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ABSTRACT
Cardinality estimation of an approximate substring query is an im-

portant problem in database systems. Traditional approaches build

a summary from the text data and estimate the cardinality using the

summary with some statistical assumptions. Since deep learning

models can learn underlying complex data patterns effectively, they

have been successfully applied and shown to outperform traditional

methods for cardinality estimations of queries in database systems.

However, since they are not yet applied to approximate substring

queries, we investigate a deep learning approach for cardinality

estimation of such queries. Although the accuracy of deep learning

models tends to improve as the train data size increases, producing

a large train data is computationally expensive for cardinality esti-

mation of approximate substring queries. Thus, we develop efficient

train data generation algorithms by avoiding unnecessary compu-

tations and sharing common computations. We also propose a deep

learning model as well as a novel learning method to quickly obtain

an accurate deep learning-based estimator. Extensive experiments

confirm the superiority of our data generation algorithms and deep

learning model with the novel learning method.
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1 INTRODUCTION
Approximate substring search is a fundamental operation in many

applications including substring matching [13], query refinement

suggestion [24], data cleaning [34], named entity recognition [6],

finding DNA subsequences [23] and spell checking [28]. With the

explosive growth of data, there has been increasing demand for

efficient support of approximate substring queries in database sys-

tems. The edit distance between strings is the minimum number of

single character edits to transform one string to the other [9] and it
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(a) SQ and SD

(q,δ ) c(q,δ )
(jo,0) 1

(jo,1) 2

(joe,0) 0

(joe,1) 1

(john,0) 0

(john,1) 0

(b) Base training data

c(q[1, ℓ],δ )s
(q,δ ) ℓ=1 ℓ=2 ℓ=3 ℓ=4
(jo,0) 2 1

(jo,1) 3 2

(joe,0) 2 1 0

(joe,1) 3 2 1

(john,0) 2 1 0 0

(john,1) 3 2 1 0

(c) Prefix-aug training data

Figure 1: Generation of training data (δM =1).

is the most widely used distance measure for database applications.

The substring edit distance between a query string q and a string

s , denoted by dsub (q, s), is then defined as the smallest one among

the edit distances between q and all substrings in s [13, 20, 27].
For a query string q, a threshold δ and a string set SD , the ap-

proximate substring query, denoted by (q, δ ), retrieves every string

s ∈ SD with dsub (q, s) ≤ δ . Consider a query string set SQ and a

string set SD in Figure 1(a). When q = joe in SQ and δ = 1, since
only joseph biden in SD has its substring edit distance with q at

most δ , the cardinality of the query (q, δ ), denoted by c(q, δ ), is 1.
Figure 1(b) shows c(q, δ ) for every pair of q ∈ SQ and δ ∈ {0, 1}.

In query optimization, accurate and efficient cardinality esti-

mation is essential to produce an optimal query execution plan.

Since many applications require search queries with string predi-

cates, there have been extensive works on cardinality estimation

of queries with string predicates [2, 12, 17, 19, 20, 26, 31]. Tradi-

tional approaches [12, 17, 20] generally build a summary from the

text data which contains substrings/patterns with their frequencies.

Since the summary can be large, they limit its size by storing only

short and frequent substrings/patterns. Whenever a query string is

not stored in the summary, it is decomposed into possibly overlap-

ping substrings/patterns stored in the summary and its cardinality

is estimated by combining their cardinalities with some statistical
assumptions [12, 17, 20]. When such assumptions are violated, the

accuracy of the estimated cardinality suffers.

Since deep learning models can reflect the underlying patterns

and correlations of data, they are shown to outperform traditional

methods for cardinality estimations of queries in database systems

[15, 16, 26, 31, 35]. However, since they are not yet applied to approx-

imate substring queries, we investigate a deep learning approach

for cardinality estimation of such queries. Because the process of

training a neural model involves providing the training data, we

first describe the training data for cardinality estimation. Given a

query string set SQ and a string set SD , the base training data con-

sists of (q, δ , c(q, δ ))s for every pair of q ∈SQ and 0≤δ ≤δM where
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Figure 2: Training a cardinality estimation model.

δM is the maximum value of δ . Let q[1, ℓ] be the ℓ-length prefix

of q. The prefix-aug training data has (q, δ , c(q[1, 1], δ ), c(q[1, 2], δ ),
. . . , c(q[1, |q |], δ ))s for every pair of q ∈ SQ and 0 ≤ δ ≤ δM . Fig-

ure 1(b) and Figure 1(c) are the base and prefix-aug training datasets
for SQ and SD in Figure 1(a) with δM =1, respectively.

Since the accuracy of a deep learning model tends to improve as

the train data size increases [3], we study how to efficiently generate

a large train data. Any pair of a query string q and a data string

s such that dsub (q, s) > δM does not affect the cardinality c(q, δ ).
Thus, after proposing a lower-bound of dsub (q, s), we develop a

dynamic programming algorithm to stop as soon as we notice

that dsub (q, s) > δM by using the lower-bound while computing

dsub (q, s). On the other hand, if a query stringp is a prefix of another
query stringq, the computation ofdsub (p, s) can be shared with that
of dsub (q, s) for the same string s . To efficiently generate the train

data by using the lower-bound and sharing common computations,

we propose the TEDDY (Trie-basED DYnamic programming) and

the SODDY (SOrting-baseD DYnamic programming) algorithms.

The cardinality estimation of the queries with string predicates

is addressed in [26, 31]. Astrid is proposed in [26] to estimate the

cardinality of a substring query. To adapt Astrid to estimate the

cardinalities of approximate substring queries, we need to build a

model for each different distance threshold δ . However, we still can-
not capture the underlying patterns and correlations across queries

with different δs. For the cardinality estimation of approximate

queries, CardNet [31] can be used to handle approximate substring
queries. However, since CardNet does not share model parameters

across the positions in a query string, it not only requires a large

number of model parameters, but also ignores the relationships be-

tween the cardinalities of a query string and its prefixes. In addition,

it cannot handle a query string longer than a certain length.

To overcome the drawbacks of existing deep learning models, we

propose the DREAM (Deep caRdinality Estimation of ApproxiMate

substring queries) model which treats a query string as a sequence

of characters by adopting the long short-term memory (LSTM) [8]. It
takes a query string q and a threshold δ as input, and estimates the

cardinality of the query (q, δ ). Furthermore, it outputs the estimated

cardinalities of all the prefix queries (q[1, t], δ ) together to utilize
the prefix-aug training data. Using the prefix-aug training data

improves the estimation accuracy of the model but has additional

overheads to train the model with its prefix queries for each query.

To reduce such overheads, we propose a novel learning method,

called packed learning, which enables the model to efficiently learn

the cardinality relationships among the prefixes of each query.

To the best of our knowledge, we are the first to consider a

deep learning approach to estimate the cardinalities of approximate

substring queries. We illustrate how to train a deep cardinality esti-

mation model in Figure 2. After efficiently generating the prefix-aug
training data, we train the DREAM model with the training data by

the packed learning method. By conducting extensive experiments

on real-life datasets, we show that our training data generation al-

gorithms are much faster than existing algorithms and the DREAM

model has the highest accuracy while its required space is the small-

est among compared estimators. Moreover, the experimental results

confirm that utilizing the prefix-aug training data and the packed
learning for the DREAM model not only improves the estimation

accuracy, but also reduces the training time.

2 RELATEDWORK
Traditional methods for substring queries: The cardinality es-

timation of a substring query, which estimates the number of data

strings in which a query string occurs as a substring, is studied in

[4, 11, 12, 17]. KVI [17] uses a pruned suffix tree as a summary and

applies the independence assumption to predict the cardinality by

a greedy parsing of a query string without overlapping. MO [12]

improves KVI by parsing a query string into possibly overlapping

substrings and using the conditional independence assumption

based on maximally overlapped substrings. Since both methods

suffer from the underestimation problem, CRT [4] finds short iden-
tifying substrings of a query string with similar cardinalities to the

query string and estimates the cardinality as the weighted geomet-

ric mean of the cardinalities of identifying substrings. On the other

hand, SPH [2] predicts the cardinality of a LIKE query with a his-

togram built from the sequential patterns for the text column. LBS

[20] is the state-of-the-art algorithm for cardinality estimation of

approximate substring queries with the edit distance. It generalizes

KVI [17] by exploiting an extended N -gram table which stores the

cardinalities of possible string patterns of lengths up to N .

