
Diversified Top-𝑘 Route Planning in Road Network
Zihan Luo

1
, Lei Li

2,1,∗
, Mengxuan Zhang

3
, Wen Hua

4
, Yehong Xu

2
, Xiaofang Zhou

1,2

1
Department of CSE, The Hong Kong University of Science and Technology, Hong Kong SAR, China

2
DSA Thrust, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, China

3
Department of Electrical and Computer Engineering, Iowa State University, USA

4
School of ITEE, The University of Queensland, Brisbane, QLD, Australia

zluoat@connect.ust.hk,thorli@ust.hk,mxzhang@iastate.edu,w.hua@uq.edu.au,yxudi@connect.ust.hk,zxf@cse.ust.hk

ABSTRACT

Route planning is ubiquitous and has a profound impact on our daily

life. However, the existing path algorithms tend to produce similar

paths between similar OD (Origin-Destination) pairs because they

optimize query results without considering their influence on the

whole network, which further introduces congestions. Therefore,

we investigate the problem of diversifying the top-k paths between

an OD pair such that their similarities are under a threshold while

their total length is minimal. However, the current solutions all

depend on the expensive graph traversal which is too slow to ap-

ply in practice. Therefore, we first propose an edge deviation and

concatenation-based method to avoid the expensive graph search

in path enumeration. After that, we dive into the path relations

and propose a path similarity computation method with constant

complexity, and propose a pruning technique to improve efficiency.

Finally, we provide the completeness and efficiency-oriented solu-

tions to further accelerate the query answering. Evaluations on the

real-life road networks demonstrate the effectiveness and efficiency

of our algorithm over the state-of-the-art.

PVLDB Reference Format:

Zihan Luo, Lei Li, Mengxuan Zhang, Wen Hua, Yehong Xu, Xiaofang Zhou.

Diversified Top-𝑘 Route Planning in Road Network. PVLDB, 15(11): 3199 -

3212, 2022.

doi:10.14778/3551793.3551863

1 INTRODUCTION

Diversified top-k Shortest Path (D𝑘SP) computation is an important

route planning task in road networks. Given an OD (Origin 𝑠 and

Destination 𝑡) pair, a similarity threshold 𝜏 , and a path number 𝑘 ,

it aims to find a path set 𝑃𝑠,𝑡 (|𝑃𝑠,𝑡 | = 𝑘) such that the similarity

between any pair of the paths in 𝑃𝑠,𝑡 is no larger than 𝜏 and the

total length of the 𝑘 paths is minimal. Figure 1 shows an example

weighted graph and Table 1 lists all the shortest paths with the

same length of 10 from 𝑣0 to 𝑣8. Suppose that we set 𝜏 to 0.4, 𝑘 to

4 and use the Jaccard Similarity, we can have a diversified result

𝑃𝑣0,𝑣8 = {𝑝1, 𝑝2, 𝑝3, 𝑝6}.
Even though various path problems have been identified and

solved in the past decades, most of their outputs only consider the

optimal path for one query OD pair rather than the other queries.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 15, No. 11 ISSN 2150-8097.

doi:10.14778/3551793.3551863

* Lei Li is the corresponding author.

0 12

2

21
44 61

2
3

5

3

3

2
2

3

74
1

83

2

𝑝!𝑝"𝑝#
𝑝$

Figure 1: Example Graph

Table 1: Top-8 Shortest Paths with Length 10 from 𝑣0 to 𝑣8

Path ID Path Details

𝑝0 𝑣0 → 𝑣2 → 𝑣5 → 𝑣6 → 𝑣8
𝑝1 𝑣0 → 𝑣1 → 𝑣4 → 𝑣6 → 𝑣8
𝑝2 𝑣0 → 𝑣2 → 𝑣5 → 𝑣7 → 𝑣8
𝑝3 𝑣0 → 𝑣1 → 𝑣3 → 𝑣6 → 𝑣8
𝑝4 𝑣0 → 𝑣2 → 𝑣5 → 𝑣4 → 𝑣6 → 𝑣8
𝑝5 𝑣0 → 𝑣1 → 𝑣5 → 𝑣7 → 𝑣8
𝑝6 𝑣0 → 𝑣1 → 𝑣5 → 𝑣6 → 𝑣8
𝑝7 𝑣0 → 𝑣1 → 𝑣5 → 𝑣4 → 𝑣6 → 𝑣8

Consequently, when many path queries come with localized origins

and destinations, their shortest paths would have numerous over-

lapping, which would lead many vehicles traveling into the same

roads at the same time and cause traffic congestion (travel time

increases as the traffic flow increases [33]), which further deterio-

rates the user experience. For example, if a path algorithm chooses

𝑝1 as the result, then all the queries from 𝑣0 to 𝑣8 would head to

the same route while other roads are idle. If we could distribute

the queries evenly to 𝑝1, 𝑝2, 𝑝3 and 𝑝6, then many roads could have

fewer vehicles and lighter traffic flow ((𝑣0, 𝑣1) and (𝑣6, 𝑣8) reduce
by 25% while (𝑣1, 𝑣4) and (𝑣4, 𝑣6) reduce by 75%) such that the traf-

fic condition becomes better and all the queries can travel faster in

practice. Hence, diversified paths provision in real-life route plan-

ning helps to ease the traffic burden by dispersing the traffic flow

with minimal cost. In addition, the diversified path is also widely

applied in the hazardous material shipments [6], routing in wireless

sensor network [22], and evacuation planning [34]. In this paper,

we study the D𝑘SP problem and propose an efficient algorithm to

answer the D𝑘SP query.

Because the D𝑘SP query requires multiple results as the output,

its computation should be based on the methods that satisfy this

property, and we categorize them into two streams: disjoint edge-
based and k-path-based. The disjoint edge-based method [8, 20, 24,

25] aims to find a set of 𝑘 paths connecting 𝑘 OD pairs such that

no edge exists on the same path, and its loose version relaxes the

existence restriction to at most 𝑐 paths. By setting the 𝑘 OD pairs

to the same source and destination, they can be used to provide

diversified paths. For example, {𝑝2, 𝑝3} is a pair of edge-disjoint

3199

https://doi.org/10.14778/3551793.3551863
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3551793.3551863

paths, and {𝑝1, 𝑝2} is another pair. However, although the results

are diversified naturally, the existing algorithms only guarantee

the existence of such paths without considering the distance. For

example, if 𝑝3 grows to 100, {𝑝2, 𝑝3} still has the same quality as

{𝑝1, 𝑝2} from these methods’ point of view. Therefore, the results

could be impractically long just to avoid overlapping. Moreover,

because the road intersections usually have a very small degree (at

most 3 or 4), an OD pair can support only a few edge-disjoint paths,

which also limits its ability to generate enough paths. Like in the

example graph, we can only have at most two edge-disjoint paths

at the same time. Furthermore, when there exists a natural network

cut like a bridge or tunnel then the result number is capped by these

cuts. Even with the loose version, it might violate the similarity

requirement because returning two identical paths also satisfies

the definition. Therefore, the disjoint edge-based methods are not

suitable for real-life diversified route planning.

The second kind of methods utilizes the k-path enumeration,

which returns the top-𝑘 loopless shortest paths between an OD

pair [7, 18, 36, 41, 46, 55, 56]. However, computing the loopless

k-path is very time-consuming, and most of the paths returned

by the existing k-path algorithms have a very high overlapping.

For example, among all the eight paths, {𝑝1, 𝑝3, 𝑝6}, {𝑝2, 𝑝5} and
{𝑝4, 𝑝7} have only one vertex difference. Therefore, if we provide

these sets of routes to the users, congestions become inevitable.

Moreover, it requires a much larger 𝑘 to find enough diversified

routes, which further prolongs the query time. To prune similar

paths as early as possible and only expand the dissimilar ones,

KSPD [35] uses similarity and distance lower bound to guide the

search heuristically, and MP [12] uses path dominance relation of

the Overlap Ratio Min similarity function [2, 12] to prune the search

space. However, they still need to search the graph, so they still

take hundreds or thousands of seconds to finish a query, which

is not practical for real-life use. In addition, alternative routing
[10, 21, 26, 27, 39] is a set of heuristic k-path methods that are fast

to run, but they suffer from drawbacks like incomplete result set,

higher similarity, and longer results.

Overall, the existing solutions have several limitations which re-

strict them from being applicable in real-life route planning: Firstly,

the graph search in these methods is the bottleneck of performance.

For instance, a Dijkstra’s or 𝐴∗ search is used to search for the next

candidate path, which normally takes tens of milliseconds. Then

a typical D𝑘SP query might need tens of thousands of candidate

paths, so the overall running time becomes hundreds of seconds.

Therefore, we propose a path deviation and concatenation-based

enumeration method to avoid the expensive search. Specifically,

the new paths are formed incrementally by concatenating the ex-

isting sub-paths in a Shortest Path Tree (SPT). Since each new path

is generated through concatenation operation rather than graph

traversal, the path enumeration efficiency is improved by orders of

magnitude, which contributes to quick diversified path finding.

Secondly, whenever we have a path candidate, we have to com-

pute its similarity with the existing results. However, the current

best method still takes𝑂 (|𝑝 |) time for each similarity computation,

where |𝑝 | is the number of edges in a path. Consequently, suppose

we have 𝑘 results and have tested 𝑁 candidates, then the total time

spent on similarity computation is 𝑂 (|𝑝 | × 𝑘 × 𝑁). It should be

noted that |𝑝 | is normally on 10
2
and 𝑁 is normally higher than

10
3
. To reduce this high complexity, we dive into the path gener-

ation theory and reveal the ancestor-descendant relations of the

generated paths, then propose an efficient similarity computation

method that only takes 𝑂 (1) time when such relations exist.

Thirdly, 𝑁 could still be huge and prolong both the overall path

enumeration and similarity computation time. To shrink the candi-

date path set, we further propose an effective pruning method for

the Overlap Ratio Min similarity function [2, 12], which is harder to

compute than other similarity functions. By identifying the tight

upper-bounds of the deviation position, we can avoid a large portion

of candidate paths beforehand.

Finally, as proved in [35], finding the optimal D𝑘SP is NP-H so

we resort to the approximate result like all the previous works. In

addition, because there are still enormous paths needed to enumer-

ate before the results are obtained, and sometimes it is impossi-

ble to satisfy the requirement, we provide two completeness and

efficiency-oriented solutions to further improve the effectiveness

and efficiency. As validated in our experiments on real-life road

networks, our proposed methods can achieve orders of magnitude

faster than the state-of-the-art approaches.

Our major contribution can be summarized as below:

• We study the D𝑘SP problem to ease the traffic conges-

tion from the routing result’s perspective and propose an

edge deviation and concatenation-based path enumeration

method to process the D𝑘SP query efficiently.

• We analyze the path relations and propose an efficient path

similarity computation method in constant time. We also

propose a pruning technique for the Overlap Ratio Min
similarity to reduce the path candidate number.

• We propose two completeness and efficiency-oriented solu-

tions to further boost efficiency.

• We conduct extensive evaluations and verify the superiority

of our approach compared with the state-of-art algorithms.

2 RELATED WORK

2.1 Route Planning

Over the years, various of path problems are identified under differ-

ent scenarios, like shortest path [4, 14, 19, 44, 58, 61, 62] that finds a

path with minimum distance in a static graph, timetable fastest path
[49, 51] that finds paths in discrete connected environments like

public transportation network, time-dependent fastest path [15, 28–

30, 32] that considers the continuous travel time, and constraint
path [37, 38, 50, 54] that finds paths which also satisfying other

constraints like tolls and costs. As discussed previously, the results

of these algorithms are only locally optimal. When it comes to

answer a set of queries globally, the batch shortest path [31, 59, 60]

algorithms utilize path coherence phenomenon and shared com-

putation to reduce the overall computation costs. However, this

sharing nature would lead several OD pairs traveling through a

large portion of the same path, which further generates congestions

in real life, so they are more suitable for route recommendation to

support decision making but not the navigation.

2.2 𝑘-Path Selection

This kind of approach tests the loopless paths in the distance increas-

ing order [7, 18, 36, 41, 46, 55, 56] but with a very high complexity

3200

of 𝑂 (𝑘 |𝑉 | (𝑉 |𝑙𝑜𝑔|𝑉 | + |𝐸 |)). In addition, the resulting 𝑘 paths have

very high overlapping with similar distance [3], which requires

a large number of paths before the results are dissimilar enough.

𝑘-Path is also utilized for route re-planning [40, 45, 52]. The shortest
path tree is a structure that is widely used in the path enumeration

searching towards it [18, 36, 41] to connecting to it [7, 46]. But they

used it as a tool to reduce the search space but did not dig into it to

reveal why and how to use SPT to enumerate correctly in theory,

and what are the relations among the enumerated paths such that

can be used to determine the overlapping efficiently.

2.3 Diversified and Alternative Route Planning

KSPD [35] solves the same problem by extending the k-Path algo-

rithms [7, 18] with path lower bounds for pruning. However, it

still has to search the graph to find the next candidate path, so

its complexity is the same as the k-Path. kDPwML[11] is the only
work that can output exact optimal result, but it has a very high

complexity such that it can only run on toy graphs with hundreds

of vertices but cannot scale to the ones with more than 1k vertices.

kSPwLO [9, 10, 12] provide another set of search-based algorithms.

But its searching strategy has no direction or bound so it has a very

high complexity. Another stream of methods called alternative rout-
ing [27] resorts to heuristic solutions through via-node connection
[21, 26, 39] or penalty blocking [10, 21] for faster query answering,

but their result quality is not guaranteed (allowing longer paths,

higher similarity, and incomplete result set). Ridesharing Planning
[48, 57] also returns several alternative routes, but its goals are

scheduling the workers for optimal revenue, served requests, and

travel time, not the routes’ diversity. Therefore, they cannot solve

the diversified problem.

3 PRELIMINARY

3.1 Road Network and 𝑘-Path

A road network is denoted as a directed graph 𝐺 (𝑉 , 𝐸), where
𝑉 = {𝑣𝑖 } is a set of vertices representing the intersections and 𝐸 ⊆
𝑉 ×𝑉 = {(𝑣𝑖 , 𝑣 𝑗)} is a set of edges representing the road segments.

For any two vertices 𝑣𝑖 and 𝑣 𝑗 that is connected by an edge (𝑣𝑖 , 𝑣 𝑗),
we say 𝑣𝑖 is 𝑣 𝑗 ’s in-neighbor and (𝑣𝑖 , 𝑣 𝑗) is 𝑣 𝑗 ’s in-edge, and 𝑣 𝑗 is
𝑣𝑖 ’s out-neighbor and (𝑣𝑖 , 𝑣 𝑗) is 𝑣𝑖 ’s out-edge. Each edge (𝑣𝑖 , 𝑣 𝑗)
is also associated with a non-negative numerical weight𝑤 (𝑣𝑖 , 𝑣 𝑗)
that represents the cost from 𝑣𝑖 to 𝑣 𝑗 , which can be distance, travel

time, fuel consumption, toll charge, and etc. A path from 𝑠 to 𝑡 is

a sequence of vertices 𝑝 = ⟨𝑣0, 𝑣1, . . . , 𝑣𝑘 ⟩ with 𝑣0 = 𝑠 , 𝑣𝑘 = 𝑡 , and

(𝑣𝑖 , 𝑣𝑖+1) ∈ 𝐸. The length of this path 𝑝 is 𝑑 (𝑝) = Σ𝑘−1
𝑖=0

𝑤 (𝑣𝑖 , 𝑣𝑖+1),
and the shortest path is the one with the minimum 𝑑 (𝑝). Obviously,
there are various of different paths between any OD pair. If we rank

them in a list of size 𝑘 , we have the 𝑘-Path of it:

Definition 1. (𝑘-Path). Given a graph𝐺 , an OD pair (𝑠, 𝑡) and
a path number 𝑘 , the 𝑘-Path is a set of paths 𝑃𝑠,𝑡 = {𝑝1, . . . , 𝑝𝑘 } from
𝑠 to 𝑡 such that 𝑑 (𝑝𝑖) ≤ 𝑑 (𝑝𝑖+1), and 𝑑 (𝑝 𝑗) ≥ 𝑑 (𝑝𝑖),∀𝑝𝑖 ∈ 𝑃𝑠,𝑡 and
𝑝 𝑗 ∉ 𝑃𝑠,𝑡 .

However, not every path in this result set is useful especially

in the route planning scenario as it has requirements only on the

distance but nothing else. Therefore, if we take a little detour out

of the current location and travel back, this path would also appear

in the list as long as its distance is no longer than the largest result.

Apparently, no one would like to take this kind of obviously waste-

ful detour during his trip, and such a detour would also deteriorate

the traffic condition rather than improve it. Therefore, restriction

on the detour is essential to make the 𝑘-Path practical in real-life:

Definition 2. (𝑘-Simple Path). Given a graph 𝐺 , an OD pair
(𝑠, 𝑡) and a path number 𝑘 , the 𝑘-Path is a set of simple paths 𝑃𝑠,𝑡 =
{𝑝1, . . . , 𝑝𝑘 } from 𝑠 to 𝑡 such that 𝑑 (𝑝𝑖) ≤ 𝑑 (𝑝𝑖+1), and 𝑑 (𝑝 𝑗) ≥
𝑑 (𝑝𝑖),∀𝑝𝑖 ∈ 𝑃𝑠,𝑡 and 𝑝 𝑗 ∉ 𝑃𝑠,𝑡 . The simple path requires ∀𝑝 ∈ 𝑃𝑠,𝑡
and ∀𝑣𝑖 ∈ 𝑝 , 𝑣𝑖 only appears in 𝑝 once.

The simple path is also called loopless path. From now on, we use

𝑘-Path to denote 𝑘-Simple Path for simplicity.

3.2 Path Similarity

The paths in the 𝑘-Path results have a very high overlapping be-

tween each other because the paths are found in the distance in-

creasing order, and also because the 𝑘-Path algorithm generates

the candidates based on the existing results. Therefore, we need

a metric to distinguish the difference between the paths in the

𝑘-Path result. Because the path is a special case of the trajectory

data without temporal information, various trajectory similarity

measurements [3, 9, 12, 13, 16, 17, 35, 47, 53] can also be applied.

