelerate query answering on the pre-

materialized index, which consists of a video ingestion phase and a

query phase, as shown in Figure 2.

Index Construction

Videos Materialized

Index

(GI)


Query Ranked
Results

Ingestion Phase Query Phase

Query Processing

Figure 2: Framework Overview

The ingestion phase is conducted as a pre-processing step, where

each frame is routed to applicable object detection and object track-

ing algorithms which provide all suitable annotations for each

frame. Our objective is to compute all spatial relationships between

vertices in each frame and materialize it as edge attributes to fa-

cilitate query processing. Based on the vertex attributes and edge

attributes, we build and materialize the Graph Index (GI), which is

meant to serve all possible incoming queries; thus the cost of video

ingestion is amortized over all queries.

During the query phase, ranked results for a given STAR Re-

trieval query are produced utilizing the materialized index, which

involves two main steps: window generation and matching score

computation. We deploy pruning strategies in both steps to reduce

the computational cost. Specifically, utilizing edge and vertex at-

tributes in the query graph sequence, we only retrieve relevant

vertices and edges from the materialized index, reducing both the

size of the data graph for each frame and the number of windows

generated; during matching score computation, we introduce score

estimation to prioritize windows that are likely to produce higher

matching scores, and apply an early-stopping mechanism to avoid

further computation once the ranked result is finalized.

We first discuss how to build the GI index during the ingestion

phase in Section 4, and then focus on query processing in Section 5.

4 GRAPH INDEX (GI)
The Graph Index is built on the video repository during the inges-

tion phase. The main objective is to pre-compute the data graph per

frame in the video repository and materialize sufficient data such

that for any given query, the data graph sequence for each window

can be constructed efficiently. We achieve this based on two main

ideas: (1) simplify the query graph sequence, such that the number

of edges retrieved from the index can be minimized (Section 4.1);

(2) introduce edge discretization to enable sharing between edges

with the same attributes (Section 4.2).

4.1 Minimum Object Graph
As per Definition 1, given a frame, for any vertex (i.e. Object ID)

in the frame, 𝑣 ∈ 𝑉𝐺𝑝
, there must be an edge, (𝑣, 𝑣 ′, 𝜃, 𝑑) ∈ 𝐸𝐺𝑓

,

where 𝑣 ′ is any other vertex in 𝑉𝐺𝑓
(𝑣 ′ ≠ 𝑣). In other words, the

graph 𝐺 𝑓 for frame 𝑓 is a complete graph. This implies that the

number of edges could increase dramatically when the number of

objects increases in each frame. We therefore focus on developing

a more compact data structure to store the information contained

in the object graph.

To begin with, instead of keeping and matching two directed

edges between any two vertices, we could use one directed edge

without losing any information. Specifically, consider the spatial

relationship between vertices, 𝑢 and 𝑣 , in the object graph. There

exist two edges 𝑒1, 𝑒2 ∈ 𝐸𝐺 , where 𝑒1 = (𝑢, 𝑣, 𝜃1, 𝑑1) and 𝑒2 =

(𝑣,𝑢, 𝜃2, 𝑑2). Given the values of distance 𝑑1 and angle 𝜃1, we can

easily derive those of 𝑑2 (which is equal to 𝑑1) and 𝜃2.

We can further reduce the number of edges maintained by ex-

ploiting their geometric properties. We first show that for any trio

of vertices with an edge between each vertex pair, we can derive

the attributes of any edge from those of the other two, as stated in

the following lemma.

Lemma 4.1. Let 𝑋,𝑌, 𝑍 be three distinct vertices in the graph 𝐺 𝑓

for frame 𝑓 . The edge attributes of any two pairs of vertices from
𝑋,𝑌, 𝑍 sufficiently determine the edge attribute of the remaining pair.

It is easy to show that the attributes for the third edge can be

derived utilizing trigonometric functions based on the triangle

formed by 𝑋,𝑌 and 𝑍 in the 2D space for the frame. The formal

proof is omitted for brevity.

Lemma 4.1 leads to the following way of reducing the number of

edges in the object graphs. We introduce minimum object graphs.
Definition 7 (Minimum Object Graph). A minimum object graph
𝑀𝑓 is a graph derived from𝐺 𝑓 by retaining all the vertices in𝐺 𝑓 but
only the minimum number of edges in 𝐺 𝑓 to ensure that it remains a
connected graph, i.e. |𝐸𝑀𝑓

| = |𝑉𝑀𝑓
| − 1.

By applying Lemma 4.1 iteratively, we can prove the following.

Theorem 4.2. The edge attributes for any pair of vertices in a
minimum object graph can be derived using edges solely from this
graph.

To reduce the complexity of retrieving data graph sequences

and computing query graph matching, we use minimum object

graphs instead of object graphs for the query representation. As per

Definition 7, to construct a minimum object graph, we can select

any vertex as the start vertex (which we call the anchor vertex),
and keep only those edges from the start vertex to all other vertices.

In this case, the minimum object graph can be viewed as a tree,
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where the height of the tree is 1 and the anchor vertex is the root

of the tree. Without loss of generality, in the following discussion

we select the top-left most vertex, 𝑜 , as the anchor vertex (i.e., the

object with the lowest (𝑥𝑜 ,𝑦𝑜 ) value, where where 𝑥𝑜 , 𝑦𝑜 denote the

horizontal and vertical positions of the object center in the frame)

and only keep edges starting from this vertex in the minimum

object graph. Figure 3 depicts an example of converting an object

graph to a minimum object graph. We use circles and squares to

denote different types of objects (i.e., with different labels), and use

𝑋,𝑌, 𝑍 to denote three unique vertices.

We useMinimum Query Graph Sequence to denote the se-
quence of minimum object graphs generated from a given query. In

the remaining sections, we use query graph and minimum query

graph interchangeably, and use query graph sequence and mini-

mum query graph sequence interchangeably.

X

Z

Y
X

Z

Y

(a) Object Graph (b) Minimum Object Graph

Figure 3: Minimum Object Graph

4.2 Edge Discretization
To ensure consistency between different video resolutions, the

distance between vertices in a frame is normalized. For two vertices

𝑢 and 𝑣 , their distance 𝑑 (𝑢, 𝑣) is computed as 𝑑 (𝑢, 𝑣) = 𝑑𝑝 (𝑢,𝑣)
𝑑𝑙

,

where 𝑑𝑝 (𝑢, 𝑣) is the Euclidean distance between the two vertices,

and 𝑑𝑙 is the diagonal length of the frame. Both 𝑑 (𝑢, 𝑣) and 𝑑𝑝 (𝑢, 𝑣)
have the same units (say, pixels) and 𝑑 ∈ [0, 1]. Angles can be

computed as per their definition in Section 2.