Deep learning models for (sub)string queries: The cardinality
estimation of the queries with string predicates is addressed in

[26] and [31]. The substring query with a string q returns every

data string containing the string q. Astrid is proposed in [26] for

substring queries (not approximate substring queries). It consists of

an embedding learner and a cardinality estimator. The embedding

learner expresses the embedding of a string by using the embed-

dings of q-grams of the string. After building the suffix tree from

possible query strings, it annotates each node n with the cardinality

of the substring query represented by n. Then, it pre-trains the em-

beddings of strings by using DeepWalk [25]. From the pre-trained

embeddings of strings, Astrid trains the cardinality estimator with

every pair of a query string and its cardinality. To adapt Astrid to

approximate substring queries, for each distance threshold δ ≤δM ,

we build a trie from the query strings and training a single model

by using the training data. For a substring query (q, δ ), we use

the output of the model trained for δ to estimate its cardinality.

However, the adaptation of Astrid cannot capture the underlying

patterns and correlations across queries with different δs.
CardNet [31] is proposed for the cardinality estimation of ap-

proximate queries (not substring queries) with distance measures

including edit distance. Notice that an approximate query (q, δ )
with the edit distance returns every data string s whose edit dis-
tance with q is at most δ . CardNet utilizes a single model regardless

of distance threshold δ . In other words, its model is trained with

training instances (q, δ , c(q, δ )) for 0 ≤ δ ≤ δM . While CardNet

can be used to solve approximate substring queries, it has several

limitations. It is an encoder-decoder model where the encoder and
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Table 1: List of notations.

Notation Description

s[i] the character at the i-th position of s
s[i , j] the substring of s from position i to position j
d (s1, s2) the edit distance of two strings s1, s2
dsub (q, s) the substring edit distance from q to s

Dq ,s the table for substring edit distance from q to s
SQ a query string set

SD a data string set

c(q, δ ) the cardinality of a query (q, δ )
δM the maximum possible distance threshold

the decoder use an FNN (fully-connected neural network). Since the

FNN encoder does not share model parameters across the positions

in a query string, CardNet not only requires a large number of

model parameters but also ignores the relationships between the

cardinalities of the query string and its prefixes. In addition, it limits

the size of an input query string.

Processing approximate substring queries: By executing sub-

string queries on a database, we can generate training data for

cardinality estimation models of the database. There have been

several works [6, 13, 21, 29, 30] related to processing approximate

substring queries with the edit distance. The approximate entity

extraction with the edit distance is investigated in [6, 21, 30]. We

briefly describe only TASTE [6] since it is the best algorithm among

these approaches. Given a threshold δ , after splitting the query

string (resp., data string) into non-overlapping substrings, TASTE

uses a trie generated the substrings in data strings to find similar

data strings to a query string by a lower bound of the substring

edit distance based on common substrings. The proposed algorithm

in [13] finds the most k similar data strings with a given query

string. Notice that all above methods do not share the computation

of substring edit distances of a data string and the query strings

with the same prefix. The TrieJoin algorithm is proposed in [29]

for the string join with edit distance. While it utilizes the subtrie

pruning based on edit distance, our TEDDY algorithm applies not

only the subtrie pruning based on substring edit distance but also

the required column pruning and the distance computation sharing.

3 PRELIMINARY
We present the definitions and the state-of-the-art [20] for cardinal-

ity estimation of an approximate substring query. We next provide

a naive algorithm to generate the training data for neural models.

The notations with their descriptions are summarized in Table 1.

3.1 Definitions
Let Σ be a finite alphabet of size |Σ|. For a string s of Σ∗, we represent
the length of s by |s |. s[i] with 1≤ i ≤ |s | indicates the character at
the i-th position of s . We use s[i, j] with 1≤ i ≤ j ≤ |s | to denote the

substring of s which starts from position i and ends at position j.
The empty string is denoted by ϵ .

Substring edit distance: Let d(s1, s2) be the edit distance between
two strings s1 and s2. The substring edit distance dsub (q, s) is the
smallest one among the edit distances between q and all substrings

in s . That is, dsub (q, s) = min
1≤i≤j≤ |s | d(q, s[i, j]). We present the

SQ⋈︁dsub (q,s )≤δM SD dsub (q, s)
c(q,δ )s

SQ SD c(q,0) c(q,1)
jo jill biden 1 X O

jo joseph biden 0 O O

joe joseph biden 1 X O

(a) Computing c(q, δ )s

SQ c(q,0) c(q,1)
jo 1 2

joe 0 1

john 0 0

(b) Count table C

Figure 3: Generation of the count table (δM = 1).

dynamic programming algorithm with O(|q | · |s |) time in [27] to

compute dsub (q, s). For a query string q and a string s , let us define
D[i, j] as the minimum of the edit distance between q[1, i] and every
suffix s[k, j] of s[1, j]. In other words, we have

D[i, j] = min

1≤k≤j
d(q[1, i], s[k, j]) (1)

Since the empty string is a substring of any string, D[0, j] = 0

for 0 ≤ j ≤ |s |. Furthermore, since we need at least |q | edit (i.e.,
delete) operations to transform a query string q to ϵ , D[i, 0] = i for
0 ≤ i ≤ |q |. In addition, the optimal substructure of the substring

edit distance problem gives the following recursive formula

D[i , j]=

{︄
D[i-1, j-1] if q[i]=s[j]
min(D[i-1, j], D[i , j-1], D[i-1, j-1])+1 if q[i]≠s[j].

(2)

The substring edit distance dsub (q, s) is then computed by

dsub (q, s)= min

1≤j≤ |s |
min

1≤k≤j
d(q, s[k, j])= min

1≤j≤ |s |
D[|q | , j]. (3)

3.2 LBS: The State-of-the-Art Algorithm
LBS [20] is the state-of-the-art algorithm for estimating the cardi-

nality of an approximate substring query. A string b is called a base

string of a query (q, δ ) if b can be transformed from the query string

q, with at most δ edit operations (i.e., d(b,q)≤δ ), by modeling the

insertion and substitution operations with the wildcard symbol ?.
For example, joe? and jo? are base strings of a query (joe, 1).

The LBS algorithm exploits an extended N -gram table as the

summary structure to store the cardinalities of possible base strings

with lengths up to N . It estimates the cardinality of a query (q, δ )
based on the cardinalities of the minimal base strings of q. A base

string b of the query is minimal if there does not exist any other

base string of the query which is a proper substring of b. Since the
base strings with lengths larger than N do not exist in the extended

N -gram table, the LBS algorithm approximates their cardinalities

by using MO [12] and set hashing techniques [5]. While it precisely

estimates the cardinalities of queries with short query strings, it may

suffer from low estimation accuracy for a query (q, δ ) with |q |>N .

Moreover, since the number of possible substrings appearing in SD
is generally much larger than that of strings in SD , a large extended
N -gram table should be maintained as a summary structure.

3.3 Training Data for Deep Learning Models
The base training data generated from SQ and SD consists of the

instances (q, δ , c(q, δ )) for every pair of q ∈ SQ and 0 ≤ δ ≤ δM .

After generating the count table with the columns SQ , c(q, 0), . . . ,
c(q, δM -1) and c(q, δM ), for every tuple of the count table, we add

(q, δ , c(q, δ )) with 0≤δ ≤δM to the base training data.
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The NaiveGen algorithm: We create the count table C[1..|SQ |,

0..|δM |] where C[q, δ ] represents the number of the matching data

strings for a query (q, δ ). We next initialize the table with zeroes.

Then, we compute SQ ⋈︁dsub (q,s)≤δM SD by a nested loop join

algorithm. For every data string s ∈ SD , we examine each query

string q ∈ SQ , compute dsub (q, s) and increase C[q, δ ] by one with

dsub (q, s)≤δ ≤δM . To produce the base training data, we add the

instances (q, δ , c(q, δ )) for every tuple of the count table. We refer

to this algorithm as the NaiveGen algorithm. Let SP be the set of

all distinct prefixes appearing in SQ . To produce the prefix-aug
training data, we use C[1..|SP |, 0..δM ] as the count table and add

the instances (q, δ , c(q[1, 1], δ ), . . . , c(q[1, |q |], δ )) for every pair of

q ∈ SQ and 0≤δ ≤δM . Let LSQ and LSD be the longest strings in SQ
and SD , respectively. Since computing dsub (q, s) requiresO(|q | · |s |)
time, it takesO(LSQ ·|SQ |·LSD ·|SD |) andO(LSQ ·|SP |·LSD ·|SD |) times

to produce the base and prefix-aug training datasets, respectively.

Assume that δM = 1. For SQ and SD in Figure 1(a), we show

the tuples of SQ ⋈︁dsub (q,s)≤δM SD and their dsub (q, s)s in Fig-

ure 3(a). Each line also shows whether each column c(q, δ ) is up-
dated (by marking O) or un-updated (by marking X) based on

dsub (q, s). Figure 3(b) shows the count table obtained from the ta-

ble in Figure 3(a). The base training data in Figure 1(b) is produced

by adding (q, δ , c(q, δ )) for every tuple of the count table in Fig-

ure 3(b). Notice that the prefix-aug training data from SQ and SD is

shown in Figure 1(c).