Given any two paths 𝑝𝑖 and 𝑝 𝑗 , 𝑝𝑖 ∩ 𝑝 𝑗 is the set of common edges

and 𝑝𝑖 ∪𝑝 𝑗 is the set of total edges. We use 𝑑 (𝑝𝑖 ∩𝑝 𝑗) and 𝑑 (𝑝𝑖 ∪𝑝 𝑗)
to denote their corresponding lengths. Some of the widely used

similarities are list below:

(1) Jaccard Similarity: 𝑆1 =
𝑑 (𝑝𝑖 ∩ 𝑝 𝑗)
𝑑 (𝑝𝑖 ∪ 𝑝 𝑗)

[13, 16, 17, 35, 53]

(2) Arithmetic Average: 𝑆2 =
𝑑 (𝑝𝑖 ∩ 𝑝 𝑗)
2𝑑 (𝑝𝑖)

+
𝑑 (𝑝𝑖 ∩ 𝑝 𝑗)
2𝑑 (𝑝 𝑗)

[3, 16, 17, 35]

(3) Geometric Average: 𝑆3 =

√︄
𝑑 (𝑝𝑖 ∩ 𝑝 𝑗)2

𝑑 (𝑝𝑖)𝑑 (𝑝 𝑗)
[16, 17, 35]

(4) Overlap Ratio Max: 𝑆4 =
𝑑 (𝑝𝑖 ∩ 𝑝 𝑗)

𝑚𝑎𝑥 (𝑑 (𝑝𝑖), 𝑑 (𝑝 𝑗))
[16, 17, 35]

(5) Overlap Ratio Min: 𝑆5 =
𝑑 (𝑝𝑖 ∩ 𝑝 𝑗)

𝑚𝑖𝑛 (𝑑 (𝑝𝑖), 𝑑 (𝑝 𝑗))
[9, 12, 35]

It should be noted our problem is not designed for any spe-

cific similarity so any measurement above can be used directly. In

addition, the first four similarities have the longer paths in their

denominators so their similarity values would decrease as more

paths are searched. However, the fifth similarity is non-decreasing

so it is stricter and harder to find the results. The similarity of a

path set is defined below:

Definition 3. (Path Set Similarity). Given a set of paths 𝑃 ,
its max similarity 𝑆𝑚𝑎𝑥 (𝑃) =𝑚𝑎𝑥 (𝑆 (𝑝𝑖 , 𝑝 𝑗)).

3.3 Diversified Top-𝑘 Shortest Path

Now we are ready to define our problem below:

Definition 4. (Diversified Top-k Shortest Path Problem).
Given a graph𝐺 , an OD pair (𝑠, 𝑡), a path number 𝑘 , and a similarity
threshold 𝜏 ∈ [0, 1], the diversified top-k shortest path problem finds a
set of simple paths 𝑃𝑠,𝑡 from 𝑠 to 𝑡 with |𝑃𝑠,𝑡 | ≤ 𝑘 such that 𝑆 (𝑃𝑠,𝑡) ≤ 𝜏 ,
and ∄𝑃 ′𝑠,𝑡 with 𝑆 (𝑃 ′𝑠,𝑡) ≤ 𝜏 such that (1) |𝑃𝑠,𝑡 | < |𝑃 ′𝑠,𝑡 | ≤ 𝑘 , or (2)
|𝑃 ′𝑠,𝑡 | = |𝑃𝑠,𝑡 | with Σ𝑝𝑖 ∈𝑃 ′𝑠,𝑡𝑑 (𝑝𝑖) < Σ𝑝𝑖 ∈𝑃𝑠,𝑡𝑑 (𝑝𝑖).

3201

It should be noted that this problem actually has two objectives:

one on the number of the dissimilar paths, and another one on the

total path length minimization. Specifically, the first restriction re-

quires the maximum size of the result set to prevent the case where

the shortest path itself has the smallest total length, which also

satisfies the similarity threshold. Moreover, there is no guarantee

that a result set of size 𝑘 could exist. For example, when we set 𝜏 to

0, the possible 𝑘 could be as small as 3 or 4 due to the small average

vertex degree in road network. The second restriction requires the

minimal total length among the maximal sets.

Algorithm 1: Approximate D𝑘SP Framework

Input: Graph𝐺 , OD Pair (𝑠, 𝑡) , 𝑘 , 𝜏
Output: Diversified Top-𝑘 Shortest Paths 𝑃𝑠,𝑡

1 𝑃𝑠,𝑡 ← 𝑃𝑠,𝑡
⋃{𝑝 }; //𝑝 is the shortest path

2 while |𝑃𝑠,𝑡 | < 𝑘 and 𝑝 ← the next shortest path do

3 if ∀𝑝′ ∈ |𝑃𝑠,𝑡 |, 𝑆 (𝑝, 𝑝′) ≤ 𝜏 then

4 𝑃𝑠,𝑡 ← 𝑃𝑠,𝑡 ∪ {𝑝 };

5 return 𝑃𝑠,𝑡 ;

As proved in [12, 35] and validated by [11], this problem is NP-H.

The intuition of the hardness is that the shortest path does not

necessarily belong to the optimal path set, we do not even know

which one should be the first result as we enumerate the paths. In

fact, suppose the last path of optimal result is the 𝑐𝑡ℎ shortest path,

then we have

(𝑐
𝑘

)
choices to validate their similarities and compare

their total length, and 𝑐 could be tens of thousands as validated

in our experiments. Such a huge candidate set prohibits us from

finding the optimal result. Therefore, we do not attempt to find the

exact result but resort to a greedy onewith approximation ratio. The

overall procedure is presented in Algorithm 1. It keeps enumerating

the 𝑘-Path in the distance increasing order and adds the current

path if it satisfies the similarity criteria with the existing ones. The

procedures terminates when 𝑘 such paths are obtained or no path

exists. Suppose 𝑃∗𝑠,𝑡 is the optimal result. The approximation ratio

for the path number is 𝑘 as in the worst case, |𝑃∗𝑠,𝑡 | = 𝑘 while 𝑃𝑠,𝑡
only contains the shortest path. The approximation ratio for the

total length is 𝛴𝑝𝑖 ∈𝑃𝑠,𝑡𝑑 (𝑝𝑖)/𝛴𝑝𝑖 ∈𝑃∗𝑠,𝑡𝑑 (𝑝𝑖).

4 DIVERSIFIED TOP-𝑘 SHORTEST PATH

In this section, we elaborate the shortest path tree concatenation

based diversified top-𝑘 shortest path generation in detail. Section

4.1 introduces the basis of generating new longer paths from the

existing one with the SPT. Then we classify the paths to ensure the

correctness of 𝑘-Path generation in Section 4.2. Finally, we present

how to compute the diversified 𝑘-Path in Section 4.3.

4.1 Shortest Path Tree SPT

Given a source vertex 𝑠 , a shortest path tree𝑇𝑠 is a directed spanning

tree of𝐺 rooted at 𝑠 such that the path distance from 𝑠 to any 𝑣 ∈ 𝑉
in 𝑇𝑠 is the same as the shortest distance from 𝑠 to 𝑣 in 𝐺 . Because

these paths all have the same source 𝑠 , we can use 𝑑 (𝑣𝑖) to denote

the shortest distance for short. For example, Figure 2 shows a SPT
of our example graph with black edges representing the tree edges

and grey edges presenting the remaining ones. Accordingly, we

categorize the graph edges into two types: Tree Edge 𝐸𝑇 that exist

in the SPT and Deviation Edge 𝐸𝐷 = 𝐸 −𝐸𝑇 that are left over. For an

edge (𝑣𝑖 , 𝑣 𝑗) ∈ 𝐸, we call 𝑐𝑖 𝑗 = 𝑤 (𝑣𝑖 , 𝑣 𝑗) +𝑑 (𝑣𝑖) −𝑑 (𝑣 𝑗) its deviation
cost. Obviously, 𝑐𝑖 𝑗 = 0 if (𝑣𝑖 , 𝑣 𝑗) ∈ 𝐸𝑇 , and 𝑐𝑖 𝑗 ≥ 0 if (𝑣𝑖 , 𝑣 𝑗) ∈ 𝐸𝐷 .
The SPT can be constructed with Dijkstra’s in 𝑂 (|𝑉 | log |𝑉 | + |𝐸 |)
time, and the deviation costs can be obtained in 𝑂 (|𝐸 |) time.

Figure 2: SPT and Concatenation Example

We can utilize the SPT and the deviation edges to generate the

new longer paths from the current path. Suppose we have a shortest

path 𝑝1 = ⟨𝑠, . . . , 𝑡⟩ in 𝑇𝑠 . Then 𝐸1𝐷 = {(𝑣𝑖 , 𝑣 𝑗) |𝑣 𝑗 ∈ 𝑝1
∧
𝑣𝑖 ∉ 𝑝1}

is the set of deviation edges from 𝑝1. ∀(𝑣𝑖 , 𝑣 𝑗) ∈ 𝐸1𝐷 , we can get a

new path 𝑝
(𝑣𝑖 ,𝑣𝑗)
1

= 𝑝𝑠→𝑣𝑖 ⊕ (𝑣𝑖 , 𝑣 𝑗) ⊕ 𝑝𝑣𝑗→𝑡 . Apparently, the new

path is the concatenation (⊕) result of the following three parts:

(1) SPT Part: 𝑝𝑠→𝑣𝑖 is a shortest path from 𝑠 to 𝑣𝑖 in 𝑇𝑠
(2) Deviation Edge: (𝑣𝑖 , 𝑣 𝑗)
(3) Parent Part: 𝑝𝑣𝑗→𝑡 is the sub-path of 𝑝1 from 𝑣 𝑗

Because the deviation edge ⊕ parent part won’t be changed in the

future path generation, we call them the fixed part. Therefore, the
new path can also be viewed as a concatenation of the SPT Part and

Fixed part. The length of this new path 𝑑 (𝑝 (𝑣𝑖 ,𝑣𝑗)
1

) can be obtained

directly with 𝑑 (𝑝1) + 𝑐𝑖 𝑗 . This is because

𝑑 (𝑝 (𝑣𝑖 ,𝑣𝑗)
1

) = 𝑑 (𝑣𝑖) + 𝑤 (𝑣𝑖 , 𝑣𝑗) + 𝑑 (𝑣𝑗 → 𝑡)
= 𝑐𝑖 𝑗 − 𝑤 (𝑣𝑖 , 𝑣𝑗) + 𝑑 (𝑣𝑗) + 𝑤 (𝑣𝑖 , 𝑣𝑗) + 𝑑 (𝑣𝑗 → 𝑡)
= 𝑐𝑖 𝑗 + 𝑑 (𝑣𝑗) + 𝑑 (𝑣𝑗 → 𝑡)
= 𝑐𝑖 𝑗 + 𝑑 (𝑝1)

Figure 2-(c) shows a shortest path 𝑝1 = ⟨𝑣0, 𝑣1, 𝑣4, 𝑣6, 𝑣8⟩ and it

has three deviation edges 𝐸1
𝐷
= {(𝑣3, 𝑣6), (𝑣5, 𝑣6), (𝑣5, 𝑣4), (𝑣7, 𝑣8)}

with deviation costs of 𝑐3,6 = 𝑐5,6 = 𝑐7,8 = 0. Suppose we choose

(𝑣5, 𝑣6) as the next deviation edge, we can get a new path 𝑝2 =

𝑝𝑣0→𝑣5 ⊕(𝑣5, 𝑣6)⊕𝑝𝑣6→𝑣8 = {𝑣0, 𝑣2, 𝑣5, 𝑣6, 𝑣8}with distance𝑑 (𝑝2) =
𝑑 (𝑝1) + 𝑐5,6 = 10. 𝑝1 is called 𝑝2’s parent path because 𝑝2 is directly

generated from 𝑝1. If we sort the deviation edges based on the

deviation cost and generate the new paths in the increasing order,

it is guaranteed the latter ones are no shorter than the earlier ones.

However, the new path generated by the above procedure may

contain loops. For example, a new edge (𝑣8, 𝑣4) could create a path

𝑝𝑣0→𝑣8 ⊕ (𝑣8, 𝑣4) ⊕ 𝑝𝑣4→𝑣8 that has a loop ⟨𝑣8, 𝑣4, 𝑣6, 𝑣8⟩. Although
traversing the new path could detect the loop, it is time-consuming

when the path is long. Therefore, we will analyze the cause of the

loops theoretically and avoid it as early as possible in Section 4.3.

3202

u

t
ҁD҂

s

v

w

<latexit sha1_base64="51aHTLCCrc0W96JZPnETM9xvm0k=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMdCLx4rWltoQ9lsN+3SzSbsToQS+hO8eFAQr/4hb/4bt2kO2vpg4PHeDDPzgkQKg6777ZQ2Nre2d8q7lb39g8Oj6vHJo4lTzXiHxTLWvYAaLoXiHRQoeS/RnEaB5N1g2lr43SeujYjVA84S7kd0rEQoGEUr3beGOKzW3Lqbg6wTryA1KNAeVr8Go5ilEVfIJDWm77kJ+hnVKJjk88ogNTyhbErHvG+pohE3fpafOicXVhmRMNa2FJJc/T2R0ciYWRTYzojixKx6C/E/r59ieONnQiUpcsWWi8JUEozJ4m8yEpozlDNLKNPC3krYhGrK0KZTsSF4qy+vk+5V3WvUPe+uUWu6RR5lOINzuAQPrqEJt9CGDjAYwzO8wpsjnRfn3flYtpacYuYU/sD5/AGxxY3V</latexit>

Ct

<latexit sha1_base64="7URGsdgqiDQjasAWvt9Ylw7azUg=">AAAB/HicbVBNS8NAEN3Ur1q/Yj16WSyCp5KIoMdCLx4rWFtoQ9hsN+3SzW7YnVRL6F/x4kFBvPpDvPlv3LY5aOuDgcd7M8zMi1LBDXjet1Pa2Nza3invVvb2Dw6P3OPqg1GZpqxNlVC6GxHDBJesDRwE66aakSQSrBONm3O/M2HacCXvYZqyICFDyWNOCVgpdKvNMJ/0NR+OgGitHjHMQrfm1b0F8DrxC1JDBVqh+9UfKJolTAIVxJie76UQ5EQDp4LNKv3MsJTQMRmynqWSJMwE+eL2GT63ygDHStuSgBfq74mcJMZMk8h2JgRGZtWbi/95vQzimyDnMs2ASbpcFGcCg8LzIPCAa0ZBTC0hVHN7K6YjogkFG1fFhuCvvrxOOpd1/6ru+3dXtYZX5FFGp+gMXSAfXaMGukUt1EYUPaFn9IrenJnz4rw7H8vWklPMnKA/cD5/AP0AlM8=</latexit>

Cv!t

<latexit sha1_base64="mYJ3GmWEQ67LQS2X880EaGUP2Hc=">AAACCXicbVBNSwMxEM36WevXqkcPBovgqexKQY+FXjxWsLbQLks2TdvQbLIks5Wy9OjFv+LFg4J49R9489+YtnuorQ8GXt6bITMvSgQ34Hk/ztr6xubWdmGnuLu3f3DoHh0/GJVqyhpUCaVbETFMcMkawEGwVqIZiSPBmtGwNvWbI6YNV/IexgkLYtKXvMcpASuF7lktzNKO5v0BEK3VIx4tPmASuiWv7M2AV4mfkxLKUQ/d705X0TRmEqggxrR9L4EgIxo4FWxS7KSGJYQOSZ+1LZUkZibIZodM8IVVurintC0JeKYuTmQkNmYcR7YzJjAwy95U/M9rp9C7CTIukxSYpPOPeqnAoPA0FdzlmlEQY0sI1dzuiumAaELBZle0IfjLJ6+S5lXZr5R9/65Sqnp5HgV0is7RJfLRNaqiW1RHDUTRE3pBb+jdeXZenQ/nc9665uQzJ+gPnK9fT+Waiw==</latexit>

Cu!v!t
<latexit sha1_base64="mqj0OlTqpe1D3exFEIh1XQ9GYZs=">AAACCXicbVBNS8NAEN3Ur1q/oh49uFgETyWRgh4LvXisYG2hDWGz3bRLN5uwO2kpoUcv/hUvHhTEq//Am//GbZtDbX0w8Pa9GXbmBYngGhznxypsbG5t7xR3S3v7B4dH9vHJo45TRVmTxiJW7YBoJrhkTeAgWDtRjESBYK1gWJ/5rRFTmsfyASYJ8yLSlzzklICRfPu87mfjruL9ARCl4jEeLT9g6ttlp+LMgdeJm5MyytHw7e9uL6ZpxCRQQbTuuE4CXkYUcCrYtNRNNUsIHZI+6xgqScS0l80PmeJLo/RwGCtTEvBcXZ7ISKT1JApMZ0RgoFe9mfif10khvPUyLpMUmKSLj8JUYIjxLBXc44pREBNDCFXc7IrpgChCwWRXMiG4qyevk9Z1xa1WXPe+Wq45eR5FdIYu0BVy0Q2qoTvUQE1E0RN6QW/o3Xq2Xq0P63PRWrDymVP0B9bXL1Mlmo0=</latexit>

Cw!v!t

ҁE҂

<latexit sha1_base64="SxVGscesmJk2Ib2fLHut5AQdZN8=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU9lIQY+FXjxWcG2hXUs2zbah2WRJskJZ+hu8eFAQr/4fb/4b03YP2vpg4PHeDDPzolRwY33/2yttbG5t75R3K3v7B4dH1eOTB6MyTVlAlVC6GxHDBJcssNwK1k01I0kkWCeatOZ+54lpw5W8t9OUhQkZSR5zSqyTgtYAP04G1Zpf9xdA6wQXpAYF2oPqV3+oaJYwaakgxvSwn9owJ9pyKtis0s8MSwmdkBHrOSpJwkyYL46doQunDFGstCtp0UL9PZGTxJhpErnOhNixWfXm4n9eL7PxTZhzmWaWSbpcFGcCWYXmn6Mh14xaMXWEUM3drYiOiSbUunwqLgS8+vI66VzVcaOO8V2j1vSLPMpwBudwCRiuoQm30IYAKHB4hld486T34r17H8vWklfMnMIfeJ8/yUqObw==</latexit>