Typically, for querying purposes, the exact distances and angles

between the vertices are not critical, thus we reduce the distances

and angles to a lower resolution via discretization. This has the

benefit of lowering the cost of edge retrieval during query process-

ing (to be detailed in Section 5.2) as well as minimizing the storage

overhead of the graph index (to be discussed in Section 4.3). For dis-

cretization, we determine the number of buckets allocated to storing

𝜃 and 𝑑 values, and simply keep their respective bucket index as

the discretized value. We stress however that our approach would

work unchanged without any discretization if that is required.

4.3 Index Construction
To guarantee that the relationships between any two vertices are

captured and materialized, during the ingestion phase we generate

andmaterialize complete graphs for each frame in the videos we pre-

process. Since the object graphs generated from adjacent frames in a

video are likely to share the same vertices and same edge attributes,

we could reuse such information andminimize the storage overhead.

Based on the above along with edge discretization, we propose the

Graph Index (GI), illustrated in Figure 4.

For each video, V =< 𝑓1, . . . , 𝑓𝑛 >, in the repository, we first

obtain the data graph sequence, denoted by G𝑉 . We use 𝐸G𝑉 to

denote the set containing all edges in G𝑉 , and use 𝑉G𝑉 to denote

the set containing all vertices in G𝑉 . To materialize the entire data

(bus,car)

(bus, bus)

(a) Vertex Attributes Pairs (b) Spatial Index

(θ1,d1)

(θ2,d2)
...

(c) Vertex Pairs

(A, B)

(B, C)
...

[0,2]

[3][8]
...

(d) Frame IDs

(start, end)

...

... ...

Figure 4: The Graph Index

graph sequence, three types of information need to be captured:

vertex attributes attached to each vertex 𝑣 ∈ 𝑉G𝑉 , edge attributes
stored in edges 𝑒 ∈ 𝐸G𝑉 , and the temporal information (i.e., the

temporal relationships of vertices between frames), captured by the

sequence of frames. We start with indexing the vertex attributes

from each data graph, as shown in Figure 4(a). For each edge, we

obtain the attributes for both vertices. For example, the vertex

attribute pair, (bus, car), denotes the edge is starting from a vertex

with an attribute of bus, to another vertex with an attribute of car.

The unique vertex attribute pairs are used as the first-level index.

For each vertex attribute pair, we then build a spatial index, which

maps a (𝜃, 𝑑) pair to a set of vertex pairs i.e., the object ID pairs, as

illustrated in Figure 4(b) and Figure 4(c). For example, the mapping

between (𝜃1, 𝑑1) and vertex pair, (A,B), denotes that there is one
edge starting from vertex (i.e., object ID) A to vertex B, with edge

attribute values (𝜃1, 𝑑1). The benefits of this spatial index are two-
fold: (1) grouping edges that share the same spatial relationships

eliminates duplicate values and thus reduces the storage overhead;

(2) as per Definition 5, all potential matches must be considered

in computing the matching score. Separating the spatial attributes

(𝑑 and 𝜃 ) from the vertices (𝑢 and 𝑣) allow us to retrieve all vertex

pairs that match a given edge with the specified spatial attributes.

Finally, for each vertex pair, the temporal information (i.e., the

temporal relationships of vertices between frames) is captured by a

set of frames. The set of frames can be stored in intervals to further

reduce storage overhead, as illustrated by Figure 4(d). By grouping

frames that share the same vertex attributes and edge attributes,

we can obtain a set of frames, where the elements in the set are

frame identifiers denoting frames in the videoV . Since the same

vertices and their spatial relationships often span multiple frames,

this index provides a compact way of storing such information.

To summarize, the Graph Index has two index levels. The first-

level index provides efficient lookup on vertex attributes, while

reducing duplicate values on edges. The second-level index allows

the retrieval of all vertex pairs that satisfy given edge attributes (i.e.,

the spatial relationships between two vertices) , where each vertex

pair is associated with a list of frames, indicating where the corre-

sponding edge was generated. Both index levels are implemented

as hash indexes to enable fast retrieval.

5 QUERY PROCESSING
5.1 Overview
A straightforward way to commence processing is to proceed in

two steps, as shown in Figure 5(a): we first generate sliding win-

dows from the video V , and then align each window with the

query graph sequence to compute the window’s matching score
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(i.e., the query graph sequence matching score). After all windows

are processed, the scores are ranked and the final results are pro-

duced. However, this approach would be very inefficient because:

(1) the number of windows could be very large (query processing

is linear to the size of the repository) and most windows may not

contribute to the final top 𝑘 results; (2) even within one window,

there could be many partial matches for the given query graph

sequence. Thus, identifying efficient pruning techniques utilizing

information provided in the query graph sequence is very crucial.

fi-1 fi fi+1 ......

window

video

P1 P2 P3
query graph 


sequence

(a) The Straight-forward Approach (b) The Propose  Approach

......matched

edges

P1 P2 P3
query graph 


sequence

GI Index

(1) Window Generation

(2) Spatial 

Matching

(3) Temporal

Matching

window

Figure 5: Comparison between Two Different Approaches

We can optimize the query processing from three aspects to fur-

ther speed up the evaluation: (1) reducing the number of windows

to be examined, (2) pruning partial matches that do not contribute

to the final matching score early in each window, and (3) stopping

early once the highest matching score in a given window is found.

Based on the above ideas, we divide the pipeline into three steps,

shown in Figure 5(b): window generation, spatial matching, and

temporal matching. Window generation (Section 5.2) retrieves only

matched edges for edges in the given query graph sequence and

generates a set of windows based on the retrieved edges for further

processing. Spatial matching (Section 5.3) produces matching data

graphs from each frame, while temporal matching (Section 5.4)

evaluates the matching score in each window iteratively according

to the spatial matching results. Both steps utilize pruning strategies

to reduce the evaluation cost.

5.2 Window Generation
5.2.1 Edge Retrieval. For a given edge 𝑒 = (𝑢, 𝑣, 𝜃, 𝑑) from a query

graph, 𝑃 ∈ P, where P is a query graph sequence. Let 𝐿P be its

labeling function.We call an edge 𝑒 ′ = (𝑢 ′, 𝑣 ′, 𝜃 ′, 𝑑 ′) generated from
a frame in the video a matched edge, if their vertex attributes and
edge attributes both match, i.e., 𝐿P (𝑢) = 𝐿P (𝑢 ′), 𝐿P (𝑣) = 𝐿P (𝑣 ′),
𝜃 = 𝜃 ′ and 𝑑 = 𝑑 ′. The objective of the edge retrieval step is to

produce the matched edges for all edges in P from the videoV .