4 GENERATING TRAINING DATA
We propose the training data generation algorithms that not only

avoid the computation of unnecessary entries in D to compute sub-

string edit distances, but also share common distance computations

by utilizing the prefix relations across query strings.

4.1 Computation of the Table D
For a pair of a query string q and a data string s , if dsub (q, s) > δM ,

the count c(q, δ ) is not affected and we do not need to compute

dsub (q, s). Thus, we present a dynamic programming algorithm that

stops as soon as we know that dsub (q, s) > δM by using a lower-

bound of dsub (q, s), while computing the table D to get dsub (q, s).

The lower bound of D[i, j]: To show that D[i-1, j-1] is a lower

bound of D[i, j], we provide the following lemma.

Lemma 4.1. In the tableD computed by Equation 2 to getdsub (q, s)
for a query string q and a string s , the following statements hold.

(1) D[i, j] ≥ D[i, j-1]-1 for 0≤ i ≤ |q |, 1≤ j ≤ |s |.
(2) D[i, j] ≥ D[i-1, j]-1 for 1≤ i ≤ |q |, 0≤ j ≤ |s |.
(3) D[i, j] ≥ D[i-1, j-1] for 1≤ i ≤ |q |, 1≤ j ≤ |s |.

Proof. (1) We denote the concatenation of a string s and a char-
acter c by s ◦ c . For a pair of strings x and y with a character c , we
haved(x,y) ≤ d(x,y◦c)+d(y◦c,y) = d(x,y◦c)+1 by the triangular
inequality [1]. Thus, we have d(q[1, i], s[k, j-1])-1≤d(q[1, i], s[k, j])
for 1≤k ≤ j. By using this inequality, we get

D[i, j] = min

1≤k≤j
d(q[1, i], s[k, j])

≥ min

1≤k≤j
(d(q[1, i], s[k, j-1])-1) = D[i, j-1]-1.

(2) We omit the proof since it is similar to that of Statement (1).

(3) Since we compute D[i, j] by Equation 2, we split the proof into

two cases depending on whether q[i] = s[j] or not.

(a) When q[i] = s[j], since D[i, j] = D[i-1, j-1] by Equation 2,

D[i, j]≥D[i-1, j-1] trivially holds.

(b) When q[i]≠s[j], we can derive

D[i , j] = min(D[i-1, j-1], D[i-1, j], D[i , j-1])+1 (by Equation 2)

≥ min(D[i-1, j-1], D[i-1, j-1]-1, D[i-1, j-1]-1)+1

(by using both statements (1) and (2) in this lemma)

≥ D[i-1, j-1]. ■

We next show that Dq,s [i-1, j-1] is the tightest lower bound of

Dq,s [i, j] among the three lower bounds derived in Lemma 4.1.

Lemma 4.2. For the three lower bounds of D[i, j] obtained by
Lemma 4.1, we have D[i-1, j-1] ≥ max(D[i-1, j]-1, D[i, j-1]-1).

We omit the proof of the lemma. Please refer to the extended

version [18] of this paper. By Lemma 4.2, if D[i-1, j-1] > δM , we

have D[i, j]>δM .

The required column interval: For every row i in the table D,
we define the required column interval [Js (i), Je (i)] in which every

column index j such that D[i, j] ≤ δM is always located.

Definition 4.3 (Required column interval). We define the required

column interval of row i in a table D by

[Js (i), Je (i)]=

{︄
[1, |s |] if i ≤δM +1,
[min(S (i)∪ {∞}),max(S (i)∪ {-∞})] if i >δM +1.

(4)

where S (i) = {j |D[i-1, j-1] ≤δM , j-1 ∈ [Js (i-1), Je (i-1)]}

Since S(i) in Equation 4 is the set of the indexes j such thatD[i-1, j-1]
≤δM , if D[i, j] ≤ δM , j should be in S(i) by Lemma 4.1. Thus, [Js (i),
Je (i)] contains every column index j such that D[i, j] ≤ δM . When

S(i)= {}, since [Js (i), Je (i)] is empty, we set [Js (i), Je (i)] to [∞, -∞]

to indicate that [Js (i), Je (i)] is empty. The following lemmas show

the properties of the required column interval.

Lemma 4.4. At row i of the table D computed by Equation 2, for
every entry D[i, j] such that D[i, j] ≤ δM , the column index j is
always located in the required column interval [Js (i), Je (i)].

Proof. We prove this lemma by induction on i .
(1) For base cases (i.e., i ≤δM +1), we have [Js (i), Je (i)]= [1, |s |]

by Definition 4.3. Since we need to fill only the entries D[i, j] for
1≤ i ≤ |q | and 1≤ j ≤ |s |, any index j such that D[i, j] ≤δM should

be located in [1, |s |]= [Js (i), Je (i)].
(2) When k >δM +1, assume inductively that this lemma holds

for i < k . We shall then prove that this lemma holds for i = k .
For every index j such that D[i, j] ≤ δM , we have D[i-1, j-1] ≤ δM
by Lemma 4.1. In addition, by the inductive hypothesis, we have

j-1 ∈ [Js (i-1), Je (i-1)]. Thus, we have j ∈ S(i) by combining both

conditions. By this observation, if there exists a column index j such
that D[i, j]≤δM , we have S(i)≠ {}. Since [Js (i), Je (i)]≠ [∞,−∞], we

get [Js (i), Je (i)]= [min(S(i)),max(S(i))] by Definition 4.3. Thus, we

have j ∈ [Js (i), Je (i)]. When there does not exist any column index j
such thatD[i, j]≤δM , we have S(i)= {}. Since [Js (i), Je (i)]= [∞, -∞]

by Definition 4.3, this lemma is trivially satisfied. ■

Lemma 4.5. In the tableD computed by Equation 2, [Js (i)-1, Je (i)-1]
is contained by [Js (i-1), Je (i-1)] for (δM + 1)< i ≤ |q |.
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Proof. Since D[i-1, Js (i)-1] ≤ δM and D[i-1, Je (i)-1] ≤ δM by

Definition 4.3, and [Js (i-1), Je (i-1)] contains every column index j
such that D[i-1, j]≤δM by Lemma 4.4, this lemma holds. ■

The required column pruning: By Lemma 4.4, if we compute

the entries D[i, j] in each row i with every j ∈ [Js (i), Je (i)], we find
all entries D[i, j] such that D[i, j] ≤δM . Note that dsub (q, s) is the
minimum value in row |q | by Equation 3. If dsub (q, s) ≤ δM , after

computing row |q | of the table D, we compute dsub (q, s) by

dsub (q, s)= min

Js ( |q |)≤j≤ Je ( |q |)
D[|q | , j]. (5)

Otherwise (i.e., dsub (q, s)>δM ), we stop computing the entries in

each row i as soon as we know that [Js (i), Je (i)] is empty. We refer

to this method as the required column pruning. Once the required
column interval [Js (i), Je (i)] becomes empty, [Js (i

′), Je (i
′)] should

be empty too for every row i ′ such that i < i ′≤ |q | by Lemma 4.5.

When we compute D[i, j], since we already computed D[i-1, j]
for every j ∈ [Js (i-1), Je (i-1)] and [Js (i-1), Je (i-1)] contains [Js (i)-1,
Je (i)-1] by Lemma 4.5, we obtain the following corollary.

Corollary 4.6. If we compute D[i, j] with every j ∈ [Js (i), Je (i)]
only at each row i (in row major order), when computing D[i, j]s at
row i , D[i-1, j] is already computed for every j ∈ [Js (i)-1, Je (i)-1].

Computing the tableD: Ifdsub (q, s) > δM , since the count c(q, δ )
is not affected, we output∞ as the value of dsub (q, s). On the other

hand, if dsub (q, s) ≤ δM , we output the exact value of dsub (q, s). To
do so, for any D[i, j] such that D[i, j] > δM , we set D[i, j] = ∞.

We next show how to compute D[i, j] with D[i-1, j-1], D[i-1, j]
and D[i, j-1] based on Equation 2.

(1) When i ≤ δM +1: Since [Js (i), Je (i)] = [1, |s |] (i.e., all column

indexes) by Definition 4.3, we already have the values of D[i-1, j-1],
D[i-1, j] and D[i, j-1]. Thus, we compute D[i, j] by Equation 2.