Ck
1

<latexit sha1_base64="SxVGscesmJk2Ib2fLHut5AQdZN8=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU9lIQY+FXjxWcG2hXUs2zbah2WRJskJZ+hu8eFAQr/4fb/4b03YP2vpg4PHeDDPzolRwY33/2yttbG5t75R3K3v7B4dH1eOTB6MyTVlAlVC6GxHDBJcssNwK1k01I0kkWCeatOZ+54lpw5W8t9OUhQkZSR5zSqyTgtYAP04G1Zpf9xdA6wQXpAYF2oPqV3+oaJYwaakgxvSwn9owJ9pyKtis0s8MSwmdkBHrOSpJwkyYL46doQunDFGstCtp0UL9PZGTxJhpErnOhNixWfXm4n9eL7PxTZhzmWaWSbpcFGcCWYXmn6Mh14xaMXWEUM3drYiOiSbUunwqLgS8+vI66VzVcaOO8V2j1vSLPMpwBudwCRiuoQm30IYAKHB4hld486T34r17H8vWklfMnMIfeJ8/yUqObw==</latexit>

Ck
1

<latexit sha1_base64="Bc7WQCHOBATAtlzFK0Qpyvf3hjo=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU9lIQY+FXjxWcG2hXUs2zbahSXZJskJZ+hu8eFAQr/4fb/4b03YP2vpg4PHeDDPzolRwY33/2yttbG5t75R3K3v7B4dH1eOTB5NkmrKAJiLR3YgYJrhigeVWsG6qGZGRYJ1o0pr7nSemDU/UvZ2mLJRkpHjMKbFOCloD/IgH1Zpf9xdA6wQXpAYF2oPqV3+Y0EwyZakgxvSwn9owJ9pyKtis0s8MSwmdkBHrOaqIZCbMF8fO0IVThihOtCtl0UL9PZETacxURq5TEjs2q95c/M/rZTa+CXOu0swyRZeL4kwgm6D552jINaNWTB0hVHN3K6Jjogm1Lp+KCwGvvrxOOld13KhjfNeoNf0ijzKcwTlcAoZraMIttCEAChye4RXePOW9eO/ex7K15BUzp/AH3ucPcSiONQ==</latexit>

C1
1

<latexit sha1_base64="yrHJgsEyuNecUaQ4sHvQhMgQWIA=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU9lIQY+FXjxWcG2hXUs2zbahSXZJskJZ+hu8eFAQr/4fb/4b03YP2vpg4PHeDDPzolRwY33/2yttbG5t75R3K3v7B4dH1eOTB5NkmrKAJiLR3YgYJrhigeVWsG6qGZGRYJ1o0pr7nSemDU/UvZ2mLJRkpHjMKbFOCloD/MgH1Zpf9xdA6wQXpAYF2oPqV3+Y0EwyZakgxvSwn9owJ9pyKtis0s8MSwmdkBHrOaqIZCbMF8fO0IVThihOtCtl0UL9PZETacxURq5TEjs2q95c/M/rZTa+CXOu0swyRZeL4kwgm6D552jINaNWTB0hVHN3K6Jjogm1Lp+KCwGvvrxOOld13KhjfNeoNf0ijzKcwTlcAoZraMIttCEAChye4RXePOW9eO/ex7K15BUzp/AH3ucPxkCObQ==</latexit>

Ci
1

<latexit sha1_base64="d239/iprJj49KP1Au4usl4mjIl8=">AAAB7XicbVBNSwMxEJ34WetX1aOXYBE8lU0p6LHQi8cKri20a8mm2TY0m12SrFCW/gYvHhTEq//Hm//GtN2Dtj4YeLw3w8y8MJXCWM/7RhubW9s7u6W98v7B4dFx5eT0wSSZZtxniUx0N6SGS6G4b4WVvJtqTuNQ8k44ac39zhPXRiTq3k5THsR0pEQkGLVO8luD+iMZVKpezVsArxNSkCoUaA8qX/1hwrKYK8skNaZHvNQGOdVWMMln5X5meErZhI54z1FFY26CfHHsDF86ZYijRLtSFi/U3xM5jY2ZxqHrjKkdm1VvLv7n9TIb3QS5UGlmuWLLRVEmsU3w/HM8FJozK6eOUKaFuxWzMdWUWZdP2YVAVl9eJ516jTRqhNw1qk2vyKME53ABV0DgGppwC23wgYGAZ3iFN6TQC3pHH8vWDVTMnMEfoM8fcq+ONg==</latexit>

C1
2

<latexit sha1_base64="4H64VVixJluykwIUJH6m+dsAth0=">AAAB7XicbVBNSwMxEJ34WetX1aOXYBE8ld1S0GOhF48VXFto15JNs21okl2SrFCW/gYvHhTEq//Hm//GtN2Dtj4YeLw3w8y8KBXcWM/7RhubW9s7u6W98v7B4dFx5eT0wSSZpiygiUh0NyKGCa5YYLkVrJtqRmQkWCeatOZ+54lpwxN1b6cpCyUZKR5zSqyTgtag/igHlapX8xbA68QvSBUKtAeVr/4woZlkylJBjOn5XmrDnGjLqWCzcj8zLCV0Qkas56gikpkwXxw7w5dOGeI40a6UxQv190ROpDFTGblOSezYrHpz8T+vl9n4Jsy5SjPLFF0uijOBbYLnn+Mh14xaMXWEUM3drZiOiSbUunzKLgR/9eV10qnX/EbN9+8a1aZX5FGCc7iAK/DhGppwC20IgAKHZ3iFN6TQC3pHH8vWDVTMnMEfoM8fzduOcg==</latexit>

Cm
2

ҁF҂

<latexit sha1_base64="V7FkjdqCyxWU+Hsc6ml0X3/7zPA=">AAAB7XicbVBNSwMxEJ3Ur1q/qh69BIvgqWykoMdCLx4ruLbQriWbZtvYbHZJskJZ+hu8eFAQr/4fb/4b03YPWn0w8Hhvhpl5YSqFsZ73hUpr6xubW+Xtys7u3v5B9fDoziSZZtxniUx0N6SGS6G4b4WVvJtqTuNQ8k44ac39ziPXRiTq1k5THsR0pEQkGLVO8luDh3syqNa8urcA/ktIQWpQoD2ofvaHCctiriyT1Jge8VIb5FRbwSSfVfqZ4SllEzriPUcVjbkJ8sWxM3zmlCGOEu1KWbxQf07kNDZmGoeuM6Z2bFa9ufif18tsdBXkQqWZ5YotF0WZxDbB88/xUGjOrJw6QpkW7lbMxlRTZl0+FRcCWX35L+lc1EmjTshNo9b0ijzKcAKncA4ELqEJ19AGHxgIeIIXeEUKPaM39L5sLaFi5hh+AX18A8g3jm4=</latexit>

C1
j

<latexit sha1_base64="3ODyXlsEWI295afZKQjV3qW1hnI=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMdCLx4rGFtoY9lsJ+3azSbsboQS+hu8eFAQr/4fb/4bt20OWn0w8Hhvhpl5YSq4Nq775ZTW1jc2t8rblZ3dvf2D6uHRnU4yxdBniUhUN6QaBZfoG24EdlOFNA4FdsJJa+53HlFpnshbM00xiOlI8ogzaqzktwYP93xQrbl1dwHyl3gFqUGB9qD62R8mLItRGiao1j3PTU2QU2U4Ezir9DONKWUTOsKepZLGqIN8ceyMnFllSKJE2ZKGLNSfEzmNtZ7Goe2MqRnrVW8u/uf1MhNdBTmXaWZQsuWiKBPEJGT+ORlyhcyIqSWUKW5vJWxMFWXG5lOxIXirL/8lnYu616h73k2j1nSLPMpwAqdwDh5cQhOuoQ0+MODwBC/w6kjn2Xlz3petJaeYOYZfcD6+AR1ejqY=</latexit>

Ci
j

<latexit sha1_base64="7iVhasllUbmpqm44flwg3+60vsA=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMdCLx4rGFtoY9lsN+3azSbsToQS+hu8eFAQr/4fb/4bt20OWn0w8Hhvhpl5YSqFQdf9ckpr6xubW+Xtys7u3v5B9fDoziSZZtxniUx0N6SGS6G4jwIl76aa0ziUvBNOWnO/88i1EYm6xWnKg5iOlIgEo2glvzV4uJ8MqjW37i5A/hKvIDUo0B5UP/vDhGUxV8gkNabnuSkGOdUomOSzSj8zPKVsQke8Z6miMTdBvjh2Rs6sMiRRom0pJAv150ROY2OmcWg7Y4pjs+rNxf+8XobRVZALlWbIFVsuijJJMCHzz8lQaM5QTi2hTAt7K2FjqilDm0/FhuCtvvyXdC7qXqPueTeNWtMt8ijDCZzCOXhwCU24hjb4wEDAE7zAq6OcZ+fNeV+2lpxi5hh+wfn4BiBojqg=</latexit>

Ck
j

<latexit sha1_base64="3kyY/PgALvVLuCcma/h/1nB0T4Y=">AAAB8XicbVBNSwMxEJ31s9avqkcvwSIIQtlIQY+FXjxWsLbSriWbZtvYJLskWaEs/RVePCiIV/+NN/+NabsHbX0w8Hhvhpl5YSK4sb7/7a2srq1vbBa2its7u3v7pYPDOxOnmrImjUWs2yExTHDFmpZbwdqJZkSGgrXCUX3qt56YNjxWt3acsECSgeIRp8Q66b7eyx7P8eQB90plv+LPgJYJzkkZcjR6pa9uP6apZMpSQYzpYD+xQUa05VSwSbGbGpYQOiID1nFUEclMkM0OnqBTp/RRFGtXyqKZ+nsiI9KYsQxdpyR2aBa9qfif10ltdBVkXCWpZYrOF0WpQDZG0+9Rn2tGrRg7Qqjm7lZEh0QTal1GRRcCXnx5mbQuKrhawfimWq75eR4FOIYTOAMMl1CDa2hAEyhIeIZXePO09+K9ex/z1hUvnzmCP/A+fwBpqY/q</latexit>

C1
j+1

<latexit sha1_base64="Q/KMn0P2bhOhLs+wGayrCGYHN5w=">AAAB8XicbVBNSwMxEJ31s9avqkcvwSIIQtlIQY+FXjxWsLbSriWbZtvYJLskWaEs/RVePCiIV/+NN/+NabsHbX0w8Hhvhpl5YSK4sb7/7a2srq1vbBa2its7u3v7pYPDOxOnmrImjUWs2yExTHDFmpZbwdqJZkSGgrXCUX3qt56YNjxWt3acsECSgeIRp8Q66b7eyx7P8eRB9kplv+LPgJYJzkkZcjR6pa9uP6apZMpSQYzpYD+xQUa05VSwSbGbGpYQOiID1nFUEclMkM0OnqBTp/RRFGtXyqKZ+nsiI9KYsQxdpyR2aBa9qfif10ltdBVkXCWpZYrOF0WpQDZG0+9Rn2tGrRg7Qqjm7lZEh0QTal1GRRcCXnx5mbQuKrhawfimWq75eR4FOIYTOAMMl1CDa2hAEyhIeIZXePO09+K9ex/z1hUvnzmCP/A+fwDE1ZAm</latexit>

Cm
j+1

<latexit sha1_base64="2Om/FbW4+gYqAIBD0NsPxmv3jw0=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFW4loGUgjWVEYwLJEfY2c8mSvb1jd08IIT/BxkJBbP1Ddv4bN8kVmvhg4PHeDDPzwlQKY33/2ytsbG5t7xR3S3v7B4dH5eOTR5NkmmOLJzLRnZAZlEJhyworsZNqZHEosR2OG3O//YTaiEQ92EmKQcyGSkSCM+uk+0af9ssVv+ovQNYJzUkFcjT75a/eIOFZjMpyyYzpUj+1wZRpK7jEWamXGUwZH7Mhdh1VLEYTTBenzsiFUwYkSrQrZclC/T0xZbExkzh0nTGzI7PqzcX/vG5mo5tgKlSaWVR8uSjKJLEJmf9NBkIjt3LiCONauFsJHzHNuHXplFwIdPXlddK+qtJaldK7WqXu53kU4QzO4RIoXEMdbqEJLeAwhGd4hTdPei/eu/exbC14+cwp/IH3+QNL9o2S</latexit>

C1
<latexit sha1_base64="fr5H7HXx6d2TnfrcyOoScBleAyI=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lKoR4LvXisaG2hDWWz3bRLN5uwOxFK6E/w4kFBvPqHvPlv3LY5aOuDgcd7M8zMCxIpDLrut1PY2t7Z3Svulw4Oj45PyqdnjyZONeMdFstY9wJquBSKd1Cg5L1EcxoFkneDaWvhd5+4NiJWDzhLuB/RsRKhYBStdN8a1oblilt1lyCbxMtJBXK0h+WvwShmacQVMkmN6Xtugn5GNQom+bw0SA1PKJvSMe9bqmjEjZ8tT52TK6uMSBhrWwrJUv09kdHImFkU2M6I4sSsewvxP6+fYnjjZ0IlKXLFVovCVBKMyeJvMhKaM5QzSyjTwt5K2IRqytCmU7IheOsvb5JurerVq553V6803TyPIlzAJVyDBw1owi20oQMMxvAMr/DmSOfFeXc+Vq0FJ585hz9wPn8ATXuNkw==</latexit>

C2

<latexit sha1_base64="6NrpQDrm1ZsItAdTp89A3cmNXbQ=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUI+FXjxWtLbQhrLZTtq1m03Y3Qgl9Cd48aAgXv1D3vw3btsctPXBwOO9GWbmBYng2rjut1PY2Nza3inulvb2Dw6PyscnDzpOFcM2i0WsugHVKLjEtuFGYDdRSKNAYCeYNOd+5wmV5rG8N9ME/YiOJA85o8ZKd83B46BccavuAmSdeDmpQI7WoPzVH8YsjVAaJqjWPc9NjJ9RZTgTOCv1U40JZRM6wp6lkkao/Wxx6oxcWGVIwljZkoYs1N8TGY20nkaB7YyoGetVby7+5/VSE177GZdJalCy5aIwFcTEZP43GXKFzIipJZQpbm8lbEwVZcamU7IheKsvr5POVdWrVT3vtlZpuHkeRTiDc7gED+rQgBtoQRsYjOAZXuHNEc6L8+58LFsLTj5zCn/gfP4AopONyw==</latexit>

Cj
<latexit sha1_base64="pbbxofCyHsgiZKO73JenN4u07L8=">AAAB73icbVBNSwMxEJ34WetX1aOXYBEEoWykoMdCLx4rWLfQLiWbZtvYbHZJskJZ+iO8eFAQr/4db/4b03YP2vpg4PHeDDPzwlQKYz3vG62tb2xubZd2yrt7+weHlaPjB5NkmvE2S2SiOyE1XArF21ZYyTup5jQOJffDcXPm+09cG5GoeztJeRDToRKRYNQ6yW/288dLMu1Xql7NmwOvElKQKhRo9StfvUHCspgryyQ1pku81AY51VYwyaflXmZ4StmYDnnXUUVjboJ8fu4UnztlgKNEu1IWz9XfEzmNjZnEoeuMqR2ZZW8m/ud1MxvdBLlQaWa5YotFUSaxTfDsdzwQmjMrJ45QpoW7FbMR1ZRZl1DZhUCWX14l/lWN1GuE3NWrDa/IowSncAYXQOAaGnALLWgDgzE8wyu8oRS9oHf0sWhdQ8XMCfwB+vwBQU2PRw==</latexit>

Cj+1
<latexit sha1_base64="PFFosZEMycrT5tX66MzrhW9EUwI=">AAAB73icbVBNSwMxEJ34WetX1aOXYBG8WDZS0GOhF48VrFtol5JNs21sNrskWaEs/RFePCiIV/+ON/+NabsHbX0w8Hhvhpl5YSqFsZ73jdbWNza3tks75d29/YPDytHxg0kyzXibJTLRnZAaLoXibSus5J1UcxqHkvvhuDnz/SeujUjUvZ2kPIjpUIlIMGqd5Df7+eMlmfYrVa/mzYFXCSlIFQq0+pWv3iBhWcyVZZIa0yVeaoOcaiuY5NNyLzM8pWxMh7zrqKIxN0E+P3eKz50ywFGiXSmL5+rviZzGxkzi0HXG1I7MsjcT//O6mY1uglyoNLNcscWiKJPYJnj2Ox4IzZmVE0co08LditmIasqsS6jsQiDLL68S/6pG6jVC7urVhlfkUYJTOIMLIHANDbiFFrSBwRie4RXeUIpe0Dv6WLSuoWLmBP4Aff4ARFuPSQ==</latexit>

Cj�1

<latexit sha1_base64="vffGa7JUBfjEFFIyYFQawJYRF9g=">AAAB8XicbVBNSwMxEJ31s9avqkcvwSJ4sWykoMdCLx4rWFtp15JNs21skl2SrFCW/govHhTEq//Gm//GtN2Dtj4YeLw3w8y8MBHcWN//9lZW19Y3Ngtbxe2d3b390sHhnYlTTVmTxiLW7ZAYJrhiTcutYO1EMyJDwVrhqD71W09MGx6rWztOWCDJQPGIU2KddF/vZY/nePKAe6WyX/FnQMsE56QMORq90le3H9NUMmWpIMZ0sJ/YICPacirYpNhNDUsIHZEB6ziqiGQmyGYHT9CpU/ooirUrZdFM/T2REWnMWIauUxI7NIveVPzP66Q2ugoyrpLUMkXni6JUIBuj6feozzWjVowdIVRzdyuiQ6IJtS6jogsBL768TFoXFVytYHxTLdf8PI8CHMMJnAGGS6jBNTSgCRQkPMMrvHnae/HevY9564qXzxzBH3ifP2y7j+w=</latexit>

C1
j�1

<latexit sha1_base64="Y6KzEk/VUKfTZTl4Cchlcl40eJQ=">AAAB8XicbVBNSwMxEJ31s9avqkcvwSJ4sWykoMdCLx4rWFtp15JNs21skl2SrFCW/govHhTEq//Gm//GtN2Dtj4YeLw3w8y8MBHcWN//9lZW19Y3Ngtbxe2d3b390sHhnYlTTVmTxiLW7ZAYJrhiTcutYO1EMyJDwVrhqD71W09MGx6rWztOWCDJQPGIU2KddF/vZY/nePLAe6WyX/FnQMsE56QMORq90le3H9NUMmWpIMZ0sJ/YICPacirYpNhNDUsIHZEB6ziqiGQmyGYHT9CpU/ooirUrZdFM/T2REWnMWIauUxI7NIveVPzP66Q2ugoyrpLUMkXni6JUIBuj6feozzWjVowdIVRzdyuiQ6IJtS6jogsBL768TFoXFVytYHxTLdf8PI8CHMMJnAGGS6jBNTSgCRQkPMMrvHnae/HevY9564qXzxzBH3ifP8HTkCQ=</latexit>