Utilizing the GI, edge retrieval is conducted for each query graph

𝑃 in the query graph sequence P. Specifically, for each edge 𝑒 =

(𝑢, 𝑣, 𝜃, 𝑑), 𝑒 ∈ 𝑃 , we fist obtain the vertex attributes pair, (𝐿P (𝑢)
and 𝐿P (𝑣)). Utilizing the vertex attribute pairs and the spatial index
on (𝜃, 𝑑), we obtain a set of tuples from GI, denoted by R𝑒 , where
each element 𝑟 ∈ R𝑒 is a tuple, 𝑟 = (𝑒𝑟 , 𝐹𝑟 ), such that 𝑒𝑟 is a matched

edge, and 𝐹𝑟 is the set of frames where the matched edge can be

found. We further group together the matched edges for each frame,

denoted by 𝑆𝑓𝑒 , where 𝑓 is the frame, and 𝑒 is the given edge from

the query graph. If a frame 𝑓 cannot produce any valid data graph,

namely there is no matched edge (i.e., 𝑆𝑓𝑒 = ∅) for any edge 𝑒 ∈ 𝐸𝑃 ,
it is pruned from further processing.

Once we have retrieved the edges for all query graphs 𝑃 ∈ P,
we group the matched edges by frames, which will then be used to

generate windows for further processing.

5.2.2 Window Generation. Let 𝐹 be the set of all frames where at

least one matched edge is retrieved, where 𝐹 ⊆ V . Let 𝑙 be the

length of the query graph sequence P, i.e., 𝑙 = |P |. For any frame

𝑓𝑖 ∈ 𝐹 , we useW𝑓𝑖 to denote the set of windows of size 𝑙 it could

be enclosed in. Then we haveW𝑓𝑖 = ∪𝑗 ∈[𝑖−𝑙+1,𝑖 ] {𝑊𝑗 }, where𝑊𝑖

represents the window starting from frame 𝑓𝑖 . We useW to denote

the set of all windows that are generated from the retrieved frames,

thenW = ∪𝑓𝑖 ∈𝐹W𝑓𝑖 .

5.3 Spatial Matching
For any given frame, 𝑓 , in the window, we can identify the corre-

sponding query graph 𝑃 it aligns with, after aligning each window

with the query graph sequence (illustrated in Figure 5(b)). Spatial

matching operates on aligned pairs of 𝑃 and 𝑓 . We use 𝑆𝑓 to denote

the set of matched edges for all edges in the query graph 𝑃 , i.e.,

𝑆𝑓 = ∪∀𝑒∈𝐸𝑃 𝑆𝑓𝑒 , where 𝑆𝑓𝑒 is the set of matched edges for edge 𝑒

in frame 𝑓 (retrieved using the procedure described in Section 5.2).

The objective of the spatial matching step is to produce a set of

data graphs 𝑆𝐺 , given 𝑆𝑓 , where each 𝐺 ∈ 𝑆𝐺 matches 𝑃 .

5.3.1 A First Approach. A possible solution is to perform query

graph matching utilizing graph traversal algorithms. This would

involve two main steps. (1) Enumerate all data graphs that could be

generated from 𝑆𝑓 , denoted as candidate data graphs. Specifically,
we form a data graph 𝐺 by selecting one matched edge 𝑒 ′ from the

matched edges 𝑆𝑓𝑒 for each edge 𝑒 ∈ 𝑃 . (2) For each candidate data

graph𝐺 , we run Depth-First Search or Breadth-First Search on𝐺

and the query graph 𝑃 in parallel, starting from the vertex with the

same attributes on both graphs.𝐺 is considered as a match of 𝑃 if we

can traverse both graphs with attributes on all vertices and edges

matched. However, this approach could lead to high computational

cost since the number of data graphs generated in step (1) could be

very large, especially when there are multiple matched edges for

each edge in the query graph.

5.3.2 Main Idea of Our Approach. Observe that for each Minimum

Query Graph (Section 4.1), there is only one anchor vertex. This

indicates that a candidate data graph 𝐺 is a match of the query

graph 𝑃 , only if (1) all edges in𝐺 share the same anchor vertex, and

(2) all the vertices are unique. Thus, generating the matching data

graphs can be done in two steps: (1) grouping: group the matched

edges according to the anchor vertex; (2) enumeration: enumerate

all possible data graphs in each group. However, when the number

of matched edges is large, the enumeration step could be costly. We

therefore defer the enumeration of precise data graphs and only

generate Intermediate Data Graphs to group matched edges with

the same anchor vertex together. An Intermediate Data Graph, 𝐼 ,
has the following characteristics: (1) Each vertex 𝑆𝑣 ∈ 𝑉𝐼 in 𝐼 is

a set, where each element, 𝑣 ∈ 𝑆𝑣 , in the set is a vertex in a data

graph. (2) A data graph can be constructed by taking one element

from every vertex of the intermediate data graph.

We could operate on such intermediate data graphs directly to

facilitate temporal matching (Section 5.4) without generating all

possible data graphs. The spatial matching step focuses only on
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Algorithm 1: Spatial Matching Algorithm (SMA)

Input: the query graph 𝑃 , the current frame 𝑓 ;

Output: a set of Intermediate Data Graphs

1 𝑄𝐸 ← the ordered edge list constructed from 𝑃 ;

2 𝑟𝑒𝑠 ← dict();

3 foreach 𝑖𝑑𝑥, 𝑒 in𝑄𝐸 do
4 // 𝑖𝑑𝑥 is the current position of the ordered edge list, and 𝑒 is the edge;

5 𝑆𝑓𝑒 ← the set of matched edges retrieved for the edge 𝑒 ;

6 foreach 𝑠 in 𝑆𝑓𝑒 do
7 let 𝑣𝑠 , 𝑣𝑒 be the vertices in 𝑠 , and 𝑣𝑠 is the anchor vertex;

8 𝐼 ← 𝑟𝑒𝑠 .get(𝑣𝑠 );

9 if 𝐼 == 𝑛𝑢𝑙𝑙 then
10 𝐼 ← new IntermediateDataGraph(𝑣𝑠 );

11 𝑟𝑒𝑠 .put(𝑣𝑠 , 𝐼 );

12 𝐼 [𝑖𝑑𝑥 + 1] ← 𝐼 [𝑖𝑑𝑥 + 1] ∪ {𝑣𝑒 };
13 𝑟 ← 𝑟𝑒𝑠 .values();

14 foreach 𝐼 ∈ 𝑟 do
15 remove 𝐼 if any element in 𝐼 is empty;

16 return 𝑟 ;

producing intermediate data graphs by merging matched edges

with the same anchor vertex (Section 5.3.3).