(2) When i >δM +1: We split into three cases depending on j.
(2-1) When j= Js (i): By Corollary 4.6, D[i-1, Js (i)-1] and D[i-1,

Js (i)] are already computed. However, we have not computed D[i,
Js (i)-1] (by the required column pruning). Since D[i, Js (i)-1]>δM ,

we just set D[i, Js (i)-1]=∞ and compute D[i, j] by Equation 2.

(2-2)When j= Je (i):We already haveD[i, Je (i)-1]. We also have

D[i-1, Je (i)-1] by Corollary 4.6. Since Je (i)≤ Je (i-1)+1 by Lemma 4.5,

if Je (i)≤ Je (i-1), we have already computed D[i-1, Je (i)]. Thus, we
compute D[i, j] by Equation 2. Otherwise (i.e., Je (i) = Je (i-1)+1),
D[i-1, Je (i)] is not computed and we know that D[i-1, Je (i)] > δM .

Thus, we setD[i-1, Je (i-1)+1]=∞ and computeD[i, j] by Equation 2.
(2-3) When Js (i) < j < Je (i): Since D[i, j-1] has just been com-

puted as well as both D[i-1, j-1] and D[i-1, j] are already computed

by Corollary 4.6, we can compute D[i, j] by Equation 2.

Example 4.7. Consider a query string q=joe biden and a string
s=joeseph (joe) biden with δM =1. Figure 4 shows the entries
of D computed by considering the required intervals represented

by the shaded areas. When i ≤ δM +1, since the required column

intervals are [1, |s |] by Definition 4.3, we compute every entry of

row 1 and 2. Note that for any entry larger than δM , we set the entry

to∞. Consider the case when i >δM+1. Since [Js (3), Je (3)]= [2, 12]
and [Js (4), Je (4)]= [3, 13] by Definition 4.3, we know that the entries

D[3, 1], D[3, 13], D[4, 2] and D[4, 14] are larger than δM . Thus, we

fill those entries with ∞, and compute the entries in D[3, 2..12]

δM =1, = required column interval

j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

i q
s ϵ j o s e p h ( j o e ) b i d e n

0 ϵ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 j 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1

2 o 2 1 0 1 ∞ ∞ ∞ ∞ ∞ 1 0 1 ∞ ∞ ∞ ∞ ∞ ∞ ∞

3 e 3 ∞ 1 1 1 ∞ ∞ ∞ ∞ ∞ 1 0 1 ∞

4 4 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 1 1 1 ∞

5 b 5 ∞ ∞ ∞ 1 ∞

6 i 6 ∞ 1 ∞

7 d 7 ∞ 1 ∞

8 e 8 ∞ 1 ∞

9 n 9 ∞ 1

Figure 4: The required column intervals of D.

and D[4, 3..13] by Equation 2. After computing the entries in the

remaining rows, we compute dsub (q, s) by Equation 5 from the

entries in row 9. By the column pruning technique, we compute

only 79 entries out of 162 entries in D.

4.2 Sharing Distance Computations
For a query string q and a string s , let Dq,s [i, j] be the minimum

of edit distances between q[1, i] and all suffixes s[k, j] of s[1, j]. If
p is a prefix of a query string q, Dp,s is a subtable of Dq,s (i.e.,

Dq,s [i, j]=Dp,s [i, j] for 1≤ i ≤ |p | and 1≤ j ≤ |s |). As a result, if we
compute dsub (q, s) right after computing dsub (p, s), from the row

|p | of Dp,s , we can compute the rows (|p |+1), (|p |+2), . . . , |q | in the

tableDq,s . Moreover, for a string s , ifp is a common prefix of several

query strings in SQ , we can reuse Dp,s to compute Dq,s for those

query strings q. Thus, for a string s , to compute Dq,s with every

q ∈ SQ , we create and use a single global table D[0..LSQ , 0..LSD ]
where LSQ and LSD are the maximum lengths of a query string in

SQ and a string in SD , respectively.

Query ordering scheme: Assume that the elements in the query

string set SQ = {q1,q2, . . . ,q |SQ |} are ordered alphabetically. Then,

for each string s ∈ SD , if we compute dsub (qℓ, s) one by one for

1≤ ℓ ≤ |SQ |, we can maximize sharing of computations across all

query strings. Let LCP(q(ℓ-1), qℓ) be the longest common prefix of

q(ℓ-1) and qℓ . When computing dsub (qℓ, s), since Dqℓ-1,s is already

stored in the table D, after filling only the entries in D from row

(|LCP(q(ℓ-1),qℓ)|+1) to row |qℓ |, we can get dsub (qℓ, s) from row

|qℓ | in the table D by Equation 3. We refer to this approach as the

query ordering scheme and next present its computational overhead.

Lemma 4.8. Given a string s in SD , the query ordering scheme
computes a single row |p | in the table D for each distinct prefix p of
the query strings in SQ .

Proof. To computedsub (q, s) between a string s and every query
string q in SQ by dynamic programming, we have to in fact com-

pute Dp,s for all distinct prefixes p appearing in SQ . For any such

a distinct prefix p, to compute Dp,s , we can compute only row

|p | in table Dp,s by reusing row (|p |-1) in the table Dp[1.. |p |-1],s
Furthermore, Dp,s remains in the global table D until we examine

the last query string with the prefix p in alphabetical order since

the query strings with the prefix p always appear contiguously in

alphabetical order [7]. Thus, we compute row |p | in table D exactly

once for every prefix p appearing in SQ . ■
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(a) A trie

j 0 1 2 3 4 5 6 7 8 9 10

i q
s ϵ j i l l b i d e n

0 ϵ 0 0 0 0 0 0 0 0 0 0 0

1 j 1 0 1 1 1 1 1 1 1 1 1

2 o 2 1 1 ∞∞∞∞∞∞∞∞

3 e 3∞∞∞∞

4

...

(b) jo and joe (n2 and n3)

j 0 1 2 3 4 5 6 7 8 9 10

i q
s ϵ j i l l b i d e n

0 ϵ 0 0 0 0 0 0 0 0 0 0 0

1 j 1 0 1 1 1 1 1 1 1 1 1

2 o 2 1 1 ∞∞∞∞∞∞∞∞

3 h 3∞∞∞∞

4 n
...

(c) john (n5)

Figure 5: The global table D while examining query strings.

Reusing required column intervals: Letp=LCP(qℓ-1,qℓ). Since
the rows |p | of Dqℓ-1,s and Dqℓ ,s are the same as well as the re-

quired column interval of row (|p |+1) is determined by row |p | by
Definition 4.3, the rows (|p |+1) in Dqℓ-1,s and Dqℓ ,s have identical

required column intervals. Thus, we reuse the intermediate compu-

tations Dp,s and the required column interval [Js (|p |+1), Je (|p |+1)]
to compute Dq,s for all query strings q with the common prefix p.

To efficiently generate a training data by the query ordering

scheme, we propose the TEDDY (Trie-basED DYnamic program-

ming) algorithm and the SODDY (SOrting-baseDDYnamic program-

ming) algorithm. Since both algorithms are essentially the same

except the use of a sorted list and a trie, we next present the TEDDY

algorithm only. The details of the SODDY algorithm including its

pseudocode can be found in the extended version [18] of the paper.

4.3 The TEDDY Algorithm
We build a trie from query strings in SQ and next traverse the trie

in preorder to generate a training data.

A trie: It is a tree structure where each path from the root node to a

node ni represents a string ni .q and every node nj on the path has

a label of a character, denoted by nj .c , in the string. The root node

n0 of a trie is annotated with a special empty character ϵ and the

child nodes of a node ni are alphabetically ordered by their labels.

We build a trie in which every distinct prefix of the query strings

corresponds to a unique node in the trie. For example, a trie gen-

erated from the three query strings of SQ in Figure 1(a) is shown

in Figure 5(a). The character within the circle at each node is the

annotated character at that node. The number above a node is the

node id. The shaded arrows represent the order of the nodes vis-

ited in the preorder traversal. Note that by traversing the trie in

preorder, query strings are visited in the order of jo, joe and john.

Key idea: To produce the base training data, we traverse the trie
in preorder for each string s ∈ SD . To store the cardinality c(qℓ, δ )
for every pair of qℓ ∈SQ and 0≤δ ≤δM , we create the count table

C[1..|SQ |, 0..δM ] and initialize its entries with zero. While visiting

a node n, if [Js (|n.q |+1), Je (|n.q |+1)] is empty, we skip calculating

the remaining rows in Dq,s for all query strings q represented by

the descendants of n since they have n.q as a prefix. Otherwise,

since the string represented by n’s parent node is a prefix of n.q,
we simply compute row |n.q | from row (|n.q |-1) in the table D. If
n.q represents a query string qℓ ∈ SQ , we also compute dsub (qℓ, s)
and increase the count table C[qℓ, δ ] for dsub (qℓ, s)≤δ ≤δM .