Ci
j�1

<latexit sha1_base64="Vv9gTw/PCF8xsKYvb5CsYX3Z/mM=">AAAB8XicbVBNSwMxEJ31s9avqkcvwSJ4sWykoMdCLx4rWFtp15JNs21skl2SrFCW/govHhTEq//Gm//GtN2Dtj4YeLw3w8y8MBHcWN//9lZW19Y3Ngtbxe2d3b390sHhnYlTTVmTxiLW7ZAYJrhiTcutYO1EMyJDwVrhqD71W09MGx6rWztOWCDJQPGIU2KddF/vZY/nePKgeqWyX/FnQMsE56QMORq90le3H9NUMmWpIMZ0sJ/YICPacirYpNhNDUsIHZEB6ziqiGQmyGYHT9CpU/ooirUrZdFM/T2REWnMWIauUxI7NIveVPzP66Q2ugoyrpLUMkXni6JUIBuj6feozzWjVowdIVRzdyuiQ6IJtS6jogsBL768TFoXFVytYHxTLdf8PI8CHMMJnAGGS6jBNTSgCRQkPMMrvHnae/HevY9564qXzxzBH3ifP8lskCk=</latexit>

Cn
j�1

<latexit sha1_base64="oZK12asMTCYopwh8BWMQn9NGDWw=">AAAB73icbVBNSwMxEJ31s9avqkcvwSIIQtktBT0WvHisYN1Cu5Rsmm1jk2xIskJZ+iO8eFAQr/4db/4b03YP2vpg4PHeDDPzYsWZsb7/7a2tb2xubZd2yrt7+weHlaPjB5NmmtA2SXmqOzE2lDNJ25ZZTjtKUyxiTsN4fDPzwyeqDUvlvZ0oGgk8lCxhBFsnhaqfP17Wp/1K1a/5c6BVEhSkCgVa/cpXb5CSTFBpCcfGdANf2SjH2jLC6bTcywxVmIzxkHYdlVhQE+Xzc6fo3CkDlKTalbRorv6eyLEwZiJi1ymwHZllbyb+53Uzm1xHOZMqs1SSxaIk48imaPY7GjBNieUTRzDRzN2KyAhrTKxLqOxCCJZfXiVhvRY0akFw16g2/SKPEpzCGVxAAFfQhFtoQRsIjOEZXuHNU96L9+59LFrXvGLmBP7A+/wBiEKPdQ==</latexit>pj+2
<latexit sha1_base64="Bm5o7wRf4tIInnNCWbSUupYAaTs=">AAAB73icbVBNSwMxEJ2tX7V+VT16CRZBEMpGCnosePFYwbqFdinZNNvGZrMhyQpl6Y/w4kFBvPp3vPlvTNs9aOuDgcd7M8zMi5Tgxvr+t1daW9/Y3CpvV3Z29/YPqodHDybNNGVtmopUdyJimOCStS23gnWUZiSJBAui8c3MD56YNjyV93aiWJiQoeQxp8Q6KVD9/PECT/vVml/350CrBBekBgVa/epXb5DSLGHSUkGM6WJf2TAn2nIq2LTSywxThI7JkHUdlSRhJszn507RmVMGKE61K2nRXP09kZPEmEkSuc6E2JFZ9mbif143s/F1mHOpMsskXSyKM4Fsima/owHXjFoxcYRQzd2tiI6IJtS6hCouBLz88ioJLuu4Ucf4rlFr+kUeZTiBUzgHDFfQhFtoQRsojOEZXuHNU96L9+59LFpLXjFzDH/gff4AhryPdA==</latexit>pj+1

<latexit sha1_base64="m8jrfJH3PD4j3ofkyVGVtKK9y0Q=">AAAB8HicbVBNSwMxEJ3Ur1q/qh69BIsoCGUjBT0WvHisYG2hXUo2zbax2eyaZIWy9E948aAgXv053vw3pu0etPXBwOO9GWbmBYkUxnreNyqsrK6tbxQ3S1vbO7t75f2DexOnmvEmi2Ws2wE1XArFm1ZYyduJ5jQKJG8Fo+up33ri2ohY3dlxwv2IDpQIBaPWSe3ktJc9nJNJr1zxqt4MeJmQnFQgR6NX/ur2Y5ZGXFkmqTEd4iXWz6i2gkk+KXVTwxPKRnTAO44qGnHjZ7N7J/jEKX0cxtqVsnim/p7IaGTMOApcZ0Tt0Cx6U/E/r5Pa8MrPhEpSyxWbLwpTiW2Mp8/jvtCcWTl2hDIt3K2YDammzLqISi4EsvjyMmldVEmtSshtrVL38jyKcATHcAYELqEON9CAJjCQ8Ayv8IYe0Qt6Rx/z1gLKZw7hD9DnD+hKj6U=</latexit>

p0j+1
<latexit sha1_base64="K9sJBsC8bihQVzBwc6SXcOORPrs=">AAAB63icbVBNS8NAEJ3Ur1q/oh69LBbBU0mkoMeCF48VrS20oWy2m3btZhN2J0IJ/QlePCiIV/+QN/+N2zYHbX0w8Hhvhpl5YSqFQc/7dkpr6xubW+Xtys7u3v6Be3j0YJJMM95iiUx0J6SGS6F4CwVK3kk1p3EoeTscX8/89hPXRiTqHicpD2I6VCISjKKV7tL+Y9+tejVvDrJK/IJUoUCz7371BgnLYq6QSWpM1/dSDHKqUTDJp5VeZnhK2ZgOeddSRWNugnx+6pScWWVAokTbUkjm6u+JnMbGTOLQdsYUR2bZm4n/ed0Mo6sgFyrNkCu2WBRlkmBCZn+TgdCcoZxYQpkW9lbCRlRThjadig3BX355lbQvan695vu39WrDK/Iowwmcwjn4cAkNuIEmtIDBEJ7hFd4c6bw4787HorXkFDPH8AfO5w/nTo34</latexit>pj<latexit sha1_base64="Tc1HIj8XHKMSThWnWoFWtWvzfik=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFW5F0DJgYxnRmEByhL3NXLJkb+/Y3RPCkZ9gY6Egtv4hO/+Nm+QKTXww8Hhvhpl5YSqFsb7/7ZXW1jc2t8rblZ3dvf2D6uHRo0kyzbHFE5noTsgMSqGwZYWV2Ek1sjiU2A7HNzO//YTaiEQ92EmKQcyGSkSCM+uk+7RP+9WaX/fnIKuEFqQGBZr96ldvkPAsRmW5ZMZ0qZ/aIGfaCi5xWullBlPGx2yIXUcVi9EE+fzUKTlzyoBEiXalLJmrvydyFhsziUPXGTM7MsveTPzP62Y2ug5yodLMouKLRVEmiU3I7G8yEBq5lRNHGNfC3Ur4iGnGrUun4kKgyy+vkvZFnV7WKb27rDX8Io8ynMApnAOFK2jALTShBRyG8Ayv8OZJ78V79z4WrSWvmDmGP/A+fwCQsY2/</latexit>p1

<latexit sha1_base64="aZSr3ZZUTH7Hpao+g0NrQ0Bpy/s=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lKQY8FLx4rWltoQ9lsJ+3SzSbsboQS+hO8eFAQr/4hb/4bt2kO2vpg4PHeDDPzgkRwbVz32yltbG5t75R3K3v7B4dH1eOTRx2nimGHxSJWvYBqFFxix3AjsJcopFEgsBtMbxZ+9wmV5rF8MLME/YiOJQ85o8ZK98mwMazW3Lqbg6wTryA1KNAeVr8Go5ilEUrDBNW677mJ8TOqDGcC55VBqjGhbErH2LdU0gi1n+WnzsmFVUYkjJUtaUiu/p7IaKT1LApsZ0TNRK96C/E/r5+a8NrPuExSg5ItF4WpICYmi7/JiCtkRswsoUxxeythE6ooMzadig3BW315nXQbda9Z97y7Zq3lFnmU4QzO4RI8uIIW3EIbOsBgDM/wCm+OcF6cd+dj2VpyiplT+APn8weSNo3A</latexit>p2
<latexit sha1_base64="Mm0EgHc5VJ3QyZuywBTCJj3NwIM=">AAAB7HicbVBNSwMxEJ2tX7V+VT16CRbRU9lIoR4LXjxWsLbQLiWbZtvQJLskWaEs/QtePCiIV3+QN/+N2XYP2vpg4PHeDDPzwkRwY33/2yttbG5t75R3K3v7B4dH1eOTRxOnmrIOjUWseyExTHDFOpZbwXqJZkSGgnXD6W3ud5+YNjxWD3aWsECSseIRp8TmUnI5xMNqza/7C6B1ggtSgwLtYfVrMIppKpmyVBBj+thPbJARbTkVbF4ZpIYlhE7JmPUdVUQyE2SLW+fowikjFMXalbJoof6eyIg0ZiZD1ymJnZhVLxf/8/qpjW6CjKsktUzR5aIoFcjGKH8cjbhm1IqZI4Rq7m5FdEI0odbFU3Eh4NWX10n3uo4bdYzvG7WWX+RRhjM4hyvA0IQW3EEbOkBhAs/wCm+e9F68d+9j2VryiplT+APv8wfxm43w</latexit>

p01

Figure 3: Path Classification Example

4.2 Path Classification

Following the previous path generation method, suppose the short-

est path is 𝑝1 = ⟨𝑠, . . . , 𝑢, 𝑣, . . . , 𝑡⟩ and we have generated a new

path 𝑝2 = 𝑝𝑠→𝑤 ⊕ (𝑤, 𝑣) ⊕ 𝑝𝑣→𝑡 by deviating from (𝑤, 𝑣) with the

smallest deviation cost, as illustrated in Figure 3. Apparently, 𝑝1
and 𝑝2 share the same sub-path 𝑝𝑣→𝑡 , and they are the shortest

and the second shortest paths among all the paths ending with

𝑝𝑣→𝑡 , which we can regard as a class of paths. Consequently, we

generalize this notion and define the path class below.

Definition 5. (Path Classification). A path class 𝐶𝑝𝑣→𝑡
con-

tains all the paths from 𝑠 to 𝑡 that share the same sub-path 𝑝𝑣→𝑡 .

Because the path classes are denoted by 𝑝𝑣→𝑡 , we can also say

these classes are represented by their fixed part when generated,

and this is the reason why we call it fixed part. Whenever we

generated a new path by deviation and concatenation, we have

created a new class of paths from the previous one. Specifically,

if 𝑝𝑣→𝑡 is the sub-path of 𝑝𝑢→𝑡 , then 𝐶𝑝𝑣→𝑡
is the ancestor class

of 𝐶𝑝𝑢→𝑡
. If 𝑝𝑢→𝑡 = (𝑢, 𝑣) ⊕ 𝑝𝑣→𝑡 , then 𝐶𝑝𝑣→𝑡

is the parent class

of 𝐶𝑝𝑢→𝑡
. For the shortest path 𝑝1 with |𝑝1 | edges, it has |𝑝1 | path

classes with a chain of “parent-children” relation and the class of the

last edge is the ancestor of them all. In addition,𝐶 ⟨𝑡 ⟩ is the ancestor
of all the possible classes. Suppose 𝑡 has 𝑘 in-neighbors {𝑣1, . . . , 𝑣𝑘 },
then 𝐶 ⟨𝑣1,𝑡 ⟩, . . . ,𝐶 ⟨𝑣𝑘 ,𝑡 ⟩ are the 𝑘 sub-path classes that cover the

entire path space, with the shortest path 𝑝1 belonging to one of

them. Therefore, enumerating the next shortest path is equivalent

to finding the next shortest one among all these 𝑘 sub-path classes.

4.3 Diversified 𝑘-Path Enumeration

Now we are ready to present how to enumerate the diversified

𝑘-path. Firstly, the shortest path 𝑝1 contains a series of path classes

if we keep adding the edges of 𝑝1 reversely from 𝑡 back to 𝑠 . For

simplicity, we change the path class’s naming rule from the per-

spective of the fixed part to the perspective of the path ID. Specif-

ically, we denote sub-classes covered by the shortest path 𝑝1 as

𝐶1 = {𝐶1

1
, . . . ,𝐶𝑘

1
} as shown in Figure 3-(b), with𝐶1

1
being the same

as the previous𝐶 ⟨𝑡 ⟩ ,𝐶
2

1
being𝐶 ⟨𝑡−1,𝑡 ⟩ , and etc. The relations of the

path classes in 𝐶1 have the following two properties:

Property 1. Consecutive Coverage Property: ∀1 ≤ 𝑖 < 𝑗 ≤ 𝑘 ,
𝐶𝑖
1
covers the sub-spaces of 𝐶 𝑗

1
.

Proof. 𝐶𝑖
1
’s fixed part is a sub-path of 𝐶

𝑗

1
’s fixed part. □

Property 2. Complete Coverage Property:𝐶1 covers the entire
path space.

Proof. Because𝐶1

1
is the same as𝐶 ⟨𝑡 ⟩ , then𝐶

1

1
∈ 𝐶1 covers the

complete path space. □

The 2
𝑛𝑑

Shortest Path. Because of the Property 2, if we can

find the local shortest path for each of these sub-classes in𝐶1, then

the global second shortest path is the shortest one among them

all. In the Yen’s-based (or search-based) methods, these sub-class

shortest paths are found by graph search, which is intolerably time-

consuming. Fortunately, because we have already computed the

deviation cost of 𝑝1’s in-neighbors, we can utilize them to avoid

graph searching. Specifically, for any sub-class 𝐶
𝑗

1
, suppose it has

a set of in-neighbors {𝑣 𝑗−1, 𝑣1𝑖 , 𝑣
2

𝑖
, . . . , 𝑣𝑘

𝑖
}. Then the deviation cost

of (𝑣 𝑗−1, 𝑣 𝑗) is 0 because it is on 𝑝1, and we do not consider it. As

for the remaining in-neighbors, each of them also corresponds to a

sub-class, and their shortest distance can be retrieved in constant

time by adding their deviation cost with 𝑑 (𝑝1). Because they all

share the same 𝑑 (𝑝1), then the one with the smallest deviation cost

is the next shortest path of 𝐶
𝑗

1
. If we select the smallest one among

all the in-neighbors of 𝑝1, then we are guaranteed to find the next

shortest path in 𝐶1, which is also the global next shortest.

The 3
𝑟𝑑

Shortest Path. Suppose𝐶
𝑗

1
generates the second short-

est path 𝑝2 from 𝑣 𝑗 by connecting to 𝑝𝑠→𝑣𝑖 via (𝑣𝑖 , 𝑣 𝑗). Since the
in-neighbor (𝑣𝑖 , 𝑣 𝑗) has been used in 𝐶1, it will not be selected

again (otherwise, we will keep generating the same 𝑝2 again and

again). Therefore, we have to introduce another set of path classes

that have the same common fixed part 𝑝 (𝑣𝑖 ,𝑣𝑗)→𝑡 , and call them

𝐶2 = {𝐶1

2
, . . . ,𝐶𝑚

2
} as they are generated from 𝑝2. An example is

illustrated in Figure 3-(b). Now that 𝐶1 and 𝐶2 have covered the

entire path space, so the next shortest path exists in 𝐶1 ∪𝐶2, and
we can find the next shortest paths from both of 𝐶1 and 𝐶2.

The (𝑗 + 1)𝑡ℎ Shortest Path. Suppose we have obtained the

(𝑗 + 1)𝑡ℎ shortest path 𝑝 𝑗+1 as shown in Figure 3-(c). During the

generation, we had the path classes𝐶1∪· · ·∪𝐶 𝑗 and found the next

shortest one for each of them. Among these next shortest paths,

suppose𝐶 𝑗 ’s path is chosen as the next one, and we now have a new

set of path classes 𝐶1 ∪ · · · ∪𝐶 𝑗 ∪𝐶 𝑗+1, and the next shortest path

is the shortest one among them. We can put these path classes into

three categories: 1) 𝐶 𝑗+1 is the newest set of classes that have not
derived any new paths yet; 2)𝐶 𝑗 is the class that has just used𝐶 𝑗+1
as its next shortest one and has not found the next of its next path;

3) All the remaining classes have their shortest paths generated

but not selected in the previous round. Therefore, we only need to

find the shortest paths from 𝐶 𝑗+1 and 𝐶 𝑗 to make sure all the path

classes have their shortest path generated.

Loop Detection. Finally, each time we concatenate to the SPT

via a deviate edge, the position relation between the SPT and the

path’s fixed part is uncontrollable, and sometimes it may create

loops. The SPT branches can be divided into only three categories

depending on the location of the SPT as illustrated in Figure 4-(b):

(1) Loopless Branch: The SPT branches that originating from

𝑝2’s SPT part (grey);

(2) Fixed Loop Branch: The vertices on 𝑝2’s fixed part;

3203

𝑚

𝑣𝑣

𝑝!
𝑡

𝑠

𝑡

(a)

𝑢

𝑤

𝑛

𝑠

𝑡
𝑝"

𝑢

𝑤

𝑠

𝑝′#

𝑚

𝑣

𝑠

𝑡

𝑢

𝑤

𝑛

𝑝′′#

𝑞

𝑝′′! Components
𝑆𝑃𝑇: 𝑠 → 𝑤 → 𝑢 → 𝑞 → 𝑛
𝐹𝑖𝑥𝑒𝑑: 𝑛 → 𝑚 → 𝑣 → 𝑢 → 𝑞 → 𝑡

𝑝′! Components
𝑆𝑃𝑇: 𝑠 → 𝑤 → 𝑢 → 𝑛
𝐹𝑖𝑥𝑒𝑑: 𝑛 → 𝑚 → 𝑣 → 𝑢 → 𝑛 → 𝑡

(b) (d) (e)

𝑚

𝑣

𝑠

𝑡

𝑢

𝑤
𝑛

𝑝#
(c)

𝑝! Components
𝑆𝑃𝑇: 𝑠 → 𝑤′ → 𝑛
𝐹𝑖𝑥𝑒𝑑: 𝑛 → 𝑚 → 𝑣 → 𝑢 → 𝑡

𝑤′Loopless	
Branch

Loop	
Branch

Figure 4: Loop Example. Fixed Parts are Shadowed in Green.