5.3.3 The SMA Algorithm. We propose the Spatial Matching Al-

gorithm (SMA), depicted as Algorithm 1, to generate Intermediate

Data Graphs. We use lists to represent intermediate data graphs

by imposing a particular order of the graphs to further reduce the

memory footprint. Specifically, we store only the set of vertices

as an element in the list; the edge attributes (𝜃 and 𝑑 values) are

omitted since they are identical to the edge attributes in the query

graph. The vertex mapping between the query graph and the inter-

mediate data graphs is captured implicitly by visiting edges from

the query graph in order. To better illustrate the whole procedure,

we explain the algorithm with the following example.

A

D

B

E

(b) Retrieved Edges

X

Y

Z

#1

#2

(a) Query Graph

F H

(c) Intermediate Data Graphs and List Representations

{A}

{D}

#1

#1

#2

(c.i) Intermediate Data Graph with Anchor Vertex (A)

{B}

{E}

{F,H}

#1

#2
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#2

(c.i.1) (c.i.2)

(c.ii.2)(c.ii.1)

(c.ii) Intermediate Data Graph With Anchor Vertex (B)
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{A} {D} ∅

Figure 6: An Example for Spatial Matching

Example 1. Figure 6 demonstrates the spatial matching between a query
graph (Figure 1(a)) and a frame (Figure 1(b)). We use X, Y, Z to denote vertices in
the query graph and A-H to denote vertices in the frame from videos. Different
shapes (circles and squares) are used to represent different object types (e.g.,
cars and buses). For simplicity, we show only matched edges in Figure 6(b), and
use different edge IDs to refer to edges with different attributes. We demonstrate
the procedure in three steps: Initialization, Edge Matching, and Intermediate
Data Graph Update, with line numbers referring to those in Algorithm 1.

(1) Initialization (Lines 1-2). The first step is to extract an edge list for each
query graph (Line 1). Edge matching is then performed for each edge from the
edge list in order. Assume that we store the two edges #1 and #2 in that order.
We also create a hash map, which maps an anchor vertex to an intermediate
data graph (represented by a list of vertex sets), to store the result (Line 2).

(2) Edge matching (Lines 3-6). For each edge in 𝑄𝐸 (Line 3), we retrieve
the matched edges, as per Section 5.2 (Line 5), shown in Figure 6(b). We use
a vertex pair (𝑣𝑠 , 𝑣𝑒 ) to represent each edge, where 𝑣𝑠 is the anchor vertex
and 𝑣𝑒 is the other vertex. We start with edge #1(X, Y). There are two matched
edges, (A,D) and (B,E), that can be retrieved from the GI index (Figure 6(b)).

(3) Intermediate data graph update (Lines 7-12). Assume we start with the
matched edge (A,D). We first extract the two vertices (Line 7): 𝑣𝑠=A and 𝑣𝑒=D,
where 𝑣𝑠 is the anchor vertex. Since there are no intermediate data graphs yet,
we initialize a new one. The new intermediate data graph is stored in a list,
where the first element is a set, containing the anchor vertex A (Lines 9-11).
We place vertex D as an element in the set at position 1 in the list (Line 12).

Similarly, we also create another list representing the intermediate data
graph with anchor vertex, B. Subsequently, we continue with matching edges
for edge #2(X,Z). In this case, there are two matched edges, (B,F) and (B,H),
that share the same anchor vertex. We place both vertices, F and H, in one set,
and store them in the 2nd position of the list, as shown in Figure 1(c.ii.2). The
corresponding intermediate data graph is visualized in Figure 6(c.ii.1).

Note that the intermediate data graph with anchor vertex, A (Figure 6(c.i.1)),
does not contain any valid data graph due to missing matched edges for edge
#2(X,Z) in the query graph. Thus it can be pruned immediately (Lines 14-15).

5.4 Temporal Matching
Themain objective of temporal matching is to produce thematching

score for a given window𝑊 based on the set of intermediate data

graphs obtained for each frame 𝑓 (Section 5.2). For a query graph

sequence P, the same vertex could appear in multiple query graphs.

As per Definition 4, to identify a data graph sequence that is a

complete match of P, one must ensure that the same vertex 𝑣

across different data graphs is matched to the same vertex 𝑣 ′ across
the corresponding query graphs. A data graph sequence G𝑉 that

matches the query graph sequence P is identified when we can

establish a one-to-one mapping between the vertex sets of G𝑉 and

P, i.e., (1) a matching vertex 𝑣 ′ is determined for each vertex 𝑣 ∈ 𝑉P ;
(2) all matching vertices are unique (i.e., for any 𝑢, 𝑣 ∈ 𝑉P , 𝑢 ′ ≠ 𝑣 ′,
where 𝑢 ′, 𝑣 ′ are the matching vertex for 𝑢 and 𝑣 , respectively).

As such, temporal matching can be implemented as an iterative

procedure, and each iteration focuses on matching one particular

vertex 𝑣 ∈ 𝑉P . We use step to denote such an iteration and present

the algorithm to perform such temporal matching steps iteratively

for each window. We first introduce the algorithm for the temporal

matching step based on the above idea in Section 5.4.1, and then

discuss how windows can be prioritized in Section 5.4.3.

5.4.1 Temporal Matching Steps. For a given window, initially no

matching vertices are identified for any vertex in 𝑉P . We start by

finding matching vertices for a vertex 𝑣 ∈ 𝑉P utilizing all inter-

mediate data graphs (such a vertex can be chosen randomly or by

imposing a topological order of the vertices in𝑉P ). Recall that each
intermediate data graph contains a list of vertex sets. The set of all

matching vertices for 𝑣 , denoted by𝑉 ′, can thus be easily identified

from such lists. For a matching vertex 𝑣 ′ ∈ 𝑉 ′, we mark the inter-

mediate data graphs in which 𝑣 ′ has been identified as active. After
the first step, we have identified a set of all matching vertices, 𝑉 ′,
for 𝑣 , and for each 𝑣 ′ ∈ 𝑉 ′, a set of active intermediate data graphs

are determined, which can be used in subsequent processing.

Without loss of generality, in each following step, we assume

that a set of matching vertices have been identified, denoted by𝑀𝑉 .