Procedure TEDDY(SQ , SD , δM )

Input: A query string set SQ , a string set SD and a maximum threshold δM
Output: The training data
begin
1. LSQ = maxq∈SQ |q |
2. LSD = maxs∈SD |s |
3. Create D[0..LSQ , 0..LSD ] and initialize the entries with zero

4. Create C[1.. |SQ |, 0..δM ] and initialize the entries with zeros

5. Create the table J [1..LSQ ]

6. T = дenT r ie(SQ )

7. S = createEmptyStack()
8. for each string s ∈ SD
9. J [1].s = 1

10. J [1].e = |s |
11. for each child nc of T .root
12. PU SH (S , nc )
13. while S is not empty

14. n = POP (S )
15. i = |n .q |
16. if i > δM +1 and J [i].s > 0

17. D[i , J [i].s-1]=∞
18. if i > δM +1 and J [i].e-1 = J [i-1].e
19. D[i-1, J [i].e]=∞
20. Compute row i of D in [J [i].s , J [i].e] by Equation 2

21. Compute [Js (i+1), Je (i+1)] by Definition 4.3

22. J [i+1].s = Js (i+1)
23. J [i+1].e = Je (i+1)
24. if n .q is a query string qℓ ∈ SQ // row |qℓ | is computed

25. dist =minJs [i ]≤j≤ Je [i ] D[i , j] // i.e., dsub (n .q, s)
26. for δ = dist to δM
27. C[qℓ , δ ] = C[qℓ , δ ]+1
28. if [J [i+1].s , J [i+1].e] is not empty

29. for each child nc of n
30. PU SH (S , nc )
31. Open training data file

32. for each query string qℓ ∈ SQ
33. for δ from 0 to δM
34. Output (qℓ , δ ,C[qℓ , δ ])
end

Figure 6: The TEDDY algorithm.

The pseudocode: It is presented in Figure 6. We use a table D to

store the table Dq,s and the count table C (lines 3-4). To store the

required column intervals, we also use the table J (line 5). We build a

trie from the query strings in SQ by invoking the genTrie procedure
and initialize an empty stack S by invoking createEmptyStack (lines

6-7). The stack S keeps the nodes to visit next in the preorder

traversal. For each string s in SD , the TEDDY algorithm traverses

the trie in preorder to compute dsub (q, s) for every query string q
in SQ . We first initialize [Js (1), Je (1)] = [1, |s |] and add the child

nodes of the root node to the stack S (lines 9-12). In each iteration

of the while loop (lines 13-30), we pop the node n to visit next from

the stack S (line 14). To compute D[i, Js (i)] and D[i, Je (i)] correctly,
as we discussed previously in Section 4.1, we let D[i, Js (i)-1] =
D[i-1, Je (i)]=∞ (lines 16-19). We compute the entries D[i, j] in row

i of the table D for every j ∈ [Js (i), Je (i)] (line 20). After computing

[Js (i+1), Je (i+1)] from row i in the table D based on Definition 4.3,

we let J [i+1].s = Js (i+1) and J [i+1].e = Je (i+1) (lines 21-23). If the
node n represents a query string qℓ ∈ SQ , we set dist to the value

of dsub (qℓ, s) computed by Equation 5, and increaseC[qℓ, δ ] by one
for every dist ≤δ ≤δM (lines 24-27). If the required column interval

[Js (i+1), Je (i+1)] is empty, since dsub (q, s)> δM for every query

stringq represented by the descendants ofn, we do not add the child
nodes of n to the stack S . Otherwise, to traverse the descendants of

n, we push every child node of n to S (lines 28-30). After we finish
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the outer for-loop (lines 8-30), for every query string qℓ ∈ SQ , we
generate the training data by writing (qℓ, δ ,C[qℓ, δ ]) to the output

file with 0≤δ ≤δM .

Example 4.9. Consider SQ and SD in Figure 1(a) with δM = 1.
The TEDDY algorithm first builds a trie T in Figure 5(a). We ini-

tialize the count table C[1..3, 0..1] with zeroes. We next create an

array J and an empty stack S . Then, we add a child node n1 of the
root node n0 to S . For a string s=jill biden, we traverse the trie
in preorder to compute dsub (q, s) for every query string q ∈ SQ .
While traversing n1 and n2, since [Js (1), Je (1)] = [Js (2), Je (2)] =
[1, |s |] by Definition 4.3, we compute every entry in both rows 1

and 2 of the table D. Since n2 represents the first query string

jo, we compute dsub (jo,jill biden) by Equation 5. Because

dsub (jo,jill biden) = 1, we increase C[jo, 1] by one. Among

the entries in row 2, since only D[2, 1] and D[2, 2] are at most δM ,

we compute [J [3].s, J [3].e]= [2, 3] by Definition 4.3. Then, we let

J [3].s=2 and J [3].e=3. Since [J [3].s, J [3].e] is not empty, we push

n3 and n4 into the stack S to visit nodes in the preorder traversal.

When we next visit n3, since every entry of row 2 in the table D and

[J [3].s, J [3].e](=[2, 3]) are previously computed and stored, we reuse

them. Since [J [3].s, J [3].e]= [2, 3], we initialize D[3, 1]=∞ and fill

the entries D[3, 2] and D[3, 3] by Equation 2, as shown Figure 5(b).

For the query string joe, since D[3, 2]> δM and D[3, 3]> δM , we

conclude that dsub (joe, jill biden)>δM and do not update the

tableC . Finally, we visit n4 and next n5, which represents the query

string john, and compute the table Djohn,jill biden. After filling

the entries D[3, 2] and D[3, 3] by Equation 2, since all entries D[3, j]
are larger than δM with j ∈ [Js (3), Je (3)], we immediately stop

the rest of computing Djohn,jill biden. Similarly, by traversing the

trie for the remaining data strings, we obtain C in Figure 3(b). The

training data generated by adding the training instance (q, δ , c(q, δ ))
from every tuple of the count table is shown in Figure 1(b).

Generating the prefix-aug training data: We can modify the

TEDDY algorithm to output (qℓ, δ , c(qℓ[1, 1], δ ), . . . , c(qℓ[1, |qℓ |], δ ))
for every pair of qℓ ∈ SQ and 0 ≤ δ ≤ δM as follows. Let SP
be the set of all distinct prefixes in SQ . We use C[1..|SP |, 0..δM ]

instead of C[1..|SQ |, 0..δM ] as the count table in line 4 and add

the instances (q, δ , c(q[1, 1], δ ), . . . , c(q[1, |q |], δ )) for every pair of

q ∈ SQ and 0 ≤ δ ≤δM . Furthermore, we have to computedsub (p, s)
for every distinct prefix p ∈ SP . Thus, we remove the line 24,

which enforces to execute the lines 25-27 to calculate dsub (qℓ, s)
only for qℓ ∈ SQ , in the while-loop and replace (qℓ, δ ,C[qℓ, δ ]) by
(qℓ, δ ,C[qℓ[1, 1], δ ], . . . , C[qℓ[1, |qℓ |], δ ])) in line 34.

Time complexity: For each string s ∈ SD , the query ordering

scheme accesses query strings in SQ once. As we discussed previ-

ously, since we consider each distinct prefix p in SP (i.e., the set of

all distinct prefixes appearing in SQ ), it takes at mostO(|s |) time to

compute row |p | in the table D. Note that sorting the query strings

takesO(|SQ | ·log |SQ | ·LSQ ) time while building a trie takesO(|SP |)
time. Since examining query strings once by either scanning the

sorted query strings or traversing the trie built from query strings

takesO(|s | · |SP |) time, both TEDDY and SODDY algorithms require

O(|SP | ·LSD · |SD |) time to compute Dq,s for every pair of a query

string q in SQ and a data string s in SD . Note that their time com-

plexities are the same regardless of generating base training data or

Figure 7: The architecture of DREAMmodel.

prefix-aug training data. Recall that the NaiveGen algorithm takes

O(LSQ ·|SQ |·LSD ·|SD |) andO(LSQ ·|SP |·LSD ·|SD |) times to produce

the base and prefix-aug training datasets, respectively.