(3) Non-Fixed Branch: The SPT branches that originating from

𝑝2’s fixed part (red).

Then depending on which branch the deviate edge connects to,

we can have the following path types:

(1) Loopless Path: If the deviate edge connects to the loopless
branch, then the generated path has no loop, so it is safe to

use as a candidate;

(2) Fixed Loop Path: If the deviate edge connects to the fixed loop
branch, the generated path has a loop, and this loop exists in
the fixed part. Because the fixed part won’t be changed, the

loop will exist in all the paths it generates. Thus, it cannot

be a candidate and cannot be used to generate new paths;

(3) Non-Fixed Loop Path: If the deviate edge connects to the

non-fixed loop branch, the generated path has a loop, but

the loop is not in the fixed part. It cannot be a candidate,

but it still has a chance to generate a loopless path. The

branch from the fixed part to the deviate edge is the last

chance to break the loop.

For example in Figure 4, (a) is the shortest path 𝑝1 from 𝑠 to 𝑡 , (b) is

the second shortest path 𝑝2 (blue) deviates from 𝑢 and connected to

SPT on 𝑣 , and (c) is the third shortest path from 𝑝2 that has no loop.

(d) and (e) are the third shortest path 𝑝3 that generated from 𝑝2’s

SPT part 𝑠 → 𝑤 → 𝑣 . Suppose in (d), the deviate vertex𝑚 connects

to 𝑛, which is the end of the SPT part 𝑠 → 𝑤 → 𝑢 → 𝑛, and also

on the fixed part 𝑛 →𝑚 → 𝑣 → 𝑢 → 𝑛 → 𝑡 . Therefore, 𝑛 appears

twice in the fixed part and creates a fixed loop in 𝑝3. When 𝑛 does

not appear in the fixed part, it can still create a loop as shown in (e):

the SPT part 𝑠 → 𝑤 → 𝑢 → 𝑞 → 𝑛 has an overlapping segment

𝑢 → 𝑞 with the fixed part 𝑛 →𝑚 → 𝑣 → 𝑢 → 𝑞 → 𝑡 , thus creates

a loop from 𝑞 to 𝑞. However, as this loop does not entirely exist in

the fixed part, there is still a chance to break it. Specifically, if we

deviate anywhere from the subpath 𝑞 → 𝑛 and connect to another

branch of the SPT, we could break this loop. On the other hand, if

deviate anywhere from the subpath 𝑠 → 𝑤 → 𝑢 → 𝑞, this loop

would become fixed and persists in the path, which generates a

fixed loop path. In fact, we can view (d) as a special case of (e), with

the subpath 𝑞 → 𝑛 has no edge (𝑞 and 𝑛 are the same vertex). In

summary, the subpath 𝑞 → 𝑛 is the last chance to get rid of this

non-fixed loop, and we can prune all the deviate edges in subpath

𝑠 → 𝑤 → 𝑢 → 𝑞.

The details of the diversified 𝑘-Path enumeration are shown in

Algorithm 2. Firstly, we use a heap 𝐻 to organize all the candidate

paths in the length-increasing order and use a set of heaps 𝐷 to

organize the deviation edges of each path in the deviation cost

increasing order. Each path 𝑝 in 𝐻 has a parent path 𝑝.𝑝𝑎𝑟𝑒𝑛𝑡 that

generates 𝑝 except for the first shortest path. During each iteration,

we pop out the top path 𝑝𝑡𝑜𝑝 from 𝐻 as the next candidate path.

If it has no non-fixed loop, then we further compute its similarity

with the paths in the result set. If its similarities are smaller than

𝜏 , then we add it to the result set. After that, we generate two

more candidate from 𝑝𝑡𝑜𝑝 and its parent path 𝑝𝑡𝑜𝑝 .𝑝𝑎𝑟𝑒𝑛𝑡 . This

corresponds to the previous path classes 𝐶 𝑗 and 𝐶 𝑗+1. Then for

each path 𝑝 of these two paths, we test their next path by deviating

from the smallest edge (𝑢, 𝑣) in their deviation heap 𝐷 [𝑝]. The new
paths is formed by concatenating 𝑝𝑠→𝑢 , (𝑢, 𝑣), and 𝑝𝑣→𝑡 . After that,

we test the existence of the fixed loop. Specifically, if 𝑢 exists in

the fixed part 𝑝𝑣→𝑡 , then it contains a fixed loop so we can drop it

and test the next shortest one. This procedure runs on until a path

𝑝 ′ that has no fixed loop is found. Because 𝑝 generates 𝑝 ′, we set
𝑝 ′.𝑝𝑎𝑟𝑒𝑛𝑡 as 𝑝 . Then if 𝑝 ′ has no loop, we put all the deviate edges

along path 𝑝𝑠,𝑢 to its deviation heap 𝐷 [𝑝 ′]. Otherwise, we only
need to put the deviate edges along the subpath 𝑝𝑞→𝑢 that do not

create a fixed loop into 𝐷 [𝑝 ′]. The enumeration process terminates

when 𝑘 diversified results are obtained or 𝐻 is empty.

Algorithm 2: Diversified 𝑘-Path Enumeration

Input: Graph𝐺 , OD Pair (𝑠, 𝑡) , 𝑘 , 𝜏 , Similarity Function 𝑆

Output: Diversified Top-𝑘 Shortest Paths 𝑃𝑠,𝑡
1 𝐻.𝑖𝑛𝑠𝑒𝑟𝑡 (𝑝) ; //𝑝 is the shortest path, 𝐻 is a min-heap

2 𝐷 [𝑝] .𝑖𝑛𝑠𝑒𝑟𝑡 (𝐸𝑝

𝐷
) ; //𝐷 [𝑝] is a min-heap for 𝐸

𝑝

𝐷

3 while |𝑃𝑠,𝑡 | < 𝑘 and !𝐻.𝑒𝑚𝑝𝑡𝑦 () do
4 𝑝𝑡𝑜𝑝 ← 𝐻.𝑝𝑜𝑝 () ;
5 if 𝑝𝑡𝑜𝑝 has no loop and 𝑆 (𝑃𝑠,𝑡 , 𝑝𝑡𝑜𝑝) ≤ 𝜏 then

6 𝑃𝑠,𝑡 ← 𝑃𝑠,𝑡 ∪ {𝑝𝑡𝑜𝑝 };
7 foreach 𝑝 ∈ {𝑝𝑡𝑜𝑝 , 𝑝𝑡𝑜𝑝 .𝑝𝑎𝑟𝑒𝑛𝑡 } do
8 (𝑢, 𝑣) ← 𝐷 [𝑝] .𝑝𝑜𝑝 () ; 𝑝′ ← 𝑝𝑠→𝑢 ⊕ (𝑢, 𝑣) ⊕ 𝑝𝑣→𝑡 ;

9 𝑝′.𝑝𝑎𝑟𝑒𝑛𝑡 ← 𝑝 ; 𝐻.𝑖𝑛𝑠𝑒𝑟𝑡 (𝑝′) ; 𝑝𝑡𝑚𝑝 ← (𝑢, 𝑣) ⊕ 𝑝𝑣→𝑡 ;

10 while 𝑣 ∈ 𝑉 do

11 𝑝𝑡𝑚𝑝 ← 𝑣 ⊕ 𝑝𝑡𝑚𝑝 ;

12 for (𝑣′, 𝑣) ∈ 𝐸𝐷 do

13 if 𝑣′ ∉ 𝑝𝑡𝑚𝑝 then

14 𝐷 [𝑝′] .𝑖𝑛𝑠𝑒𝑟𝑡 ((𝑣′, 𝑣)) ;

15 𝑣 ← 𝑣′𝑠 parent in SPT;

16 return 𝑃𝑠,𝑡 ;

Theorem 1. Algorithm 2 can find the approximate diversified
top-𝑘 paths.

Proof. Firstly, each time 𝑝 and 𝑝’s parent path find their next

shortest path and put them into 𝐻 , so 𝐻 contains all the shortest

paths from all the current sub-classes. Therefore, the next shortest

path popped from 𝐻 is the global next shortest path. Secondly, the

similarity test follows the procedure in Algorithm 1. Therefore,

Algorithm 2 can find the approximate diversified top-𝑘 paths. □

Complexity. Each path has at most |𝐸 | deviation edges and orga-

nizing them take 𝑂 (|𝐸 | log |𝐸 |) time. For the shortest path gener-

ation, suppose we have tested 𝛼 paths, then we need to gener-

ate 2𝛼 paths while at most 𝛼 shortest paths exist in 𝐻 . Together

with the SPT construction and the similarity computation that cost

𝑂 (𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦), the total time complexity is 𝑂 (|𝑉 | log |𝑉 | + |𝐸 | +
2𝛼 × |𝐸 | log |𝐸 | + 𝛼 log𝛼 + 𝑘𝛼 × 𝑂 (𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦)) = 𝑂 (|𝑉 | log |𝑉 | +
𝛼 (|𝐸 | log |𝐸 | + log𝛼 +𝑘 ×𝑂 (𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦))). The space complexity is

𝑂 (𝛼 |𝐸 | log |𝐸 | + 𝛼 log𝛼).

3204

5 EFFICIENT PATH SIMILARITY

In this section, we present a faster path similarity computation

method that utilizes the structure information of SPT and the gen-

eration relations of the paths. In the following, Section 5.1 discusses

how to compute the similarity in the existing works, and Section

5.2 presents the framework of our similarity computation method.

After that, Section 5.3 describes how to compute the similarity of

SPT part, and Section 5.4 and 5.5 presents how to compute the sim-

ilarity of the remaining parts compared with the first shortest path

and the other results, respectively. Section 5.6 provides a pruning

technique for 𝑆5.

5.1 Baseline Similarity Computation

As presented in Section 3.2, given any two paths 𝑝𝑖 and 𝑝 𝑗 , the

five similarity functions are the computed values over 𝑑 (𝑝𝑖), 𝑑 (𝑝 𝑗),
𝑑 (𝑝𝑖∩𝑝 𝑗), and𝑑 (𝑝𝑖∪𝑝 𝑗) in constant time.With𝑑 (𝑝𝑖) and𝑑 (𝑝 𝑗) are
known, and𝑑 (𝑝𝑖∪𝑝 𝑗) can be computed by𝑑 (𝑝𝑖)+𝑑 (𝑝 𝑗)−𝑑 (𝑝𝑖∩𝑝 𝑗),
computing 𝑑 (𝑝𝑖 ∩ 𝑝 𝑗) is at the core of the similarity computation.

The straightforward way to compute 𝑑 (𝑝𝑖 ∩𝑝 𝑗) is comparing edges

of the two paths in nested loop, but its 𝑂 (𝑛2) time complexity

becomes a performance bottleneck especially when path is long.

A better way is putting each result path into a hash map, and we

only need to loop over the current candidate path and test if its

edges exist in the hasp map. Although the time complexity drops

to 𝑂 (𝑛), it is still not efficient enough as we might have hundreds

of thousands of such computations during enumeration.

5.2 Similarity Computation Framework

To reduce the path intersection length computation, we propose a

method that can avoid comparing the edges by utilizing the infor-

mation generated during the enumeration. As explained in Section

4.1, each newly generated path is made up of two parts: SPT part
and fixed part. Then we can split the path intersection computation

into these two parts separately.

Specifically, each time we generate a new path 𝑝𝑖 , we connect

to a new SPT branch via a deviate edge, and this SPT branch is

𝑝𝑖 ’s SPT part. Then the next time we generate a path 𝑝 𝑗 from

𝑝𝑖 , we deviate from 𝑝𝑖 ’s SPT part via another deviate edge and

connect to another SPT branch, and this branch is 𝑝 𝑗 ’s SPT part.

Therefore, the paths generated by Algorithm 2 is made up of a

series of SPT segments connected by non-SPT (deviate) edges. For

example, Figure 5 shows four paths, and each is generated from the

previous one. Therefore, 𝑝1 is the shortest path and it is entirely on

the SPT. 𝑝2 has one deviated edge, 𝑝3 has two, and 𝑝4 has three. The

SPT parts are labeled in yellow, and the remaining parts are the fixed

part. Because the intersection of the SPT parts is always on the SPT

and irrelevant to the deviate edges, we can compute the intersection

only with SPT’s information in 𝑂 (1) time, and we will discuss it

first separately. As for the fixed part intersection, the new paths

inherit the fixed parts of their parents and the ancestors, so we can

utilize this inheritance information to avoid repeated computation

and also reduce the average computation time to constant. Because

the shortest path is every path’s ancestor, we discuss this special

case first and then present how to compute the other result path’s

fixed intersections.

𝑠

𝑡

Deviate Edge
SPT Edge
SPT Part

𝑢!

𝑢"

𝑢#

𝑣!

𝑣"

𝑣#

𝑤!

𝑤"

𝑤#

𝑝!: 𝑠 → 𝑤# → 𝑤" → 𝑤! → 𝑡
𝑝": 𝑠 → 𝑤# → 𝑤" → 𝑤! → 𝑢" → 𝑣!→ 𝑢! → 𝑡
𝑝#: 𝑠 → 𝑤# → 𝑤" → 𝑢# → 𝑣" → 𝑢" → 𝑣! → 𝑢! → 𝑡
𝑝$: 𝑠 → 𝑤# → 𝑣# → 𝑢# → 𝑣" → 𝑢" → 𝑣! → 𝑢! → 𝑡

Underlying SPT

Figure 5: Path Components

5.3 SPT Part Intersection

Before we dig into the SPT part intersection, we first define Lowest
Common Ancestor (LCA) that is at the core of this part:

Definition 6. Lowest Common Ancestor (LCA). Given an
SPT, the LCA of two vertices 𝑢 and 𝑣 is the lowest vertex that has both
𝑢 and 𝑣 as descendants.

Let’s still use Figure 5 as the example. The SPT part intersection

between 𝑝1 and 𝑝2 is 𝑃𝑠→𝑤1
, and𝑤1 is the LCA of 𝑡 and 𝑣1 on the

SPT. Similarly, the SPT part intersection between 𝑝1 and 𝑝3 is 𝑃𝑠→𝑤2

with 𝑤2 being the LCA of 𝑡 and 𝑣2, and the SPT part intersection

between 𝑝1 and 𝑝4 is 𝑃𝑠→𝑤3
with 𝑤3 being the LCA of 𝑡 and 𝑣3.

Therefore, we have the following theorem to summarize and prove

this observation:

Theorem 2. Given any two paths 𝑝𝑖 and 𝑝 𝑗 with 𝑣𝑖 and 𝑣 𝑗 being
their corresponding last points of SPT part, the length of their SPT
part intersection equals to the length from 𝑠 to the LCA𝑤 of 𝑣𝑖 and
𝑣 𝑗 on the SPT.

Proof. Firstly, because 𝑤 is the LCA, then 𝑝𝑠→𝑤 shared by

𝑝𝑠→𝑣𝑖 and 𝑝𝑠→𝑣𝑗 . Secondly, there is no intersection between 𝑝𝑤→𝑣𝑖

and 𝑝𝑤→𝑣𝑗 , because it eithermeans𝑤 is not the LCA, or some vertex

𝑤 ′ has two parents, which violates the structure of tree. Therefore,

𝑑 (𝑝𝑠→𝑤) is the SPT part intersection. □

Now the only remaining problem is how to find the LCA in

constant time. Because the SPT is static for each query, we build

a LCA index [5] after the SPT is constructed. As the construction

takes 𝑂 (|𝑉 |) time, it will not affect total enumeration complexity.

Besides, given any two vertices on SPT, this LCA index can find

the LCA vertex 𝑤 in 𝑂 (1) time. Then the length of the SPT part

intersection 𝑑 (𝑠 → 𝑤) can be retrieved from SPT in 𝑂 (1) time.

Finally, because the last vertex of the SPT part can also be retrieved

in𝑂 (1) time (previous vertex of the fixed part), the overall SPT part

intersection takes 𝑂 (1) time.

5.4 Fixed Part Similarity with the 1
𝑠𝑡
Path

Because the shortest path always exists in the result set and it is

the ancestor of all the other paths, we analyze and discuss it before

digging into the complex cases.

Firstly, we analyze the path relations with the help of Figure

6. Because 𝑝2 is always generated from 𝑝1 directly, its fixed part

intersection is always its parental part 𝑝𝑢1→𝑡 . As for the third path

𝑝3, it has three case depending on the locations of the deviation

vertex 𝑣2 and its origin:

3205

(1) If it is generated from 𝑝1, then it is essentially the same as

𝑝2 so 𝑑 (𝑝𝑢2→𝑡) is its fixed part intersection with 𝑝1;

(2) If it is generated from 𝑝2 but not on 𝑝2’s LCA intersection

part (𝑝𝑤1→𝑣1), then it fixed part intersection with 𝑝1 is the

same 𝑝2’s with 𝑝1;

(3) If it is generated from 𝑝2 and it is on 𝑝2’s LCA intersection

part, then its fixed intersection part consists of 𝑝𝑢2→𝑤1
and

𝑝2’s fixed intersection.

Although Case 2 has three sub-cases of different LCA locations

(𝑤1

2
,𝑤2

2
, and𝑤3

2
), they share the same fixed part intersection length

and LCA intersection.

𝑠

𝑡

𝑝!

𝑡

𝑝" Three cases of 𝑝#

𝑡

𝑢! 𝑣!

𝑤!

𝑠 𝑠

𝑡

𝑠

𝑡

𝑠

(1) (2) (3)

𝑢! 𝑣!

𝑤!

𝑢! 𝑣!

𝑤!