We use𝑀𝐼 to denote the set of active intermediate data graphs re-

sulting from the previous steps. To store the contextual information
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Algorithm 2: A Step in Temporal Matching (TM)

Input: the vertex to match 𝑣, Match Candidate Set 𝑆𝑀 , the current window

matching score 𝑠𝑐𝑜𝑟𝑒

1 𝐿P ← the ordered list of unique vertices in𝑉P ;
2 𝑀 ← getOneMatchCandidate(𝑆𝑀 );

3 let𝑀𝑉 be the set of matched vertices from previous steps in𝑀 ; let𝑀𝐼 be the

set of intermediate data graphs in𝑀 ;

4 𝑣 ← nextVertexToMatch(𝑀𝑉 , 𝐿P );
5 𝑉 ′← getMatchingVerticesFor(𝑀𝐼 , 𝑣);

6 foreach 𝑣′ in𝑉 ′ do
7 if not𝑀𝑉 .contains(𝑣′) then
8 𝑀′

𝑉
← add(𝑀𝑉 , 𝑣′);

9 𝑀′
𝐼
← getMatchingIntermediateDataGraphs(𝑀𝐼 ,𝑣

′
);

10 if |𝑀′
𝑉
| == |𝑉P ] then

11 // means we have found one matched data graph sequence;

12 𝑀′
𝐹
← getRelevantFrames(𝑀′

𝐼
);

13 𝑠𝑐𝑜𝑟𝑒 ←max( |𝑀′
𝐹
|, 𝑠𝑐𝑜𝑟𝑒);

14 else
15 𝑀′ ←MatchCandidate(𝑀′

𝑉
, 𝑀′

𝐼
) ;

16 𝑆𝑀 ← 𝑆𝑀 ∪ {𝑀′ };

between steps, we introduce a structure called Match Candidate,𝑀 ,

consisting of𝑀𝐼 and𝑀𝑉 . As an initial step, we create one Match

Candidate per window, 𝑊 , where 𝑀𝑉 = ∅ and 𝑀𝐼 contains all

intermediate data graphs, as discussed above.

Algorithm 2 depicts one step in the iteration. We use 𝑆𝑀 to

denote the set of Match Candidates in the current window. Initially,

𝑆𝑀 contains only one Match Candidate initialized from the current

window𝑊 , as discussed in the initial step. Let 𝐿P be the list of

vertices constructed by imposing a total order on 𝑉P (Line 1). The

order of 𝐿P can be obtained by sorting the vertices in𝑉P according

to the number of occurrences in the query graph sequence. At each

step, we pick an arbitrary Match Candidate (Line 2) (an optimized

way of choosing the next Match Candidate will be discussed in

Section 5.4.3). We use two sets to store the sufficient information,

where 𝑀𝑉 consists of vertices, and 𝑀𝐼 contains the references to

the active intermediate data graphs from the last step (Line 3). We

first derive the next vertex 𝑣 ∈ 𝑉P to match based on the size

of 𝑀𝑉 and 𝐿P by selecting the next vertex in the 𝐿𝑃 based on

the current number of matched vertices in𝑀𝑉 (Line 4). Then we

retrieve matching vertices from the intermediate data graphs,𝑀𝐼

(Line 5); each matching vertices, 𝑣 ′, is processed only if it is not

matched to some vertex in 𝑉P already (Lines 6-7). A data graph

sequence that matches to the query graph sequence is identified if

a matching vertex for each vertex 𝑣 ∈ 𝑉P is found (Line 10-13). In

this case, we first obtain the set of relevant frames, 𝑀 ′
𝐹
, where at

least one active intermediate data graphs is generated from each

frame in 𝑀 ′
𝐹
(Line 12), and then update the matching score for

the current window based on size of𝑀 ′
𝐹
(Line 13). Otherwise, new

Match Candidates are produced for further processing (Lines 15-16).

If no matching vertex for 𝑣 can be found (i.e., 𝑉 ′ = ∅, in Line 5),

then the processing of the current Matching Candidate terminates

directly. We explain this algorithm in detail with an example.

Example 2. Figure 7 presents an example on a window of three frames. The
query graph sequence is shown in Figure 7(a), and the frames are shown in
Figure 7(b). There are two intermediate data graphs generated in 𝑓 1 (𝐼1, 𝐼2),
and one in 𝑓 2 (𝐼3) and two in 𝑓 3 (𝐼4, 𝐼5). Take the intermediate data graph,
𝐼3, as an example, each vertex in 𝐼3 is a set of matching vertices for a vertex
in 𝑃2. E.g., the vertex set {𝐵 } in 𝐼3 stores all matching vertices of vertex 𝑋 in
𝑃2, while the vertex set {𝐹,𝐻 } stores all matching vertices of vertex 𝑍 .
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Figure 7: Temporal Matching Steps

Initially, the matching score of the current window is set to 0. We initialize
one Match Candidate for the window, shown in Figure 7(c.i.1) (Line 1). The set
of matched vertices is empty, denoted by ∅. All intermediate data graphs are
considered as active, i.e., 𝑀𝐼 = {𝐼1, 𝐼2, 𝐼3, 𝐼4, 𝐼5}. For better readability, we
also provide the relevant set of frames in the figure, i.e.,𝑀𝐹 = {𝑓 1, 𝑓 2, 𝑓 3}.

At Step 1 (the arrow annotated with S1 in Figure 7(c)), we try to identify
matching vertices for the vertex X in the query graph sequence. All matching
vertices from the intermediate data graphs are highlighted in red. In Algo-
rithm 2 , we retrieve the matching vertices from the intermediate data graphs
(Line 5). Since we use lists to store the intermediate data graphs, this can be
easily done by selecting the vertex set at the corresponding position in the list.
There are two matching vertices, A and B, in this case. We take vertex A as an
example, shown in Figure 7(c.ii.1). We first add vertex A to the matched vertices,
𝑀𝑉 (Lines 7-8). Vertex A appeared in 𝐼1 from frame 𝑓 1, and in 𝐼5 from frame
𝑓 2; we update𝑀′

𝐼
={𝐼1, 𝐼5} (Line 9). Since there is only one matched vertex in

𝑀′
𝑉

(Line 11), we produce a new Match Candidate (Line 15), and add the it to
the Match Candidate Set for further processing (Line 16). The matched vertex
B is also processed in a similar manner (Line 6); the result is shown in Figure
7(c.ii.2). Similarly, we can continue the procedure by selecting the next vertex
to match for Steps 2 and 3, with results shown in Figure 7(c.iii, c.iv).

5.4.2 Prioritizing Match Candidates. There could be many Match

Candidates in each window. At each step, we wish to always select

the most promising Match Candidate to explore. Since we maintain

a set of frames for each Match Candidate, intuitively, we can use

such a set to estimate the maximum matching score that could be

produced by each Match Candidate. We introduce the estimated

score of each Match Candidate, 𝑀 , computed as |𝑀𝐹 |, where 𝑀𝐹

is the set of relevant frames (i.e., frames for which at least one

intermediate data graph is marked as active) of𝑀 . At each step, we

pick the Match Candidate with the highest estimated score.