5 NEURAL CARDINALITY ESTIMATION
Existing deep learning models used for the cardinality estimation

of string predicate queries can be viewed as an encoder-decoder

model [26, 31]. The encoder produces a hidden representation of

a query, and the decoder outputs the estimated cardinality based

on the hidden representation. While the Astrid model in [26] can

estimate the cardinality of a substring query, it is difficult to handle

the approximate substring queries. As pointed out in Section 2, to

adapt the Astrid model to estimate the cardinalities of approximate

substring queries (q, δ ), we need to build a model for every distance

threshold δ with 0≤δ ≤δM . On the other hand, the CardNet model

in [31] utilizes a feedforward neural network (FNN) to construct the
encoder as well as the decoder. As addressed in Section 2, since FNN
does not share model parameters across positions in each query

string, it requires a large number of model parameters. Moreover,

it cannot handle a query string longer than a certain length.

5.1 Key Ideas of the DREAMmodel
The DREAM model is an encoder-decoder model that utilizes LSTM
[8] as an encoder to treat a query string as a sequence of char-

acters as done in [22, 26]. Since LSTM is run over each character

of a query string, the LSTM encoder enables the sharing of model

parameters across positions in each query string as well as learning

the cardinality relationships across the prefixes of a query.

The architecture of the DREAM model is shown in Figure 7. For

a substring query (q, δ ), in each step t , we first transform every pair

of each character q[t] and δ into a real-valued feature vector. The

LSTM encoder next generates the hidden representation ht with the

previous hidden representation ht−1 and the feature vector of the

pair (q[t], δ ). Note that ht is the hidden representation of the prefix

query (q[1, t], δ ). After producing h |q | , the FNN decoder outputs

the estimated cardinality c̃(q, δ ) of c(q, δ ) by taking h |q | as input.

If we want to additionally produce c̃(q[1, t], δ ) of the prefix query
(q[1, t], δ ) in step 1≤ t < |q |, we apply the FNN decoder.

The possible learning methods for the DREAM model are shown

in Figure 8. If we use the base training data, as illustrated in Fig-

ure 8(a), the conventional learning updates the model parameters

for each training instance (q, δ , c(q, δ )). In this case, we learn the

cardinality relationships across the queries (q, δ ) with 0≤δ ≤δM
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(a) Conventional learning (Base) (b) Conventional learning (Prefix-aug) (c) Packed learning (Prefix-aug)

Figure 8: The learning methods for the DREAMmodel.

but may not learn those across the prefix queries (q[1, t], δ ) with
1 ≤ t ≤ |q |. However, if we use the prefix-aug training data, the

DREAM model can learn both cardinality relationships. As illus-

trated in Figure 8(b), for a training instance (joe, δ , c(j, δ ), c(jo, δ ),
c(joe, δ )), the conventional learning trains the DREAM model one

by one with the training instances (j, δ , c(j, δ )), (jo, δ , c(jo, δ )) and
(joe, δ , c(joe, δ )). Using the prefix-aug training data improves the

estimation accuracy of the model but incurs additional overheads

to train the model with the prefix queries. To reduce such over-

heads while learning the cardinality relationships among the pre-

fixes of each query, we propose a novel learning method, called

packed learning, which trains the model once for a prefix-aug train-

ing instance. As illustrated in Figure 8(c), for a training instance

(joe, δ , c(j, δ ), c(jo, δ ), c(joe, δ )), in every step t , the packed learn-
ing enforces the DREAM model to output c̃(q[1, t], δ ) and updates

the model parameters to accurately estimate c(q[1, t], δ ).

5.2 The DREAM Model
We present the details of the encoder as well as the decoder.

Embedding layer: When using deep learning models, we usually

transform raw inputs into low-dimensional real-valued vectors. Let

hc , hd and |Σ| be the sizes of a character embedding, a distance

embedding and the alphabet, respectively. For an approximate sub-

string query (q, δ ), the model has a character embedding matrix

Echr of type Rhc×|Σ | and a distance embedding matrix Edst of type

Rhd×(δM+1) to map each character q[t] and a distance threshold δ

into the embedding vectors, denoted by echrq[t ] and e
dst
δ , respectively.

Each embedding vector is obtained by the corresponding column

vector of an embedding matrix as

echrq[t ] = Echr [q[t]] and edstδ = Edst [δ ].

We use echrq[t ] ⊕ edstδ as the vector representation of the pair (q[t], δ )

where the symbol ⊕ represents the concatenation operator.

The LSTM encoder: Since we utilize LSTM as an encoder, we can

handle query strings with any length. At each step t , the LSTM

encoder receives echrq[t ] ⊕ edstδ and ht-1 as input, and computes the

hidden representation ht of a prefix query (q[1, t], δ ) by

ht = f (echrq[t ] ⊕ edstδ ,ht−1)

where f is an LSTM cell as a recurrent unit.

The FNN decoder: The FNN encoder takes ht as input, performs

a linear transform and applies an ReLU activation function to en-

sure that the estimated cardinality is non-negative. It outputs the

estimated cardinality c̃(q[1, t], δ ) by computing

c̃(q[1, t], δ ) = ReLU(W ·ht +b)

where bothW and b are the parameters of FNN.

5.3 Learning Methods
After illustrating the conventional learning method, we present the

proposed packed learning method.

Loss function: We use the mean squared logarithmic error (MSLE)
instead of the mean squared error (MSE) as a loss function. The MSLE
is a multiplicative error and narrows down the large output space

to a smaller one, thereby decreasing the learning difficulty [31].

The squared logarithmic error Lq,δ between c(q, δ ) and c̃(q, δ ) is

Lq,δ = (log(c(q, δ )) − log(c̃(q, δ )))2.

The MSLE loss of the base training data, denoted by Lbase, is

Lbase =
1

|SQ | · (δM + 1)
Σq∈SQ Σ

δM
δ=0Lq,δ .

The MSLE loss of the prefix-aug training data, Lprefix-aug, is

Lprefix-aug =
1

|SQ | ·(δM + 1)
Σq∈SQ Σ

δM
δ=0

1

|q |
Σ
|q |
t=1Lq[1,t ],δ .

Conventional learning: To minimize the losses, we adopt sto-

chastic gradient descent (SGD) by using the Adam optimizer [14].

It trains the DREAM model with a set of training instances, each

of which has only a single estimated cardinality. Let Tbase be the
base training data and (qi , δi , c(qi , δi )) be the i-th instance inTbase.
Then, for a mini-batch I ⊂ {i |1≤ i ≤ |Tbase |} of a batch size b, the
mini-batch loss on I is LI = (Σi ∈ILqi ,δi )/|I |. On the other hand, let

Tprefix-aug be the prefix-aug training data and (qi , δi , c(qi [1, 1], δi ),
. . . , c(qi [1, |qi |], δi )) be the i-th instance inTprefix-aug. Then, for a
mini-batch I ⊂ {(i, j)|1≤ i ≤ |Tprefix-aug |, 1≤ j ≤ |qi |} of a batch size

b, the mini-batch loss on I becomes LI = (Σ(i , j)∈ILqi [1, j],δi )/|I |.

Packed learning: To train the DREAM model with the prefix-aug
training data efficiently and effectively, the packed learning method

trains the model once for each prefix-aug training instance which

contains the cardinalities of all prefix queries of a query. For a mini-

batch I ⊂ {i |1≤ i ≤ |Tprefix-aug |} of a batch size b, the mini-batch

loss on I is

LI =
1

|I |
Σi ∈I Σ

|qi |
j=1Lqi [1, j],δi .

To minimize the above mini-batch loss, for each query (qi , δi ), the
packed learning method updates the model parameters by using

the estimated cardinalities of all prefix queries of (qi , δi ), as shown
in Figure 8(c). For an instance of the prefix-aug training data, the
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Table 2: Statistics about the datasets.

String Set (SD ) Query Set (SQ )

Dataset |Σ | |SD | ℓavд ℓmax |SQ | ℓavд ℓmax |SP |
|SP |

|SQ |

WIKI 3735 1,031,930 98.4 300 170,136 12.1 20 1,072,056 6.3

IMDB 81 1,000,000 19.2 278 464,985 12.4 20 2,494,460 5.4

DBLP 63 50,000 61.6 301 24,764 13.5 20 176,241 7.1

GENE 4 15,400 225.4 469 21,613 13.0 20 136,644 6.3

packed learning and conventional learning methods perform the

forward-backward pass O(|q |) and O(|q |2) times, respectively.

Computational efficiency: When LSTM with d units and O(d2)
weights is run over u steps, it performs O(d2u) arithmetic opera-

tions during the forward-backward pass [33]. Thus, for a prefix-aug
training instance, since the packed learning method performs the

forward-backward pass O(|q |) times, it requires O(d2 |q |) time to

train the DREAM model with a prefix-aug training instance. On the

other hand, since the conventional learning method performs the

forward-backwardO(|q |2) times, it takesO(d2 |q |2) time to train the

DREAM model with a prefix-aug training instance.

6 EXPERIMENTS
We empirically evaluate the TEDDY and SODDY algorithms as well

as the DREAM model with the packed learning method.