𝑢" 𝑣"

𝑤"

𝑢"

𝑣"
𝑤"! 𝑢" 𝑣"

𝑤"

𝑤""

𝑤"#

Figure 6: Path Relations with the First Shortest Path

Next, we generalize the observation above to the arbitrary gen-

erated path 𝑝𝑖 :

Theorem 3. Given a 𝑝𝑖 , its fixed intersection with 𝑝1 has and
only has three situations:

(1) 𝑝𝑖 is generated from 𝑝1 directly;
(2) 𝑝𝑖 is generated from some path 𝑝 𝑗 and the deviation vertex is

not on 𝑝 𝑗 ’s LCA part with 𝑝1;
(3) 𝑝𝑖 is generated from some path 𝑝 𝑗 and the deviation vertex is

on 𝑝 𝑗 ’s LCA part with 𝑝1;

Proof. Because 𝑝𝑖 is either generated by 𝑝1 or not by 𝑝1, then

Case 1 covers the "by 𝑝1" case. As for the second "not by 𝑝1" case,

𝑝𝑖 can only be deviated from 𝑝 𝑗 ’s SPT part, which is made up of

the LCA intersection part (Case 3) and the non-intersection part

(Case 2). Therefore, these three cases cover all the situations. □

Now we are ready to describe how to compute the fixed part of

these three cases. For Case 1, 𝑝𝑖 ’s parent part is its fixed intersection
with 𝑝1. For Case 2, we can inherit its parent path 𝑝 𝑗 ’s fixed inter-

section length directly as no new overlapping with 𝑝1 is introduced.

For Case 3, because the deviation happens on 𝑝 𝑗 ’s LCA intersection

part, the path from the deviation vertex to the LCA of 𝑝1 and 𝑝 𝑗 is

the new overlapping area of the fixed part. Therefore, apart from

inheriting its parent’s fixed part intersection, we also add its new

intersection length with the help of SPT. The complexity is 𝑂 (1).

5.5 Fixed Part Similarity with the Other Paths

Nowwe discuss how to compute the fixed part intersection between

any two paths. Because the paths are always generated from the

previous paths, the relations of the paths form a tree structure

as shown in Figure 7-(a). For any two paths, they either have an

ancestor-descendant relation or not. Therefore, we discuss how to

deal with these two cases in the following.

𝑠

𝑡

Deviate Edge
SPT Edge
SPT Part

𝑢!

𝑢"

𝑢#

𝑣!

𝑣"

𝑣#

𝑤!

𝑤"

𝑤#

𝑝!: 𝑠 → 𝑤# → 𝑤" → 𝑤! → 𝑡
𝑝": 𝑠 → 𝑤# → 𝑤" → 𝑤! → 𝑢" → 𝑣!→ 𝑢! → 𝑡
𝑝#: 𝑠 → 𝑤# → 𝑤" → 𝑢# → 𝑣" → 𝑢" → 𝑣! → 𝑢! → 𝑡
𝑝$: 𝑠 → 𝑤# → 𝑣# → 𝑢# → 𝑣" → 𝑢" → 𝑣! → 𝑢! → 𝑡

Underlying SPT

𝑠

𝑡

𝑝! 𝑝"𝑝#𝑝$𝑝%𝑝&

𝑡 𝑝"

𝑡
𝑢!
𝑣!

𝑤!
𝑢"

𝑣"
𝑤"

𝑠

𝑢#

𝑣#

𝑤#

𝑢$
𝑣$

𝑤$

𝑢%
𝑣%

𝑤%
<latexit sha1_base64="9d16hj57oFJD6/YA+IxodSzH64c=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI8FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpIRl4g3LFrboLkHXi5aQCOZqD8ld/GLM0QmmYoFr3PDcxfkaV4UzgrNRPNSaUTegIe5ZKGqH2s8WpM3JhlSEJY2VLGrJQf09kNNJ6GgW2M6JmrFe9ufif10tNeONnXCapQcmWi8JUEBOT+d9kyBUyI6aWUKa4vZWwMVWUGZtOyYbgrb68TtpXVa9erd3XKg03j6MIZ3AOl+DBNTTgDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzifP/z1jY8=</latexit>p1
<latexit sha1_base64="9d16hj57oFJD6/YA+IxodSzH64c=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI8FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpIRl4g3LFrboLkHXi5aQCOZqD8ld/GLM0QmmYoFr3PDcxfkaV4UzgrNRPNSaUTegIe5ZKGqH2s8WpM3JhlSEJY2VLGrJQf09kNNJ6GgW2M6JmrFe9ufif10tNeONnXCapQcmWi8JUEBOT+d9kyBUyI6aWUKa4vZWwMVWUGZtOyYbgrb68TtpXVa9erd3XKg03j6MIZ3AOl+DBNTTgDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzifP/z1jY8=</latexit>p1

<latexit sha1_base64="Dhzxa979lCP8RA9zuRQuA/Wp+F4=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeCF48V7Ae0oWy2m3bp7ibsToQS+he8eFDEq3/Im//GpM1BWx8MPN6bYWZeEEth0XW/ndLG5tb2Tnm3srd/cHhUPT7p2CgxjLdZJCPTC6jlUmjeRoGS92LDqQok7wbTu9zvPnFjRaQfcRZzX9GxFqFgFHMpHjYqw2rNrbsLkHXiFaQGBVrD6tdgFLFEcY1MUmv7nhujn1KDgkk+rwwSy2PKpnTM+xnVVHHrp4tb5+QiU0YkjExWGslC/T2RUmXtTAVZp6I4sateLv7n9RMMb/1U6DhBrtlyUZhIghHJHycjYThDOcsIZUZktxI2oYYyzOLJQ/BWX14nnau6d11vPDRqTbeIowxncA6X4MENNOEeWtAGBhN4hld4c5Tz4rw7H8vWklPMnMIfOJ8/NqONpg==</latexit>p4
<latexit sha1_base64="Dhzxa979lCP8RA9zuRQuA/Wp+F4=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeCF48V7Ae0oWy2m3bp7ibsToQS+he8eFDEq3/Im//GpM1BWx8MPN6bYWZeEEth0XW/ndLG5tb2Tnm3srd/cHhUPT7p2CgxjLdZJCPTC6jlUmjeRoGS92LDqQok7wbTu9zvPnFjRaQfcRZzX9GxFqFgFHMpHjYqw2rNrbsLkHXiFaQGBVrD6tdgFLFEcY1MUmv7nhujn1KDgkk+rwwSy2PKpnTM+xnVVHHrp4tb5+QiU0YkjExWGslC/T2RUmXtTAVZp6I4sateLv7n9RMMb/1U6DhBrtlyUZhIghHJHycjYThDOcsIZUZktxI2oYYyzOLJQ/BWX14nnau6d11vPDRqTbeIowxncA6X4MENNOEeWtAGBhN4hld4c5Tz4rw7H8vWklPMnMIfOJ8/NqONpg==</latexit>p4

<latexit sha1_base64="Vg75z+7LMWJPdquZ2cZPz6XiozE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY8FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpIRnUBuWKW3UXIOvEy0kFcjQH5a/+MGZphNIwQbXueW5i/Iwqw5nAWamfakwom9AR9iyVNELtZ4tTZ+TCKkMSxsqWNGSh/p7IaKT1NApsZ0TNWK96c/E/r5ea8MbPuExSg5ItF4WpICYm87/JkCtkRkwtoUxxeythY6ooMzadkg3BW315nbRrVe+qWr+vVxpuHkcRzuAcLsGDa2jAHTShBQxG8Ayv8OYI58V5dz6WrQUnnzmFP3A+fwD+eY2Q</latexit>p2
<latexit sha1_base64="Vg75z+7LMWJPdquZ2cZPz6XiozE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY8FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpIRnUBuWKW3UXIOvEy0kFcjQH5a/+MGZphNIwQbXueW5i/Iwqw5nAWamfakwom9AR9iyVNELtZ4tTZ+TCKkMSxsqWNGSh/p7IaKT1NApsZ0TNWK96c/E/r5ea8MbPuExSg5ItF4WpICYm87/JkCtkRkwtoUxxeythY6ooMzadkg3BW315nbRrVe+qWr+vVxpuHkcRzuAcLsGDa2jAHTShBQxG8Ayv8OYI58V5dz6WrQUnnzmFP3A+fwD+eY2Q</latexit>p2

<latexit sha1_base64="HjYDyD7/9Gmj0HqjK2DNljJ67Zg=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0qMeCF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh6R/2S9X3Ko7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+6pScWWVAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uwxs/EypJkSu2WBSmkmBMZn+TgdCcoZxYQpkW9lbCRlRThjadkg3BW355lbQuqt5VtXZfq9TdPI4inMApnIMH11CHO2hAExgM4Rle4c2Rzovz7nwsWgtOPnMMf+B8/gAADI2R</latexit>p3
<latexit sha1_base64="HjYDyD7/9Gmj0HqjK2DNljJ67Zg=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0qMeCF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh6R/2S9X3Ko7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+6pScWWVAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uwxs/EypJkSu2WBSmkmBMZn+TgdCcoZxYQpkW9lbCRlRThjadkg3BW355lbQuqt5VtXZfq9TdPI4inMApnIMH11CHO2hAExgM4Rle4c2Rzovz7nwsWgtOPnMMf+B8/gAADI2R</latexit>p3

<latexit sha1_base64="8toZ8kjfIdv95+9iVX/X8r/feMU=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0nEr2PBi8cK9gPaUDbbSbt0dxN2N0IJ/QtePCji1T/kzX9j0uagrQ8GHu/NMDMviAU31nW/ndLa+sbmVnm7srO7t39QPTxqmyjRDFssEpHuBtSg4ApblluB3VgjlYHATjC5y/3OE2rDI/VopzH6ko4UDzmjNpfiwVVlUK25dXcOskq8gtSgQHNQ/eoPI5ZIVJYJakzPc2Prp1RbzgTOKv3EYEzZhI6wl1FFJRo/nd86I2eZMiRhpLNSlszV3xMplcZMZZB1SmrHZtnLxf+8XmLDWz/lKk4sKrZYFCaC2Ijkj5Mh18ismGaEMs2zWwkbU02ZzeLJQ/CWX14l7Yu6d12/fLisNdwijjKcwCmcgwc30IB7aEILGIzhGV7hzZHOi/PufCxaS04xcwx/4Hz+ADgojac=</latexit>p5
<latexit sha1_base64="8toZ8kjfIdv95+9iVX/X8r/feMU=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0nEr2PBi8cK9gPaUDbbSbt0dxN2N0IJ/QtePCji1T/kzX9j0uagrQ8GHu/NMDMviAU31nW/ndLa+sbmVnm7srO7t39QPTxqmyjRDFssEpHuBtSg4ApblluB3VgjlYHATjC5y/3OE2rDI/VopzH6ko4UDzmjNpfiwVVlUK25dXcOskq8gtSgQHNQ/eoPI5ZIVJYJakzPc2Prp1RbzgTOKv3EYEzZhI6wl1FFJRo/nd86I2eZMiRhpLNSlszV3xMplcZMZZB1SmrHZtnLxf+8XmLDWz/lKk4sKrZYFCaC2Ijkj5Mh18ismGaEMs2zWwkbU02ZzeLJQ/CWX14l7Yu6d12/fLisNdwijjKcwCmcgwc30IB7aEILGIzhGV7hzZHOi/PufCxaS04xcwx/4Hz+ADgojac=</latexit>p5

<latexit sha1_base64="er+l0tZiyeym+rVg7VpHzp9rt50=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseCF48V7Ae0oWy2m3bp7ibsToQS+he8eFDEq3/Im//GpM1BWx8MPN6bYWZeEEth0XW/ndLG5tb2Tnm3srd/cHhUPT7p2CgxjLdZJCPTC6jlUmjeRoGS92LDqQok7wbTu9zvPnFjRaQfcRZzX9GxFqFgFHMpHjYqw2rNrbsLkHXiFaQGBVrD6tdgFLFEcY1MUmv7nhujn1KDgkk+rwwSy2PKpnTM+xnVVHHrp4tb5+QiU0YkjExWGslC/T2RUmXtTAVZp6I4sateLv7n9RMMb/1U6DhBrtlyUZhIghHJHycjYThDOcsIZUZktxI2oYYyzOLJQ/BWX14nnau616hfP1zXmm4RRxnO4BwuwYMbaMI9tKANDCbwDK/w5ijnxXl3PpatJaeYOYU/cD5/ADmtjag=</latexit>p6
<latexit sha1_base64="er+l0tZiyeym+rVg7VpHzp9rt50=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseCF48V7Ae0oWy2m3bp7ibsToQS+he8eFDEq3/Im//GpM1BWx8MPN6bYWZeEEth0XW/ndLG5tb2Tnm3srd/cHhUPT7p2CgxjLdZJCPTC6jlUmjeRoGS92LDqQok7wbTu9zvPnFjRaQfcRZzX9GxFqFgFHMpHjYqw2rNrbsLkHXiFaQGBVrD6tdgFLFEcY1MUmv7nhujn1KDgkk+rwwSy2PKpnTM+xnVVHHrp4tb5+QiU0YkjExWGslC/T2RUmXtTAVZp6I4sateLv7n9RMMb/1U6DhBrtlyUZhIghHJHycjYThDOcsIZUZktxI2oYYyzOLJQ/BWX14nnau616hfP1zXmm4RRxnO4BwuwYMbaMI9tKANDCbwDK/w5ijnxXl3PpatJaeYOYU/cD5/ADmtjag=</latexit>p6

(a) Path Relations (b) Top-6 Paths

𝑢, 𝑣 : Deviate Edges
𝑤: LCA with the parent

Figure 7: Path Relations with the Other Shortest Path

5.5.1 Ancestor-Descendant Relation. If we look at path relation

tree like the one in Figure 7, we can see that the shortest path

𝑝1 is the root of this tree. Now we generalize this observation to

any ancestral path 𝑝 𝑗 of 𝑝𝑖 , then 𝑝 𝑗 is the root of a sub-tree which

contains all its descendant paths. Then if we only focus on this

sub-tree, we can view 𝑝 𝑗 as the first shortest path of all the paths

in it. In this way, we can utilize fixed part Algorithm to find the

fixed intersection part. For example, 𝑝2 is 𝑝5’s ancestral path and

𝑝4 is 𝑝5’s parent path, so 𝑑𝑓 𝑖𝑥𝑒𝑑 (𝑝5 ∩ 𝑝2) is made up of two parts:

𝑑𝑓 𝑖𝑥𝑒𝑑 (𝑝4 ∩ 𝑝2) that inherited from 𝑝4, and the part 𝑑 (𝑝𝑢5→𝑤4
).

5.5.2 Non-Ancestor-Descendant Relation. If two paths do not have

an ancestor-descendant relation, we cannot use fixed part Algo-

rithm to compute it in 𝑂 (1) time. Nevertheless, we still have the

chance to reuse part of the existing results and reduce the compu-

tational cost. For example, 𝑝5 and 𝑝6 are two paths and not related

to each other. However, they have the same “LCA path" 𝑝2, so they

have intersect from𝑤2 to 𝑡 from 𝑝2. As for the remaining fixed part,

we use the hash linear scan to compute the intersection.

In the example of Figure 7, all the paths are regarded as the result.

However, in the D𝑘SP problem, only a small number of the results

are in 𝑃𝑠,𝑡 . Consequently, we only need to maintain the fixed part

result of 𝑝𝑖 to the paths in 𝑃𝑠,𝑡 . Furthermore, to determine the “LCA

path", we only need to maintain the “ancestral result path" together

with the parent path of each 𝑝𝑖 and use it to traverse back.

Strategy 1 (LCA Result Path Inheritance). If 𝑝𝑖 and
𝑝 𝑗 has no ancestor-descendant relation, then they share their LCA
result path 𝑝𝑘 ’s fixed part and the fixed intersection comparison can
start from 𝑝𝑘 ’s deviation vertex.

Besides, we also need to store the fixed intersection result of 𝑝𝑖
to all the results in 𝑃𝑠,𝑡 regardless of their relation to further reduce

the comparison size. For example, suppose we have computed the

fixed intersection between 𝑝4 and 𝑝3. Then we can compute 𝑝5 and

𝑝3’s based on 𝑝4’s result.

Strategy 2 (Parent Path Inheritance). If 𝑝𝑖 and 𝑝 𝑗 has
no ancestor-descendant relation, and 𝑝𝑖 ’s parent 𝑝𝑘 has computed its
fixed intersection with 𝑝 𝑗 . Then the fixed intersection comparison can
start from 𝑝𝑘 ’s deviation vertex.

Furthermore, as the new result path are created on the fly, the

older paths (parent paths) may have not computed their intersection

with new result so the Strategy 2 fails. For example, suppose 𝑝3 is

3206

generated after 𝑝2 so we do not have 𝑝2’s result with 𝑝3. Now if

𝑝2 generates 𝑝4, we have to compute only with Strategy 1. Then

if 𝑝2 generates 𝑝6 next, Strategy 2 still cannot be used as 𝑝2 as a

parent path still have no result with 𝑝3. However, when we compute

the intersections between 𝑝4 and 𝑝3, we have already covered 𝑝2’s

result. Therefore, we can also update 𝑝2’s intersection with 𝑝3 when

compute 𝑝4’s, such that 𝑝6 can inherit 𝑝2’s result now.

Strategy 3 (Parent Path Completion). If 𝑝𝑖 and 𝑝 𝑗 has
no ancestor-descendant relation, and 𝑝𝑖 ’s parent 𝑝𝑘 has not computed
its fixed intersection with 𝑝 𝑗 . Then after computing 𝑝𝑖 and 𝑝 𝑗 result
using Strategy 1, we also update 𝑝𝑘 ’s result.

With the above three strategies, we can inherit the existing

results and avoid the linear comparison as much as possible.

5.6 Path Enumeration Pruning

Due to the path enumeration nature, the paths are generated in the

length-increasing order. Therefore, the results are always shorter

and static, while the newly generated ones are longer and uncertain.

Among the five similarity functions, the first four are all dependent

on the newly generated paths, while the fifth one only depends on

the existing shorter paths. Therefore, the first four’s values could

become smaller as the new paths are generated, while the fifth one

is non-decreasing. Specifically, 𝑆𝑖𝑚5 has a strict length threshold

𝜏 × 𝑚𝑖𝑛(𝑑𝑝𝑖 , 𝑑𝑝 𝑗
). If a class of paths is guaranteed to be longer

𝑑 (𝑝𝑖 ∩ 𝑝 𝑗) than this threshold, we can discard them directly, and

this provides us a chance to reduce the path enumeration number.

𝑡𝑝!

𝑠

𝑝"

𝜃!

𝑢!

𝑣!𝑤!

𝑡
𝑝!

𝑠

𝑝"

𝜃"

𝑢!

𝑣!𝑤!
𝑢"

𝑣"
𝑤"

𝑝'

Extendible
Region

𝑟!