The procedure is outlined in Algorithm 3. We use 𝑄𝑀 to repre-

sent the priority queue of Match Candidates in the current window

(Line 1). We always select the Match Candidate with the highest

estimated score at each step of the iteration (Line 3). Algorithm 2
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also updates the matching score of the current window𝑊 , as well

as adds newMatch Candidates to the priority queue. The procedure

stops if there is no Match Candidate that has an estimated score

higher than the score of the current window (Line 2).

Algorithm 3: Prioritizing Match Candidates

1 𝑄𝑀 ← the priority queue containing all Match Candidates in𝑊 ;

2 while𝑊 .score <𝑄𝑀 .peek().estimate_score do
3 OneStepTemporalMatching(𝑄𝑀 );// this also updates𝑄𝑀 if new

Match Candidates are produced

Example 3. Based on the above example, Example 2, we can obtain the
estimated score for each Match Candidate. For example, in Figure 7(c.ii.1), the
estimated score for the Match Candidate with vertex A is 2, while the estimated
score for the one with vertex B is 3. If we prioritize Match Candidates with
higher scores, then we select the Match Candidate with vertex B to explore
first. Similarly, after step 2 in Figure 7(c.iii), the Match Candidate with vertices
(B,E) has the highest score of 3, so we continue the procedure. In step 3 (Figure
7(c.iv)), we have obtained the highest score of 3, which is produced by the Match
Candidate with vertices (B,E,F). Meanwhile, we have another unexplored Match
Candidate with vertex A (produced in step 1 in Figure 7(c.ii.1)), whose estimated
score is 2. Since 2 < 3, it is guaranteed that no other Match Candidates could
produce a matching score higher than 3, and thus the algorithm stops.

5.4.3 Prioritizing Windows. There could be many window candi-

dates for a video; we adopt the same strategy and prioritize windows

based on the estimated scores. Let 𝑆𝑀 be the set of Match Candi-

dates in a given window𝑊 , and the estimated score of window𝑊

is computed as max𝑀 ∈𝑆𝑀 |𝑀𝐹 |. Similar to Algorithm 3, we main-

tain a priority queue to store all generated windows. Windows are

processed iteratively according to their estimated scores. During

the procedure, we also keep track of the final ranked results and

their scores. The procedure stops once the highest estimated score

produced by the windows remaining in the priority queue is less

than or equal to the current minimummatching score in the ranked

results. The algorithm follows the same structure as Algorithm 3

and is omitted here for brevity.

6 EXPERIMENTS
6.1 Settings
Environment. Our experiments are conducted on a machine with

an Intel i5-9600K CPU, a GeForce GTX 1070 GPU and 48GB RAM.

All algorithms are implemented in Python except the object detec-

tion/tracking algorithms, for which we use open-source implemen-

tations [7, 10]. Specifically, we use Faster RCNN [35] as the object

detection algorithm and Tracktor [4] as the tracking algorithm.

Data are pre-loaded to memory before evaluation.

Datasets. Experiments are conducted on two real-world video

datasets: De-trac [44] and Deep Drive [52]. Both datasets consist of

short videos (image sequences). For the De-trac dataset, we take

videos from both the training set and the test set, and concate-

nate them into two long videos, drtrain and drtest, respectively. For
the Deep Drive dataset, we take videos from the test set and split

them into two groups to form two separate long videos (bdd100kA
and bdd100kB). We apply object detection and tracking algorithms

to obtain structured data on the De-trac dataset (drtest and dr-

train), while using annotated data (ground-truth) for the Deep

Drive dataset (bdd100kA and bdd100kB).

Table 1: Database Statistics

video drtest drtrain bdd100kA bdd100kB

# frames 56.30k 83.73k 138.25k 138.78k

# avg obj/f 24.64 17.32 9.51 11.33

# objects 37.48k 32.86k 53.21k 59.61k

avg duration 38.41 45.71 25.48 27.85

Data statistics are provided in Table 1, including the total number

of frames (# frames), the average number of objects per frame (# avg

obj/f), the total number of objects (# objects), and the average dura-

tion of each object (avg duration). In general, there are more objects

per frame in De-trac, and objects are changing more frequently in

Deep Drive (i.e., lower average duration of each object).

Query Processing Methods.We evaluate the query processing

performance of three methods, namely, base, prop and prop_s. All
three methods are based on the proposed index. The base method

serves as the baseline method, which simply accepts the retrieved

edges and performs graph matching utilizing Depth-First Search,

as discussed in Section 5.3.1. The temporal matching step of the

base method then simply enumerates all possible mappings to the

vertices in the query graph pattern and subsequently computes the

window scores. The prop_smethod is a sequential version, where all

windows are processed sequentially without prioritization across

windows, while the prop method is the proposed method with

prioritizing windows enabled (Section 5.4.3).

EvaluationMethodology.Object detection/tracking algorithms

are applied as part of preprocessing. As such algorithms are not

applied during query execution and we do not account for the time

required by such operations in our evaluation. The preprocessing

time could vary depending on the object detection and tracking

algorithms used. For example, in our setting, with high accuracy

algorithms, i.e., Faster R-CNN [15] as the object detection algorithm

and Tracktor [4] as the object tracking algorithm, we could achieve

a speed of 4 frames per second during the preprocessing step on

average. The speed could be further improved if faster models are

applied (e.g., YOLO [34], DeepSORT [46] etc.).

We report the query processing time based on a set of query

graph sequences randomly generated from the raw videos as fol-

lows: (1) Determine the length 𝑝𝑑 of the query graph sequence and

the number of objects 𝑝𝑜 in the query graph sequence. (2) Select

𝑝𝑛 video clips randomly from the original dataset. (3) From each

short video clip, we randomly select 𝑝𝑜 number of objects from 𝑝𝑑
consecutive frames to generate one query graph sequence.

In our experiments, we set 𝑝𝑛 to a fixed value, 20, which is

sufficient to represent the distribution of query graph sequences. As

can be validated by the experiment figures, query graph sequences

generated in this way contain queries with different selectivities and

their running time is representative of the general trend. Increasing

𝑝𝑛 would show similar trends in the experiment results. We vary

𝑝𝑑 and 𝑝𝑜 in the following experiments and study the performance

of different methods. Increasing either 𝑝𝑑 or 𝑝𝑜 also increases the

complexity of queries either on the temporal dimension (𝑝𝑑 ) or on

the spatial dimension (𝑝𝑜 ).