Experimental setting: We implement all estimators in python

with PyTorch and train them on an NVIDIA RTX 3090 GPU. More-

over, we implement data generation algorithms in C++ and run

them on a machine with an Intel i7-8700 3.2GHz CPU.

Datasets:We use three real-life datasets for our performance study.

• WIKI:We create SD by selecting sentences from 101,873Wikipedia

articles in the DocRED dataset [36] and use entity mentions in

the Wikipedia articles as SQ .
• IMDB: We produce SD by choosing movie titles from IMDB data

in https://datasets.imdbws.com. We generate SQ by sampling

substrings of the strings in SD .
• DBLP: We use titles of DBLP articles as SD in [32] and create SQ
by randomly choosing substrings of the strings in SD .

• GENE: We use the DNA sequences in [37] as SD and produce SQ
by selecting substrings of the DNA sequences in SD .

The statistics of the datasets are summarized in Table 2. The average

and maximum lengths of a string in a string set are represented by

ℓavд and ℓmax , respectively. Recall that Σ represents the alphabet

of a dataset and SP is the set of all distinct prefixes in SQ . We limit

the maximum query length to 20 and set the default value of δM
to 3. We produce the queries for every pair of q ∈ SQ and δ with

0≤δ ≤δM . For each dataset, after generating the training data with

SQ , SD and δM , we put 80%, 10% and 10% of the data in the training

set, the validation set and the test set, respectively.

Training data generation: We implement the algorithms below.

• NaiveGen: It is the naive algorithm presented in Section 3.3.

• Qgram: This is a modified NaiveGen algorithm by applying the

q-gram pruning technique in [13] to reduce the unnecessary

substring edit distance computation.

• TASTE: It refers to a modified NaiveGen algorithm by utilizing

the partition-based pruningmethod in [6]. Note that TASTE is the

state-of-the-art algorithm for processing approximate substring

matching using edit distance.

• TEDDY: This denotes the TEDDY algorithm in Section 4.3.

• SODDY: It is another variant of the query ordering scheme to scan

sorted query strings. See our extended version [18] for details.

Cardinality estimators:We implement and compare the follow-

ing cardinality estimators for approximate substring queries.

• LBS: This is the state-of-the-art [20] for cardinality estimation of

approximate substring queries among the traditional approaches.

• Astrid: This is a neural cardinality estimation model [26] for

substring queries. We build a model for each distance threshold

δ to support approximate substring queries. Since it requires the

cardinalities of all prefix queries for each query, we evaluate this

model only with the prefix-aug training data.

• CardNet: This is the state-of-the-art model [31] for cardinality

estimation of approximate queries. We adapt this model to the

cardinality estimation problem of approximate substring queries.

• DREAM: This is the proposed model presented in Section 5.

Evaluation measures: We report estimation accuracy by the q-

error (i.e., max( est imactual ,
actual
est im )) [10, 15, 16, 26]. We lower bound

the estimated and actual cardinalities at 1 to prevent division by

zero. We run all training data generation algorithms and estimators

three times, and average the execution times and estimation errors.

Hyperparameters: To set the hyperparameters, we vary the num-

ber of hidden units (128, 256, 512, 1024), the batch size (16, 32, 64,

128) and the learning rate (0.1, 0.01, 0.001). Our model with the 512

hidden units, the batch size of 32 and the learning rate of 0.01 per-

formed the best. We set the size of a character embedding hc to 95

and that of a distance embedding hd to 5. The numbers of layers in

the LSTM encoder and the FNN decoder are 1 and 3, respectively. We

use the activation function leaky-ReLU in the FNN decoder. We train

our model for up to 100 epochs with early stopping if the validation

accuracy has not improved in the last 5 epochs. We also tuned the

hyperparameters of compared models. However, the details are in

our extended version [18] of this paper due to space limitations.

6.1 Training Data Generation
Varying |SQ |: To produce the base and prefix-aug training datasets,
we run the NaiveGen, Qgram, TASTE, TEDDY and SODDY algo-

rithms while varying the size of the query string set. We produce

each query string set by selecting the query strings in SQ and vary-

ing the sampling rate from 1% to 100%. We present the results in

Figure 9 but do not report the execution time of an algorithm if it

did not finish within 30 hours.

The TEDDY and SODDY algorithms are the best two performers

for all datasets. The TASTE algorithm has the third-best perfor-

mance. Note that the TEDDY and SODDY algorithms are at least

2.5 and 11.3 times faster than the TASTE algorithm when produc-

ing the base and prefix-aug training datasets, respectively. Recall

that the NaiveGen algorithm takes O(LSQ · |SQ | ·LSD · |SD |) and

O(LSQ · |SP | ·LSD · |SD |) times to generate the base and prefix-aug
training datasets, respectively. Thus, it is more expensive to gen-

erate the prefix-aug training data. Since the Qgram and TASTE

algorithms are implemented by applying the q-gram pruning in
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(a) WIKI (Base) (b) WIKI (Prefix-aug)

(c) IMDB (Base) (d) IMDB (Prefix-aug)

(e) DBLP (Base) (f) DBLP (Prefix-aug)

(g) GENE (Base) (h) GENE (Prefix-aug)

Figure 9: Generating the training data.

Table 3: Generation time (sec) of the training data (100%).

Base Prefix-aug

WIKI IMDB DBLP GENE WIKI IMDB DBLP GENE

SODDY 28204 11248 131 302 44216 21093 185 426

TEDDY 29283 11434 135 288 40862 18526 165 361

[13] and the partition-based pruning in [6] to the NaiveGen algo-

rithm, respectively, the three algorithms exhibit similar behavior.

This is also confirmed by the graphs in Figure 9. Moreover, the

three algorithms cannot generate even 10% of the prefix-aug train-

ing data while the TEDDY and SODDY algorithms produce 100% of

the prefix-aug training data for every dataset.

To compare the TEDDY and SODDY algorithms, we provide

their execution times for the sampling rate 100% in Table 3. For

the prefix-aug training data, the TEDDY algorithm always outper-

forms the SODDY algorithm by up to 17.9%. On the other hand, the

SODDY algorithm is slightly faster than the TEDDY algorithm to

produce the base training data except for the GENE dataset. Note

Table 4: Ablation study of the TEDDY algorithm.

DBLP GENE

Filled (×1010) Time (sec) Filled (×1010) Time (sec)

Setting Base Prefix Base Prefix Base Prefix Base Prefix

NaiveGen 92.7 547.0 1,367 8,301 87.9 503.1 1,210 7,239

TEDDY-S 49.6 49.6 825 1023 43.4 43.4 559 753

TEDDY-R 36.9 264.0 666 4,222 61.5 391.9 1,019 6,188

TEDDY 5.7 5.7 135 165 17.8 17.8 288 361

that the subtrie pruning by the TEDDY algorithm is more effective

when there are many queries sharing their prefixes. For the prefix-
aug training data, since there are a lot of query strings sharing a

common prefix, the TEDDY algorithm is faster than the SODDY

algorithm. Because the TEDDY algorithm is faster than or compa-

rable to the SODDY algorithm, we use the TEDDY algorithm as the

representative of query ordering schemes in the rest of the paper.

Ablation study: To validate the effectiveness of the required col-

umn pruning as well as the distance computation sharing by our

TEDDY algorithm, we conduct an ablation study with TEDDY-R

and TEDDY-S that denote the TEDDY algorithms with only the re-

quired column pruning and only the distance computation sharing,

respectively. We report the results with DBLP and GENE datasets

only since TEDDY-R and TEDDY-S did not finish for the other

datasets within 30 hours. Note that the NaiveGen algorithm utilizes

neither the required column pruning nor the distance computation

sharing. We show the number of filled entries in the table D and

the execution time in Table 4. For the prefix-aug training data, since
there are a lot of query strings sharing a common prefix, TEDDY-S

significantly reduces the number of computed entries in the table D.
For instance, TEDDY-S prunes at least 91% of the entries in the table

D for DBLP and GENE datasets. As expected, the TEDDY algorithm

performs significantly better than TEDDY-S and TEDDY-R.