𝜏×𝑑(𝑟#)

𝑑(𝑝# ∩ 𝑟#)

𝑟" 𝑟'

𝜃#

(a) (b) (c)

𝑢"

𝑢′"

Figure 8: Pruning Example

However, although the path length keeps increasing, we cannot

guarantee the length of 𝑑 (𝑝𝑖 ∩ 𝑝 𝑗) as it varies when it deviates.

Fortunately, as the length variation is only introduced by the devi-

ation and the SPT part, while the fixed part intersection is stable,

we use the fixed intersection as the pruning condition. For exam-

ple in Figure 8-(a), 𝑝2’s fixed intersection with 𝑝1 is 𝑝𝑢2→𝑡 and

this part cannot decrease. Then all the deviate edges from 𝑠 to 𝑣2
were considered as the next shortest path previously. However,

not all the deviate vertices could generate a path satisfying the

similarity threshold. This is because each time we deviate from a

vertex, we have determined its fixed part implicitly. For example,

when we processing the deviate edges ending with 𝑢3, the path

𝑝𝑢3→𝑡 = ⟨𝑢3,𝑤2, 𝑣2, 𝑢2, 𝑡⟩ is fixed for the new path. If 𝑑 (𝑝𝑢3→𝑡 ∩𝑝1)
is longer than the threshold (like 𝑢 ′

3
), we can prune the deviation

from 𝑢3 and all the vertices above in the SPT. Therefore, the thresh-

old 𝜃2 and the SPT endpoint 𝑣2 together determine an extendible

region (green shadowed) where the deviation’s fixed part satisfies

the similarity threshold. Figure 8-(b) shows the example of 𝑝3, and

has a smaller region than 𝑝2’s because its fixed part covers 𝑝2’s

fixed intersection length is no smaller than 𝑝2’s.

However, we do not know 𝜃 beforehand as it is determined by the

intersection of the edges and the results. Therefore, we keep testing

the edges backwardly on the SPT from the first deviate vertex 𝑣 .

If adding the edge length violates any of the result’s threshold,

then we can stop adding the deviation edges. Virtually, we have a

“upper-bound" for each result path as shown in the green box of

Figure 8-(c), and the smallest one (𝑟3) is the global “upper-bound"

𝜃 . Besides, we only add a deviate edge into the heap only if it does

not violate any result path’s similarity.

6 COMPLETENESS AND EFFICIENCY

ORIENTED SOLUTIONS

Although the previous pruning techniques can reduce the enumer-

ated path number, there could still be a huge number of paths to

test before obtaining all the results because the paths are generated

in the strictly non-decreasing order. As tested in the experiments, it

is common to generate hundreds of thousands of paths, especially

for the query in denser regions with longer distance, lower simi-

larity, and higher 𝑘 , which prolongs the query time to hundreds of

seconds. To make things worse, some of the queries may not be able

to find the 𝑘 results due to the similarity requirement. Therefore,

to guarantee the completeness of the query result and reduce the

query time, we propose the following two heuristic techniques that

either relax the similarity or block the highly repeated edges.

6.1 Dynamic Similarity Relaxation

If we keep failing to find the next result for a long time, we could

temporarily pause the current search and use the best one from

the enumerated path set as the next path. In this way, it is guar-

anteed to obtain a result set with 𝑘 paths, but the similarity re-

quirement is relaxed. Specifically, when a path 𝑝 𝑗 is added to

𝑃𝑠,𝑡 , we begin to accumulate the number of the newly enumer-

ated paths. If the newly enumerated path number reaches the

threshold 𝑛𝑝 , we regard the current enumeration as incomplete

and trigger the relaxation: we find the path with the smallest

similarity 𝑝 𝑗+1 = 𝑎𝑟𝑔𝑚𝑖𝑛(𝑆𝑖𝑚𝑚𝑎𝑥 (𝑝𝑖 , 𝑃𝑠,𝑡)),∀𝑖 ∈ [1, 𝑛𝑝], where
𝑆𝑖𝑚𝑚𝑎𝑥 (𝑝, 𝑃𝑠,𝑡) =𝑚𝑎𝑥 (𝑆𝑖𝑚(𝑝, 𝑝 ′)),∀𝑝 ′ ∈ 𝑃𝑠,𝑡 . The actual similar-

ity of 𝑝 𝑗+1 is denoted as 𝜏∗.
However, it is difficult to determine 𝑛𝑝 and 𝜏∗ might be much

larger than 𝜏 . Therefore, we propose the dynamic similarity relax-
ation to control 𝑛𝑝 dynamically. Specifically, this method is based

on the following observation: when 𝑛𝑝 is small, 𝜏∗ should be closer

to 𝜏 as we have only enumerated a few paths; when 𝑛𝑝 is large, we

can tolerate larger 𝜏∗. Therefore, we can use a threshold function

𝜏 (𝑛𝑝) to control the actual thresholds: When 𝑛𝑝 = 1, 𝜏 (𝑛𝑝) = 𝜏 ;

when 𝑛𝑝 is very big like 10k, 𝜏 (𝑛𝑝) could be close to 1. As for the

values between, we can set 𝜏 (𝑛𝑝) as a linear function. Now when

we generate a new path 𝑝 ′, we compare its similarity with 𝜏𝑛𝑝′ . If

it is larger, we discard it and generate the next one. Otherwise, we

use 𝑝 ′ as the new result path. Because it only needs an extra 𝜏𝑛𝑝′

calculation, its complexity is the same as the previous ones.

3207

6.2 Congestion Edges Blocking

During the enumeration, some edges are occupied by more existing

results than others, so avoiding them in the future enumeration

could help decrease the intersection length and obtain the lower

similarity results earlier. To determine which edges can be avoided,

we define the edge blocking priority as follows:

Definition 7. Congestion Edges Order (CEO). ∀𝑒 ∈ 𝑝, 𝑝 ∈
𝑃𝑠,𝑡 , if 𝑒 appears in the current generated path, then𝐶𝐸𝑂 (𝑒) increases
by 1. The larger the 𝐶𝐸𝑂 (𝑒), the higher the order.

We block the edges according to the CEO order. Instead of delet-

ing them in the SPT, we block them by avoiding enumerating the

path containing them. Because these edges may appear in different

parts of the newly generated paths, we discuss their influence and

behavior accordingly below:

(1) Fixed Part: it can be detected when a path popped out from

𝐻 , and we do not expand it so the whole sub-class of paths

are pruned;

(2) Deviate Edge: it can be detected during deviation, and we

prune this path directly;

(3) SPT: it can also be detected during deviation but with the

LCA computation. If the LCA of the deviation point and

𝑒’s endpoints are both equal to the endpoints, then we can

prune this path and deviate another one.

However, some edges are “unblockable", because blocking them

may affect the connectivity of the paths such that no new paths

can be generated. Therefore, before blocking an edge 𝑒 , we cache

the current searching status and keep counting the pruned paths.

If a consecutive of 𝛽 top paths fail to generate any new path, we

mark 𝑒 as “unblockable", roll the enumeration back to the previous

status, and block the next high CEO edge. The time to trigger the

blocking is a parameter similar to 𝑛𝑝 in Section 6.1. Nevertheless,

it is still non-trivial and faces the following issues:

1) Last Blocked Edge Diminish: Suppose {𝑒1, . . . , 𝑒𝑘 } are the cur-
rent blocked edges, and the next blocked edge is 𝑒𝑘+1. Then for a

rough calculation, the inconnectivity caused by 𝑒𝑘+1 is only 1/𝑘 + 1,
while the probability of the previous 𝑘 blocked edges is 𝑘/𝑘 + 1.
Therefore, a rollback of unblocking 𝑒𝑘+1 has a high probability

of being triggered by the previously blocked edge but not 𝑒𝑘+1, so
adding back 𝑒𝑘+1 does not solve the inconnectivity problem. What’s

worse, unblocking 𝑒𝑘+1 deprives 𝑒𝑘+1 and all the latter ones’ block-

ing power: after blocking several edges, the latter edges won’t be

blocked and this process degenerates to the unblocking version.

Therefore, the rollback 𝑒𝑘+1 operation should only be triggered

when the consecutive path generation failures are caused by 𝑒𝑘+1.
2) Candidate Heap Shrinking: Following the phenomenon above,

the previously blocked edges have a growing influence on path

pruning such that fewer and fewer candidate paths would be in-

serted in the heap. Then the heap would become empty earlier

and the search ends with an incomplete result set. To avoid the

heap shrinking too much, we need to add some blocked edges back.

Specifically, we keep counting the path pruned by each blocked

edge: 𝑛𝑓 𝑖𝑥𝑒𝑑 +𝑛𝑆𝑃𝑇 . When a path 𝑝 is pruned by 𝑒𝑖 in its fixed part,

𝑒𝑖 ’s 𝑛𝑓 𝑖𝑥𝑒𝑑 adds 𝑝’s remaining deviate edge number as they are all

pruned. When 𝑝 is pruned in its SPT or its deviate edge, 𝑒𝑖 ’s 𝑛𝑆𝑃𝑇
increases by 1. Then when the heap keeps shrinking consecutively

for 𝛽 paths, we add the block edge with the largest pruning number

back to the graph but without rolling back.

3) CEO Bias: Because all the new paths are generated from the

existing ones’ fixed parts, the edges that are closer to the destina-

tion have higher CEO naturally. However, these edges also have a

higher influence on the graph connectivity, so blocking them would

cause earlier search termination with incomplete results. Therefore,

instead of blocking the edges with the highest CEO, we choose the
edge with top-20% to top-50% CEO randomly to block. In this way,

the blocking power and graph connectivity could be balanced.

7 EXPERIMENT

7.1 Experiment Setup

Dataset. We test on four real-world road networks: 1) Manhattan
(MH) [43]: a grid-based city center with 4,590 vertices and 25,395

edges; 2) Tianjin (TJ) [23, 42]: a ring network with 31,002 vertices

and 86,584 edges; 3) New York (NY) [1]: urban city with 264,246

vertices and 733,846 edges; 4) Colorado (COL) [1]: state network
with 435,666 vertices and 1,057,066 edges.

Query Sets. For each dataset, we randomly generate four sets of

OD pairs 𝑄1 to 𝑄4 with 1000 queries. Specifically, we first estimate

the diameter 𝑑𝑚𝑎𝑥 of each network by finding the longest shortest

path between the outer vertices like the landmarks in [19]. Then

each 𝑄𝑖 represents a category of OD pairs falling into the distance

range [𝑑𝑚𝑎𝑥/25−𝑖 , 𝑑𝑚𝑎𝑥/24−𝑖]. For example,𝑄1 stores the OD pairs

with distances in range [𝑑𝑚𝑎𝑥/16, 𝑑𝑚𝑎𝑥/8].
Method. We implement and compare the following algorithms:

1) D𝑘SP : Our method with the efficient similarity comparison; 2)

D𝑘SP-DS and D𝑘SP-EB: Our method with two heuristics; 3) KSPD:
the iterative bounding pruning search-based method in [35] that

dominates Yen’s [55], cKSP [18], IterBound [7]; 4) OP : The One-Pass
algorithm of kSPwLO; 5) SVP+-C and ESX-C: The completeness

version of SVP+ and ESX from [12]. [12];

All the algorithms are implemented in C++, compiled with full

optimizations, and tested on a Dell R730 PowerEdge Rack Mount

Server which has two Xeon E5-2630 2.2GHz (each has 10 cores and

20 threads) and 378G memory.

7.2 Similarity Comparison

Similarity Function Influence. In this section, we show the influ-

ence of different similarity functions on query efficiency (Running
Time) and query result quality (Average Length), and their corre-

sponding standard deviations in Figure 9. It should be noted that

this set of experiment is easier to find results, so the heuristic-based

methods could be slower while the non-heuristic methods are faster

except on COL. Specifically, our D𝑘SP and OP have similar perfor-

mance with the best query quality under different similarity func-

tions from 𝑆1 to 𝑆5. KSPD is the slowest and most unstable among

all the algorithms but have similar quality because they share the

same enumeration framework (slightly different due to the same

length path order). The baseline heuristic methods are faster for the

harder queries but have longer length and unstable quality except

for D𝑘SP-DS because it sacrifices the similarity. Lastly, since all the

algorithms perform best on 𝑆1 with the fastest running time and

average length, we use 𝑆1 as the default similarity function in the

remaining experiments.

3208

10 2

Ru
nn

in
g

Ti
m

e
(s

ec
)

(a) MH k=5 =0.9 Q3

0.0
0.1

0.2
0.3

10 2

10 1

(b) TJ k=5 =0.9 Q3

0
1

2

10 2

10 1

100

(c) NY k=5 =0.8 Q1

0
1

2
3

4

10 1

100

101

102

(d) COL k=5 =0.8 Q1

0
100

200
300

Standard D
eviation

S1 S2 S3 S4 S5
Similarity Functions

7.0

7.1

7.2

7.3

7.4

7.5

Av
er

ag
e

Le
ng

th
 (k

m
)

(e) MH k=5 =0.9 Q3

50
100

150

S1 S2 S3 S4 S5
Similarity Functions

15

16

17

18
(f) TJ k=5 =0.9 Q3

0
200

400
600

800

S1 S2 S3 S4 S5
Similarity Functions

7.0

7.2

7.4

7.6

7.8

8.0
(g) NY k=5 =0.8 Q1

100
200

300

S1 S2 S3 S4 S5
Similarity Functions

30.0

30.5

31.0

31.5

32.0
(h) COL k=5 =0.8 Q1

200
400

600
Standard D

eviation

DkSP KSPD OP SVP-C ESX-C DKSP-DS DKSP-EB

Figure 9: Similarity Function Comparison (The bars are running time and average length. The balls are standard deviations.)

0.0000

0.0005

0.0010

Ru
nn

in
g

Ti
m

e
(s

ec
) (a) MH k=5 =0.8 Q3

0.00

0.05

0.10

0.15

(b) TJ k=5 =0.8 Q3

0

25

50

75

100 Percentage %

S1 S2 S3 S4 S5
Similarity Functions

0.00

0.05

0.10

0.15

Ru
nn

in
g

Ti
m

e
(s

ec
) (c) NY k=5 =0.8 Q2

S1 S2 S3 S4 S5
Similarity Functions

0.00

0.25

0.50

0.75
(d) COL k=5 =0.8 Q2

0

25

50

75

100 Percentage %

SPT-Sim Linear Comparison SPT-Sim Percentage

Figure 10: Similarity Computation Performance (The Bars

are Running Time. The Balls are Percentage.)

Similarity Computation. In this section, we validate the effective-

ness of our SPT similarity computation compared with the linear

similarity computation. As shown in Figure 10, our method costs

less time (around 1/3) compared with the linear comparison. This is

because around 70% of the comparisons (shown as the ball) have the

ancestral-descendant relation and avoid linear scan. In addition, the

similarity computation with different similarity functions varies:

𝑆4 and 𝑆5 bring about the heaviest computation and 𝑆1 the least.

7.3 D𝐾SP Performance

Query Distance. As shown in Figure 11-(a) to (d), all algorithms

take longer time in finding the diversified paths as the distance

between OD pairs becomes longer. It is because the longer OD

has more paths with similar distances than the shorter ones, then

they have more candidate paths to enumerate and test. Moreover,

our D𝑘SP has the best performance in most instances among the

non-heuristic methods. As for the heuristic methods, our D𝑘SP-DS
is generally faster than the others with shorter length. The D𝑘SP-EB
is not stable and effective as D𝑘SP-DS. ESX-C always has the longest

the result while the running time is never the fastest.

Similarity Threshold 𝜏 As we can see from Figure 11-(e) to (h), the

running time increases as 𝜏 decreases. It is because that more and

longer path candidates need to be generated to satisfy the stricter

threshold, which also causes heavier computation on candidate path

selection. OurD𝑘SP-based methods have the best performance in al-

most all their corresponding exact and heuristic instances. Although

ESX-C and SVP-C are fast but their results are longer especially

when 𝜏 is small. D𝑘SP-DS has similar efficiency but shorter length.

Although lower 𝜏 implies lower similarity, the higher 𝜏 can still

generate lower similarity results because this 𝜏 is the worst case

bound. We will discuss it further later.

Result Path Number 𝑘 . As shown in Figure 11-(i) to (l), all meth-

ods take longer time to find more result paths. As 𝑘 increases, it is

harder to find the next result because 1) longer paths are needed

and the number of path candidate increases as the length increases,

and 2) more paths in the current result makes the newer paths

harder to satisfy the similarity requirement. In general, our pro-

posed algorithm D𝑘SP always performs better than KSPD under

all parameter combinations because 1) in terms of path genera-

tion, our SPT-deviation-based strategy avoids the expensive graph

search in KSPD and OP ; 2) in terms of path similarity computation,

our SPT-Sim also reduces the query time compared with the linear

comparison. In terms of the heuristic methods, ESX-C’s length and

running both soar up as 𝑘 increases. SVP-C also increases, while

our D𝑘SP-DS remains fast with shorter length. Our D𝑘SP-EB also

increases but not as dramatically as the baselines.

Pruning Effectivenes. In this test, we vary the threshold 𝜏 under

two parameter settings: 𝑘 = 5 with 𝑄2 and 𝑘 = 3 with 𝑄3. As

shown in Figure 12, the bars shows the effectiveness of our pruning

technique, and the balls represent the number of the pruned path

validating the pruning power. Firstly, as 𝜏 decreases, more paths are

pruned because 1) the pruning power is stronger for smaller 𝜏 , and

2) more and longer candidate paths are generated. Secondly, 𝑘 has

larger impact on query than distance when 𝜏 is smaller, because it is

harder to find more paths that are dissimilar to each other. Finally,

our pruning technique can decrease the computation of 𝑆5 by half

3209

Q1 Q2 Q3 Q4
10 4

10 1

102
(a) MH Distance k=5 =0.9

5

10

Q1 Q2 Q3 Q4

(b) TJ Distance k=5 =0.9

15

20

Q1 Q2 Q3 Q4

(c) NY Distance k=5 =0.9

20

40

Q1 Q2 Q3 Q4

(d) COL Distance k=5 =0.9

0

200

0.1 0.5 0.8 0.9
10 4

10 1

102

Ru
nn

in
g

Ti
m

e
(s

ec
) (e) MH Q1 k=3

2.2

2.4

0.1 0.5 0.8 0.9

(f) TJ Q1 k=3

12

14

0.1 0.5 0.8 0.9

(g) NY Q1 k=3

8

9

0.1 0.5 0.8 0.9

(h) COL Q1 k=3

31

32

33

Average Length (km
)

3 5 10 20
10 4

10 1

102
(i) MH k =0.8 Q1

2.0

2.5

3.0

3 5 10 20

(j) TJ k =0.8 Q1

12.5

15.0

3 5 10 20

(k) NY k =0.8 Q1

8

9

3 5 10 20

(l) COL k =0.8 Q1

31

32

33

DkSP KSPD OP ESX-C SVP-C DKSP-DS DKSP-EB

Figure 11: DKSP Performance under Different Distance, Similarity Threshold 𝜏 , and Path Number 𝑘 (The Bars are running time.