Discretization granularity. To study the impact of discretiza-

tion granularity, we vary it and present both the index construction
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Figure 8: Index Construction Time w.r.t. Number of Frames

time and query time. We use a tuple (𝑠𝜃 , 𝑠𝑑 ) to represent the num-

ber of buckets assigned for 𝜃 and 𝑑 values. In the experiments, we

use 4 different discretization granularities: 𝑑 𝑓 1=(4, 10), 𝑑 𝑓 2=(8, 10),

𝑑 𝑓 3=(8, 15), 𝑑 𝑓 4=(12, 15). Unless otherwise specified, 𝑑 𝑓 2 is the

default discretization granularity used in the experiments.

6.2 Index Construction
Varying datasets and the number of frames. We first report

the index construction time for different number of frames in each

video, shown in Figure 8. We select 4 checkpoints starting from 25%

frames to 100% frames starting from the beginning of each video.

The total build time grows linearly as more frames are processed. As

shown in Figure 8b, the amortized time per frame remains stable for

both bdd100kA and bdd100kB. The reason is we process one frame

at a time during index construction, and there are no inter-frame

computations. As a result the index construction is highly scalable.

We also observe an increasing or decreasing trend in time (drtest

and drtrain) as the number of objects change in each frame, which

demonstrates that the number of objects per frame dominates the

index construction cost, since more edges could be generated and

materialized with more objects.

Varying the discretization granularity.We vary the dicretiza-

tion granularity and the results are depicted in Figure 9a. Different

discretization granularities are applied when materializing edge

attributes. From 𝑑 𝑓 1 to 𝑑 𝑓 4, the attributes on different edges are

more likely to have diverse values. Theoretically, changing the dis-

cretization granularity will not impact the computational cost since

neither the number of edges nor the number of frames changes. The

result confirms that varying the discretization granularity does not

have a significant impact on the index construction time. We have

also reported the index size with different discretization granulari-

ties, shown in Figure 9b. Having more buckets for edge attributes

is likely to increase the number of edges with unique values, thus

leading to higher space consumption. The trend is more obvious

on videos with more objects, such as bdd100kB. The figure also

shows that even with more frames, a smaller number of objects per

frame could still have a significant impact on the storage saving,

as can be observed from bdd100kA, where it has the lowest space

consumption among all videos.

6.3 Query Processing
Query processing time under default settings. As the default
setting, we set the query length (i.e., the length of the query graph

sequences), 𝑝𝑑 = 10, the number of objects in each query, 𝑝𝑛 = 4,

and use 𝑑 𝑓 2 as the discretization granularity. By default, we only

retrieve 𝑘 = 100 results with the highest scores. We generate 20
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queries from each video, issue these queries to the corresponding

videos, and report the query processing time, as shown in Figure 10.

Queries are generated following the rules presented in the Evalua-

tionMethodology, in Section 6.1. The boxplot depicts the processing

time distribution of 20 different queries, while the dots on the box-

plot represent the actual data points, with each point representing

the processing time obtained on one query instance.

Both prop and prop_s are significantly faster than the basemethod,

which can be observed from the median values of the three methods.

The spread of the boxplot for base is also wider than the other two

methods: for the queries in the bottom quarter of the boxplot, the

processing times of these three methods are very close, except for

drtrain, where base is much slower; for queries in the top quarter,

prop has the best performance among all these methods, while base
is the worst. The result aligns with our intuition: queries having

a lower processing time with the base method are likely to have

fewer data graph sequences generated, i.e., there are less Match

Candidates to prune for both prop and prop_s. Moreover, the benefit

of introducing the early-stopping mechanism may not be sufficient

to cover the additional maintenance overhead. For queries with a

longer execution time, there are more Match Candidates to prune,

and thus the benefit of the early-stopping mechanism is much more

pronounced. The results indicate that our proposed method is ef-

fective, especially on queries with high selectivities. Even without

prioritizing windows (i.e., prop_s), there is still a huge improve-

ment over the base method. For the remainder of this section, we

present the result based on two representative videos due to space

limitation, but the trend is similar on other videos.

Varying the discretization granularity. We first vary the

discretization granularity, as introduced in Section 6.1. From 𝑑 𝑓 1

to 𝑑 𝑓 4, as the number of buckets for either 𝜃 or 𝑑 increases, the

selectivity of a given edge decreases due to the increase in the

value ranges for edge attributes. For example, the 𝜃 values of two

edges that could fall into the same bucket with the discretization

granularity applied may belong to two different buckets if the

number of buckets increases, leading to a lower selectivity.
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Figure 13: Varying the Length of Query Graph Sequences

To evaluate the effect of discretization granularities, we build

indexes with different granularities and measure the query pro-

cessing time on the same set of queries. The results are shown in

Figure 11. As we increase the number of buckets for edge attributes,

the selectivity of the same query decreases, thus leading to less

processing time thanks to the index structure. This is because in the

first step of all three methods, we retrieve only relevant edges from

the index; therefore, more discretized values mean fewer vertex

pairs are retrieved for each edge, and thus less time is needed. In

general, as we increase the number of buckets for either 𝜃 or 𝑑 , the

query evaluation time for all methods decreases; the prop method

still outperforms the other two methods, while base has the longest
processing time overall.

Varying the number of unique vertices in the query. We

vary the number of unique vertices in the query from 3 to 5. Specif-

ically, we generate the query graph sequence based on 5 vertices

(i.e., 5 different object IDs), and then reduce the number of vertices

included in each query from 5 to 3. As we increase the number of

unique vertices in the query, more edges could be retrieved in each

frame, leading to higher computational cost for query processing.

Consequently, both methods prop and prop_s have much lower

query processing time compared with base. Moreover, for those

expensive queries (queries with long processing time, shown in the

top quarter of the boxplot), the query processing time of base grows
exponentially while the time for the other two methods grows at a

much lower rate thanks to the early-pruning mechanism.
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Figure 15: Varying Sample Rate

Varying the length of query graph sequences. Similarly, we

vary the length of query graph sequences from 5 to 15. We first gen-

erate queries based on the longest length (i.e., 15), and then reduce

the query length from 15 to 5. The results are shown in Figure 13. As

we increase the query length, the number of query graphs that each

frame needs to match increases; thus more data graphs could be

generated for each window, leading to higher computational cost.

Meanwhile, increasing the query length may also reduce the num-

ber of Match Candidates since the query could be less selective due

to the information from the extra frames. Consequently, we could

either see an increasing mean query processing time (Figure 13a)

or a decreasing query processing time (Figure 13b, base method).