6.2 Cardinality Estimation
Estimation accuracy: We evaluate the performance of all cardi-

nality estimators with both types of training data. In Table 5, we

report the average error, 50th, 90th, 99th and 100th (i.e., max error)

percentile errors with the default value of δM =3. We report more

percentiles with 1 ≤ δM ≤ 5 in the extended version [18] of this

paper. Since the Astrid model can be trained only with prefix-aug
training data, we cannot report its accuracy for the base training
data. The DREAM model outperforms all other estimators for all

datasets. Since the LBS algorithm leverages only short strings and

simple statistical relations, it is insufficient for estimating com-

plicated underlying patterns. On the other hand, since the Astrid

model is trained separately for each distance threshold, it cannot

capture the relationship between queries that have different thresh-

olds. In addition, since adopting a sequential model is adequate

for string queries, the generalization performance of the DREAM

model is better than that of the CardNet model. Note that the max-

imum error (the 100th percentile) is 27.6 times greater than the

99th quantile error on average. Since the maximum errors are much

higher than average errors for all estimators, suppressing the max-

imum error for the DREAM model is an interesting direction for

future research. For each neural estimator, training the estimator
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Table 5: Accuracy of cardinality estimation.

WIKI IMDB DBLP GENE

Type Estimators Avg. 50th 90th 99th Max. Avg. 50th 90th 99th Max. Avg. 50th 90th 99th Max. Avg. 50th 90th 99th Max.

Traditional LBS 3.750 1.498 7.000 35.0 1418 3.165 1.353 6.149 25.7 528 3.004 1.321 6.000 26.0 178 2.881 1.311 6.487 23.139 61.0

Base CardNet 4.267 1.661 5.632 35.3 25899 2.594 1.539 4.477 15.8 1454 3.301 1.670 6.003 24.8 233 1.633 1.217 2.606 6.539 41.3

DREAM 3.290 1.626 4.627 24.0 9753 2.252 1.464 3.789 12.5 1248 2.869 1.512 4.787 21.2 291 1.230 1.048 1.683 3.067 18.7

Prefix-aug Astrid 6.912 1.827 7.469 47.4 23619 3.559 1.515 4.008 16.6 159887 3.134 1.525 5.877 25.9 204 1.448 1.118 2.065 4.947 65.8

CardNet 3.358 1.602 4.872 26.2 1914 2.175 1.385 3.604 12.7 2040 2.811 1.435 5.006 20.3 414 1.527 1.147 2.302 6.182 42.3

DREAM 2.663 1.495 4.107 18.4 1279 2.006 1.392 3.284 10.3 598 2.031 1.245 3.274 12.6 152 1.202 1.050 1.563 2.931 16.9

(a) WIKI (b) IMDB (c) DBLP (d) GENE

Figure 10: Trade-off between accuracy and time.

Table 6: Effectiveness of the packed learning method.

WIKI IMDB DBLP GENE

Error

Time

(min)

Error

Time

(min)

Error

Time

(min)

Error

Time

(min)

Traditional 2.90 316 2.32 1042 2.09 60 1.21 149

Packed 2.72 46 2.01 160 2.10 10 1.20 14

with the prefix-aug training data is more accurate than training

the estimator with the base data. Thus, we report the experimental

results only for the prefix-aug training data in the rest of the paper.

Trade-off between Accuracy and Time: We plot the accuracy

against the model generation time (i.e., the total time to generate

the training data as well as train the DREAM model) with varying

the size of the query string set SQ for both training data types in

Figure 10. As discussed in Section 6.1, since the TASTE algorithm

is the best among the tested algorithms except for the TEDDY and

SODDY algorithms, we compare the TEDDY algorithm only with

the TASTE algorithm. The number at each point in the graphs

denotes the sampling rate (percentage) of the query strings in SQ .
At the same model generation time, the DREAM model is the most

accurate when it is trained on the prefix-aug data generated by

the TEDDY algorithm. Furthermore, with the same sampling rate,

the model generation time using the TEDDY algorithm with the

prefix-aug training data is slower, but the trained model has higher

accuracy. On the other hand, for every dataset, using the TEDDY

algorithm evenwith the 40% sample of prefix-aug training data has a
faster model generation time and a higher estimation accuracy than

that with the 100% sample of base training data. This confirms the

improved trade-off by utilizing the prefix-aug training data instead

of the base training data. Since the TASTE algorithm do not finish

within 30 hours for the prefix-aug training data of the WIKI dataset,

Figure 11: Q-errors of estimators by varying δM (WIKI).

we do not report the result of the TASTE algorithm in Figure 10(a).

Note that using the TASTE algorithm with the prefix-aug training

data instead of the base training data worsens the trade-off.

Effectiveness of the Packed Learning: To compare the perfor-

mance of the conventional learning and packed learning methods

for the DREAMmodel with the prefix-aug training data, we present
the accuracies and training times of both methods in Table 6. The

training time using the packed learning method is at least 6 times

faster than that of the conventional learning method. The reason is

that the conventional learning and packed learning methods take

O(|q |2 ·d2) and O(|q | ·d2) times to train a query, respectively, as

discussed in Section 5.3. Meanwhile, the DREAM model trained

with the packed-learning method is generally more accurate than

that trained with the conventional learning method.

Varying δM :We also study the performance of all estimators with

other maximum distance thresholds δM and report the results on

the WIKI dataset in Figure 11. Since the estimation time of the

LBS algorithm increases exponentially with δ and even a single

estimation did not finish within an hour with δM = 5, we do not

report the result of the LBS algorithm with δM = 5. The DREAM
model consistently shows the lowest error for 1≤δM ≤ 5 and the
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(a) WIKI (Accuracy) (b) WIKI (Training time)

(c) DBLP (Accuracy) (d) DBLP (Training time)

Figure 12: Accuracy and training time.

Table 7: Sizes of estimators (MB) with δM =3.

WIKI IMDB DBLP GENE

LBS 89.95 46.56 13.69 27.82

Astrid 169.22 28.72 26.72 19.35

CardNet 50.39 26.21 22.55 10.56

DREAM 7.88 7.84 7.83 7.81

error becomes smaller as δM increases. In contrast, the error of the

Astrid model becomes larger with increasing δM becomes larger.

Effects of Training Data Size: Since the LBS algorithm does

not require the training data, we conduct the experiment with

the neural estimators only by varying the size of training data.

Due to the lack of space, the q-errors and the training times of

the models on WIKI and DBLP datasets only are shown in Fig-

ure 12. Refer to the extended version of the paper [18] for the

other datasets. We use the packed learning method to train the

DREAM model with the prefix-aug training data. Since we can-

not use the packed learning method with the CardNet and Astrid

models, we utilize the conventional learning method to train them

with the prefix-aug training data. Specifically, for a single instance

(q, δ , (c(q[1, 1], δ ), . . . , c(q[1, |q |], δ ))), we train them using multi-

ple instances (q[1, ℓ], δ , c(q[1, ℓ], δ )) with 1≤ ℓ ≤ |q |. The DREAM
model has the fastest training time as well as the highest accuracy

with the same training data size among the deep learning models.

The Astrid model takes much more training time than other deep

learning models and it finishes within 30 hours only for the DBLP

dataset. As expected, with increasing the training data size, the

accuracy is better but the training time increases.

Sizes of estimators: We show the sizes of all estimators used in

the experiment in Table 7. For every dataset, we set each estimator

to have the same size for both types of the training data. Note that

the sizes of estimators depend on the datasets. For every dataset, the

DREAM model is the most accurate with the smallest size among

all estimators. Since the Astrid model consists of a single model

for each different distance threshold, it requires a large model size.

Figure 13: Estimation time of estimators (DBLP).

On the other hand, as discussed in Section 5.1, the DREAM model

shares model parameters across positions in each query string while

the CardNet model does not. Thus, the size of the CardNet model

is larger than that of the DREAM model.

Estimation time: To give an idea of how much the overhead of

estimating the cardinality of an approximate substring query is, we

report the average estimation time of every estimator on the DBLP

dataset in Figure 13. Refer to the extended version [18] of the paper

for the other datasets. As the size of the query string increases, the

time to estimate the cardinality of the query by the LBS algorithm

grows. On the other hand, the estimation times of all neural esti-

mators are almost the same regardless of the query lengths. Note

that the Astrid model has the fastest estimation time among the

neural models. However, its accuracy is the worst among all neural

estimators, as shown in Table 5. Although the LBS algorithm takes

the quickest estimation times with short query strings, since it

needs to generate many string patterns for a long query string, its

estimation time is much longer than deep learning models for long

query strings. Thus, it is preferable to use the neural estimators for

cardinality estimation of approximate substring queries.

7 CONCLUSION
We studied the cardinality estimation problem of approximate sub-

string queries.We first proposed the TEDDY and SODDY algorithms

to quickly generate a training data by using the required column

pruning and sharing common computations. We next presented an

RNN-based cardinality estimation model, called the DREAM model.

In addition, we proposed the packed learning method to efficiently

train the DREAM model. The experimental results confirmed that

the proposed data generation algorithms are very efficient and the

DREAM model using the packed learning method is more accurate

than other estimators while it requires the smallest model sizes.
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