The Balls are Average Length)

0.0

0.1

Q
ue

ry
 T

im
e

(s
ec

)

(a) MH

0

10

#
Pruned Path (10

3)

0

200
(b) TJ

0

10

0

250

Q
ue

ry
 T

im
e

(s
ec

)

(c) NY

0

5

#
Pruned Path (10

6)

0.6 0.7 0.8 0.9 0.6 0.7 0.8 0.9
k= 5,Q2 k= 3,Q3

0

250

(d) COL

0

5

Without Pruning With Pruning #Purned Path

Figure 12: Pruning Power of 𝑆5

and avoid testing millions of path candidates. Nevertheless, 𝑆5’s

efficiency is still not comparable with 𝑆1.

MH TJ NY COL
0.0

0.2

0.4

0.6

0.8

1.0

Si
m

ila
rit

y

DkSP
KSPD
OP

ESX-C
SVP-C

DKSP-DS
DKSP-EB

Figure 13: Similarity Quality (Max-Avg-Min) 𝑄1 𝑘=5

Similarity Quality. We show the result’s average max/avg/min

similarities with 0.8 as threshold in Figure 13. Because 0.8 is only the

upperbound, the results’ average similarities are around 0.5 and 0.6,

and it could be lower than 0.4. The three searching methods have

similar performance as their results are nearly the same. ESX-C has

the lowest similarity at the cost of longer length. Among the other

heuristic methods, KDSP-DS has surpassed the threshold slightly

as it sacrifices similarity for faster computation and shorter length.

Therefore, even with 0.8 as threshold, our methods can still achieve

lower average similarity.

Experimental Summary. Our proposed D𝑘SP can generate the

results faster with same quality as the baseline exact methods,

while our heuristic method D𝑘SP-DS can calculate the results more

efficiently with shorter path length and similar similarities.

8 CONCLUSION

Route planning has an increasing impact on real-life traffic condi-

tions, which has drawn more and more attentions recently. In this

work, we attempt to address it passively by diversifying the rout-

ing results for similar queries. The existing solutions all have very

high complexity due to the graph searching such that they are im-

practical in real-life. Therefore, we propose an efficient diversified

top-𝑘 routing algorithm with SPT concatenation, constant simi-

larity comparison, candidate path pruning, and two completeness

and efficiency-oriented solutions. As validated on four real-world

road networks, our solution is hundreds of times faster than the

state-of-the-art solution, which indicates that diversified routing

can be technically practical to use for the first time.

ACKNOWLEDGMENTS

This work was supported by the Australian Research Council (Num-

ber DP200103650 and LP180100018), Hong Kong Research Grants

Council (grant# 16202722), and was partially conducted in the JC

STEM Lab of Data Science Foundations funded by The Hong Kong

Jockey Club Charities Trust.

3210

REFERENCES

[1] [n.d.]. 9th DIMACS Implementation Challenge - Shortest Paths. http://users.

diag.uniroma1.it/challenge9/download.shtml.

[2] Ittai Abraham, Daniel Delling, Andrew V Goldberg, and Renato F Werneck. 2013.

Alternative routes in road networks. Journal of Experimental Algorithmics (JEA)
18 (2013), 1–1.

[3] Vedat Akgün, Erhan Erkut, and Rajan Batta. 2000. On finding dissimilar paths.

European Journal of Operational Research 121, 2 (2000), 232–246.

[4] Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida. 2013. Fast exact shortest-path

distance queries on large networks by pruned landmark labeling. In Proceedings
of the 2013 ACM SIGMOD International Conference on Management of Data. 349–
360.

[5] Michael A Bender and Martin Farach-Colton. 2000. The LCA problem revisited.

In Latin American Symposium on Theoretical Informatics. Springer, 88–94.
[6] Pasquale Carotenuto, Stefano Giordani, and Salvatore Ricciardelli. 2007. Find-

ing minimum and equitable risk routes for hazmat shipments. Computers &
Operations Research 34, 5 (2007), 1304–1327.

[7] Lijun Chang, Xuemin Lin, Lu Qin, Jeffrey Xu Yu, and Jian Pei. 2015. Efficiently

computing top-k shortest path join. In EDBT 2015-18th International Conference
on Extending Database Technology, Proceedings.

[8] Chandra Chekuri and Sanjeev Khanna. 2003. Edge disjoint paths revisited. In

Proceedings of the fourteenth annual ACM-SIAM symposium on Discrete algorithms.
628–637.

[9] Theodoros Chondrogiannis, Panagiotis Bouros, Johann Gamper, and Ulf Leser.

2015. Alternative routing: k-shortest paths with limited overlap. In Proceedings
of the 23rd SIGSPATIAL International Conference on Advances in Geographic
Information Systems. 1–4.

[10] Theodoros Chondrogiannis, Panagiotis Bouros, Johann Gamper, and Ulf Leser.

2017. Exact and approximate algorithms for finding k-shortest paths with limited

overlap. In 20th International Conference on Extending Database Technology: EDBT
2017. 414–425.

[11] Theodoros Chondrogiannis, Panagiotis Bouros, Johann Gamper, Ulf Leser, and

David B Blumenthal. 2018. Finding k-dissimilar paths with minimum collective

length. In Proceedings of the 26th ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems. 404–407.

[12] Theodoros Chondrogiannis, Panagiotis Bouros, Johann Gamper, Ulf Leser, and

David B Blumenthal. 2020. Finding k-shortest paths with limited overlap. The
VLDB Journal (2020), 1–25.

[13] Jian Dai, Bin Yang, Chenjuan Guo, and Zhiming Ding. 2015. Personalized route

recommendation using big trajectory data. In 2015 IEEE 31st international confer-
ence on data engineering (ICDE). IEEE, 543–554.

[14] Edsger W Dijkstra. 1959. A note on two problems in connexion with graphs.

Numerische mathematik 1, 1 (1959), 269–271.

[15] Bolin Ding, Jeffrey Xu Yu, and Lu Qin. 2008. Finding time-dependent shortest

paths over large graphs. In Proceedings of the 11th international conference on
Extending database technology: Advances in database technology (EDBT). 205–216.

[16] Erhan Erkut, Stevanus A Tjandra, and Vedat Verter. 2007. Hazardous materials

transportation. Handbooks in operations research and management science 14
(2007), 539–621.

[17] Erhan Erkut and Vedat Verter. 1998. Modeling of transport risk for hazardous

materials. Operations research 46, 5 (1998), 625–642.

[18] Jun Gao, Huida Qiu, Xiao Jiang, Tengjiao Wang, and Dongqing Yang. 2010.

Fast top-k simple shortest paths discovery in graphs. In Proceedings of the 19th
ACM international conference on Information and knowledge management (CIKM).
509–518.

[19] Andrew V. Goldberg and Chris Harrelson. 2005. Computing the Shortest Path: A

Search Meets Graph Theory. In Proceedings of the Sixteenth Annual ACM-SIAM
Symposium on Discrete Algorithms (Vancouver, British Columbia) (SODA ’05).
Society for Industrial and Applied Mathematics, USA, 156–165.

[20] Longkun Guo, Yunyun Deng, Kewen Liao, Qiang He, Timos Sellis, and Zheshan

Hu. 2018. A fast algorithm for optimally finding partially disjoint shortest

paths. In Twenty-Seventh International Joint Conference on Artificial Intelligence
(IJCAI-18), Stockholm, Sweden, July 13-19, 2018. International Joint Conferences
on Artificial Intelligence, 1456–1462.

[21] Christian Häcker, Panagiotis Bouros, Theodoros Chondrogiannis, and Ernst

Althaus. 2021. Most Diverse Near-Shortest Paths. In Proceedings of the 29th
International Conference on Advances in Geographic Information Systems. 229–
239.

[22] Wilton Henao-Mazo and Angel Bravo-Santos. 2012. Finding diverse shortest

paths for the routing task in wireless sensor networks. Proc. ICSNC (2012), 53–58.

[23] Alireza Karduni, Amirhassan Kermanshah, and Sybil Derrible. 2016. A protocol

to convert spatial polyline data to network formats and applications to world

urban road networks. Scientific data 3, 1 (2016), 1–7.
[24] Ken-ichi Kawarabayashi, Yusuke Kobayashi, and Bruce Reed. 2012. The disjoint

paths problem in quadratic time. Journal of Combinatorial Theory, Series B 102, 2

(2012), 424–435.

[25] Ken-ichi Kawarabayashi and Bruce Reed. 2009. A nearly linear time algorithm

for the half integral parity disjoint paths packing problem. In Proceedings of the

Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, 1183–

1192.

[26] Moritz Kobitzsch. 2013. An alternative approach to alternative routes: HiDAR.

In European Symposium on Algorithms. Springer, 613–624.
[27] Lingxiao Li, Muhammad Aamir Cheema, Hua Lu, Mohammed Eunus Ali, and

Adel N Toosi. 2021. Comparing alternative route planning techniques: A com-

parative user study on Melbourne, Dhaka and Copenhagen road networks. IEEE
Transactions on Knowledge and Data Engineering (2021).

[28] Lei Li, Wen Hua, Xingzhong Du, and Xiaofang Zhou. 2017. Minimal on-road time

route scheduling on time-dependent graphs. Proceedings of the VLDB Endowment
10, 11 (2017), 1274–1285.

[29] Lei Li, Sibo Wang, and Xiaofang Zhou. 2019. Time-dependent hop labeling on

road network. In 2019 IEEE 35th International Conference on Data Engineering
(ICDE). IEEE, 902–913.

[30] Lei Li, Sibo Wang, and Xiaofang Zhou. 2020. Fastest path query answering using

time-dependent hop-labeling in road network. IEEE Transactions on Knowledge
and Data Engineering (2020).

[31] Lei Li, Mengxuan Zhang, Wen Hua, and Xiaofang Zhou. 2020. Fast query de-

composition for batch shortest path processing in road networks. In 2020 IEEE
36th International Conference on Data Engineering (ICDE). IEEE, 1189–1200.

[32] Lei Li, Kai Zheng, Sibo Wang, Wen Hua, and Xiaofang Zhou. 2018. Go slow

to go fast: minimal on-road time route scheduling with parking facilities using

historical trajectory. The VLDB Journal 27, 3 (2018), 321–345.
[33] Sejoon Lim and Daniela Rus. 2012. Stochastic distributed multi-agent planning

and applications to traffic. In 2012 IEEE International Conference on Robotics and
Automation. IEEE, 2873–2879.

[34] Yongtaek Lim and Sungmo Rhee. 2010. An efficient dissimilar path searching

method for evacuation routing. KSCE Journal of Civil Engineering 14, 1 (2010),

61–67.

[35] Huiping Liu, Cheqing Jin, Bin Yang, and Aoying Zhou. 2017. Finding top-k short-

est paths with diversity. IEEE Transactions on Knowledge and Data Engineering
30, 3 (2017), 488–502.

[36] Huiping Liu, Cheqing Jin, Bin Yang, and Aoying Zhou. 2018. Finding top-k

optimal sequenced routes. In 2018 IEEE 34th International Conference on Data
Engineering (ICDE). IEEE, 569–580.

[37] Ziyi Liu, Lei Li, Mengxuan Zhang, Wen Hua, Pingfu Chao, and Xiaofang Zhou.

2021. Efficient Constrained Shortest Path Query Answering with Forest Hop

Labeling. In 2021 IEEE 37th International Conference on Data Engineering (ICDE).
IEEE, 1763–1774.

[38] Ziyi Liu, Lei Li, Mengxuan Zhang, Wen Hua, and Xiaofang Zhou. 2022. FHL-

Cube: Multi-Constraint Shortest Path Querying with Flexible Combination of

Constraints. Proceedings of the VLDB Endowment 15 (2022).
[39] Dennis Luxen and Dennis Schieferdecker. 2012. Candidate sets for alternative

routes in road networks. In International Symposium on Experimental Algorithms.
Springer, 260–270.

[40] Nirmesh Malviya, Samuel Madden, and Arnab Bhattacharya. 2011. A continu-

ous query system for dynamic route planning. In 2011 IEEE 27th International
Conference on Data Engineering (ICDE). IEEE, 792–803.

[41] Ernesto QV Martins and Marta MB Pascoal. 2003. A new implementation of

Yen’s ranking loopless paths algorithm. Quarterly Journal of the Belgian, French
and Italian Operations Research Societies 1, 2 (2003), 121–133.

[42] Road Networks. [n.d.]. Urban (2016): Urban Road Network Data. figshare.

Dataset.https://doi.org/10.6084/m9.figshare.2061897.v1. https://doi.org/10.4225/

13/511C71F8612C3

[43] OpenStreetMap contributors. 2017. Planet dump retrieved from

https://planet.osm.org . https://www.openstreetmap.org.

[44] Dian Ouyang, Lu Qin, Lijun Chang, Xuemin Lin, Ying Zhang, and Qing Zhu. 2018.

When hierarchy meets 2-hop-labeling: Efficient shortest distance queries on road

networks. In Proceedings of the 2018 International Conference on Management of
Data (SIGMOD). 709–724.

[45] Juan Pan, Iulian Sandu Popa, Karine Zeitouni, and Cristian Borcea. 2013. Proactive

vehicular traffic rerouting for lower travel time. IEEE Transactions on vehicular
technology 62, 8 (2013), 3551–3568.

[46] Antonio Sedeno-Noda. 2016. Ranking One Million Simple Paths in Road Net-

works. Asia-Pacific Journal of Operational Research 33, 05 (2016), 1650042.

[47] Han Su, Shuncheng Liu, Bolong Zheng, Xiaofang Zhou, and Kai Zheng. 2020. A

survey of trajectory distance measures and performance evaluation. The VLDB
Journal 29, 1 (2020), 3–32.

[48] Yongxin Tong, Yuxiang Zeng, Zimu Zhou, Lei Chen, Jieping Ye, and Ke Xu. 2018.

A unified approach to route planning for shared mobility. Proceedings of the
VLDB Endowment 11, 11 (2018), 1633.

[49] Sibo Wang, Wenqing Lin, Yi Yang, Xiaokui Xiao, and Shuigeng Zhou. 2015.

Efficient route planning on public transportation networks: A labelling approach.

In Proceedings of the 2015 ACM SIGMOD International Conference on Management
of Data. 967–982.

[50] SiboWang, Xiaokui Xiao, Yin Yang, andWenqing Lin. 2016. Effective indexing for

approximate constrained shortest path queries on large road networks. PVLDB
10, 2 (2016), 61–72.

3211

http://users.diag.uniroma1.it/challenge9/download.shtml
http://users.diag.uniroma1.it/challenge9/download.shtml
figshare. Dataset. https://doi.org/10.6084/m9.figshare.2061897.v1
figshare. Dataset. https://doi.org/10.6084/m9.figshare.2061897.v1
https://doi.org/10.4225/13/511C71F8612C3
https://doi.org/10.4225/13/511C71F8612C3
 https://www.openstreetmap.org

[51] Huanhuan Wu, James Cheng, Silu Huang, Yiping Ke, Yi Lu, and Yanyan Xu. 2014.

Path problems in temporal graphs. Proceedings of the VLDB Endowment 7, 9
(2014), 721–732.

[52] Jiajie Xu, Limin Guo, Zhiming Ding, Xiling Sun, and Chengfei Liu. 2012. Traffic

aware route planning in dynamic road networks. In International Conference on
Database Systems for Advanced Applications. Springer, 576–591.

[53] Bin Yang, Chenjuan Guo, Yu Ma, and Christian S Jensen. 2015. Toward personal-

ized, context-aware routing. The VLDB Journal 24, 2 (2015), 297–318.
[54] Yajun Yang, Hong Gao, Jeffrey Xu Yu, and Jianzhong Li. 2014. Finding the cost-

optimal path with time constraint over time-dependent graphs. PVLDB 7, 9

(2014), 673–684.

[55] Jin Y Yen. 1971. Finding the k shortest loopless paths in a network. Management
Science 17, 11 (1971), 712–716.

[56] Ziqiang Yu, Xiaohui Yu, Nick Koudas, Yang Liu, Yifan Li, Yueting Chen, and

Dingyu Yang. 2020. Distributed processing of k shortest path queries over

dynamic road networks. In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data. 665–679.

[57] Yuxiang Zeng, Yongxin Tong, Yuguang Song, and Lei Chen. 2020. The simpler

the better: An indexing approach for shared-route planning queries. Proceedings
of the VLDB Endowment 13, 13 (2020), 3517–3530.

[58] Mengxuan Zhang, Lei Li, Wen Hua, Rui Mao, Pingfu Chao, and Xiaofang Zhou.

2021. Dynamic Hub Labeling for Road Networks. In 2021 IEEE 37th International
Conference on Data Engineering (ICDE). IEEE, 336–347.

[59] Mengxuan Zhang, Lei Li, Wen Hua, and Xiaofang Zhou. 2019. Efficient batch pro-

cessing of shortest path queries in road networks. In 2019 20th IEEE International
Conference on Mobile Data Management (MDM). IEEE, 100–105.

[60] Mengxuan Zhang, Lei Li, Wen Hua, and Xiaofang Zhou. 2020. Stream processing

of shortest path query in dynamic road networks. IEEE Transactions on Knowledge
and Data Engineering (2020).

[61] Mengxuan Zhang, Lei Li, Wen Hua, and Xiaofang Zhou. 2021. Efficient 2-

hop labeling maintenance in dynamic small-world networks. In 2021 IEEE 37th
International Conference on Data Engineering (ICDE). IEEE, 133–144.

[62] Mengxuan Zhang, Lei Li, and Xiaofang Zhou. 2021. An Experimental Evaluation

and Guideline for Path Finding in Weighted Dynamic Network. Proceedings of
the VLDB Endowment 14, 11 (2021), 2127–2140.

3212