In general, we can still see an increasing trend on all methods as

we increase the query length. Among all three methods, prop per-

forms the best, which is in agreement with our other experiments,

demonstrating the effectiveness of the proposed methods.

Varying 𝑘 .We further vary the number of results retrieved for

each query, 𝑘 , from 1 to 1000. The result is shown in Figure 14,

where base is omitted since its query time remains stable for all 𝑘

values. As can be observed, increasing 𝑘 leads to increasing query

time for the prop method, thanks to the early stopping mechanism

brought by prioritizing windows, while the query time for prop_s
remains stable. This further demonstrate the effectiveness of the

early stopping mechanism in the proposed method.

Varying the sample rate. Due to the characteristics of videos,

sampling is commonly used to reduce the computation by reducing

the number of frames. To study the impact of different sample rates,

we vary the value from 10% to 100%, and generate different queries

at different sample rates with the same query parameters (i.e., same

𝑝𝑑 and 𝑝𝑜 ). For example, a sample rate of 10% means that we sample

only 10% of the frames. The results are shown in Figure 15. As the

sample rate decreases (from 100% to 10%), the index is constructed

on fewer frames, and the spatial relationships between objects are

likely to change more frequently. As a result, adjacent frames are

likely to have different values for the same edge. Consequently, the

number of vertex pairs retrieved from the index could be reduced,
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and the number of Match Candidates during query processing is

also reduced, leading to faster query processing. Among the three

methods, prop is still the fastest, demonstrating the effectiveness of

our proposal when sampling is enabled.

Summary. There are two main steps in query execution: edge

retrieval and Match Candidate pruning. The edge retrieval reduces

the number of Match Candidates significantly if the number of ver-

tex pairs retrieved from the index is small (i.e., with fewer objects

in the query, or fewer frames in the video). Even with many ver-

tex pairs retrieved, our proposed methods can still answer queries

efficiently by pruning Match Candidates early. The main saving

comes from the spatial matching process (prop_s), while the algo-
rithm to prioritize windows further provides a better early-stopping

mechanism and achieves faster execution (prop).

7 RELATEDWORK
Both the accuracy and efficiency have been improved in many com-

puter vision tasks such as object detection [15, 17, 34, 35] and object

tracking [4, 46, 47] utilizing Deep Learning models, enabling oppor-

tunities for declarative query processing over videos. Recent work

has explored systematic ways of optimizing video queries lever-

aging cheaper DL models. For example, with specialized models

and a cost-based optimizer, NoScope [25] achieves high efficiency

on binary classification tasks. Similarly, BlazeIt [23, 24] further

provides optimizations for aggregations and limit queries. To fur-

ther improve the query efficiency, Focus [20] builds approximate

indexes leveraging cheap NNs during the ingestion phase, while

Kang et al. propose TASTI [26] to further accelerate proxy-based

query processing algorithms (e.g., aggregations) via embeddings.

Such works mainly focus on queries that can be answered either

with single frames, or can be answered based on the aggregation

of individual results evaluated on each frame in the window (i.e.,

object tracking algorithms are not involved). Queries with more

complex conditions such as spatial constraints [27, 48], temporal

constraints [8, 9], and interactions [6] have also been investigated.

Such works can be generally summarized into two broad categories:

one is to construct and train specialized DL models and utilize them

as the basis for faster query evaluation [6, 27], in which case both

the query accuracy and efficiency need to be considered; while

another is to first annotate videos utilizing CV algorithms and then

evaluate exact queries based on the annotations[8, 9], where the

main focus is query efficiency. Our work falls into the second cate-

gory, and we extend the semantics to further support spatial and

temporal constraints on objects utilizing the graph data model.

Video indexing and retrieval have also been well studied in the

multimedia literature [1, 21]. Hu et al. [21] outline a general frame-

work consisting of six stages, among which two, namely feature
extraction, and query and retrieval are most relevant to this paper.

For feature extraction, most of the early work focuses on low-

level features [5, 16, 51], such as color-based, texture-based, and

shape-based features. Although there are some works considering

high-level object features, the object types are usually limited to

very specific types, such as faces [28, 40]. Spatial-temporal infor-

mation is considered either via trajectory-based methods [3, 50] or

symbolic representation schemes [12]. In query and retrieval, exist-
ing work has considered queries issued using keywords, natural

languages, or by examples (e.g., images, sketches). For queries using

keywords and natural languages, the query results are based on

the summarization or classification of videos [2], while for queries

using examples, low-level features are usually considered in finding

relevant videos [21]. Such works utilize similarity measures (e.g.,

feature matching, text matching, etc. [21]) to retrieve results based

on the given query and do not support exact pattern matching as

proposed in this paper. Recent advances also utilize end-to-endmod-

els to retrieve videos using a natural language interface [13, 30–32],

which relies heavily on annotated datasets [49] and are tailored to

specific query forms, such as natural languages, making it cumber-

some to support new videos or new queries, especially to support

queries with more precise constraints as adopted in our work.

Time-evolving graphs have been widely studied in application

scenarios such as social networks [29, 42], where the main focus is

either to identify sub-graphs that match the given pattern [14, 36,

37, 41], or perform data mining tasks such as interesting pattern

mining [33, 42]. However, existing graph algorithms proposed in

the context of social networks are not directly applicable here;

the typical assumption in the social network setting is that the

patterns are to be evaluated directly on the the entire graph, which

is infeasible in our setting.

On another related thread, the subgraph isomorphism problem

has been well-studied, where the main objective is to find graphs

containing a given query graph from a large set of graphs. Such

works mainly target large graphs [11, 38], where the number of

nodes is relatively large and the degree of each node varies, which

can be used as the filter condition or part of the query constraints

[38], or complex graphs that can be further decomposed into ba-

sic structures [22] or subgraphs [45]. In this work, we leverage

the characteristics of spatial relationships between video objects

and simplify the query graph to reduce the complexity of graph

matching, such that graph isomorphism testing can be avoided.

8 CONCLUSIONS AND FUTUREWORK
In this paper, we define the problem of STAR Retrieval. Utilizing

CV algorithms, we obtain graph representations for videos and

propose to build and fully specify the GI index to accelerate query

answering. We process queries based on the GI index, along with

two proposed algorithms, Spatial Matching (SMA) and Temporal

Matching (TM). Experiments based on real-world videos confirm

the effectiveness and utility of the proposed algorithms. In this

work, we have mainly considered the spatial relationships between

objects, along with the labels on objects and temporal constraints.

Other complex attributes such as events involving objects may be

of interest for more complex pattern queries. Other directions, such

as supporting variable window sizes for different playback speeds,

and further improvements to the index structure with subgraphs,

are also worth exploring in future work.
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